# SCHOLARS ACADEMY <br> Class Tag Line 

Q. 1 A) Solve Multiple choice questions.

1) Seg $P A$ and seg $P B$ are the tangents to the circle with centre $O$. $A$ and $B$ are the points of contacts. If $P A$ $=5 \mathrm{~cm}$, what is the length of PB ?
a. 10
b. 5
c. 2.5
d. -10
2) $1+\cot ^{2} \theta=$ ?
a. $\sin ^{2} \theta$
b. $\tan ^{2} \theta$
c. $\sec ^{2} \theta$
d. $\operatorname{cosec}^{2} \theta$
3) If $a, b, c$ are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle.
a. Obtuse angled triangle
b. Acute angled triangle
c. Right angled triangle
d. Equilateral triangle
4) Distance of point $(-3,4)$ from the origin is $\qquad$
a. 7
b. 1
c. 5
d. -5
B) Solve the following questions.
5) In the adjoining figure circle with $D$ touches the side of $\angle A C B$ at $A$ and $B$. If $\angle A C B=52^{\circ}$, find measure of $\angle \mathrm{ADB}$.

6) Find the distance between each of the following pairs of points.
$A(2,3), B(4,1)$
7) Identify, with reason, if the following is Pythagorean triplet. 4, 9, 12
8) In the figure, seg $A C$ and seg $B D$ intersect each other in point $P$ and $\frac{A P}{C P}=\frac{B P}{D P}$.

Prove that, $\triangle \mathrm{ABP} \sim \triangle \mathrm{CDP}$

Q. 2 A) Complete the following Activities. (Any two)

1) In $\angle \mathrm{MNP}=90^{\circ}$, $\operatorname{seg} \mathrm{NQ} \perp \operatorname{seg} \mathrm{MP}, \mathrm{MQ}=9, \mathrm{QP}=4$, find $N Q$.

$\ln \triangle M N P$,
$\angle \mathrm{MNP}=90^{\circ}$
...(Given)
seg NQ $\perp$ hypotenuse MP
...(Given)
$\therefore \quad$ By property of geometric mean
$N Q^{2}=M Q \times$ $\qquad$
$\therefore \quad \mathrm{NQ}^{2}=$ $\qquad$
$\therefore \quad N Q^{2}=$ $\qquad$
$\therefore \quad N Q=$ $\qquad$ ...(Taking square roots on both the sides)
2) In the following figure, $O$ is the centre of the circle. $\angle A B C$ is inscribed in arc $A B C$ and $\angle A B C=$ $65^{\circ}$. Complete the following activity to find the measure of $\angle \mathrm{AOC}$.


Activity :
$\angle \mathrm{ABC}=\frac{1}{2}$
... [ Inscribed angle theorem ]
$\therefore \quad \times 2=m(\operatorname{arc} A X C)$
$\therefore \quad \mathrm{m}(\operatorname{arc} A X C)=$ $\qquad$
$\angle A O C=m(\operatorname{arc} A X C)$
$\therefore \quad \angle \mathrm{AOC}=$ $\qquad$
3)


In figure $X Y|\mid$ seg $A C$. If $2 A X=3 B X$ and $X Y=9$. Complete the activity to find the value of $A C$.
$2 A X=3 B X \quad \frac{A X}{B X}=$ $\qquad$
$\frac{\mathrm{AX}+\mathrm{BX}}{\mathrm{BX}}=$ $\qquad$ ... by componendo
$\frac{A B}{B X}=$ $\qquad$
$\triangle B C A \sim \triangle B Y X$ $\qquad$ test of similarity.
$\therefore \quad \frac{B A}{B X}=\frac{A C}{X Y}$
... corresponding sides of similar triangles.
$\therefore \quad \frac{5}{2}=\frac{A C}{9} \quad \therefore \quad A C=$ $\qquad$ ... from (I)
B) Solve the following questions. (Any four)

1) Prove the following
$\frac{\tan ^{3} \theta-1}{\tan \theta-1}=\sec ^{2} \theta+\tan \theta$
2) $\triangle A B C \sim \triangle P Q R . A(\triangle A B C): A(\triangle P Q R)=16: 25$. If $B C=2 \mathrm{~cm}$, find $Q R$.
3) In altitudes $Y Z$ and $X T$ of $\triangle W X Y$ intersect at $P$. Prove that,

4) Find the length a diagonal of a rectangle having sides 11 cm and 60 cm .
5) Construct a tangent to the circle without using centre of the circle.
Q. 3 A) Complete the following activity. (Any one)
6) 



In the given figure, $A B C D$ is a trapezium in which $A B \| D C$. If $2 A B=3 D C$, find the ratio of the areas of $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$.
$\frac{\mathrm{AB}}{\mathrm{DC}}=\frac{3}{2}$
To find : area $\triangle A O B$ : area of $\triangle C O D$
Proof : In $\triangle A O B$ and $\triangle C O D$

$$
\begin{aligned}
& \angle \mathrm{AOB}=\angle \mathrm{COD} \\
& \angle \mathrm{OAB}=\overline{\triangle C O D} \\
\therefore \quad & \triangle \mathrm{AOB} \sim \triangle \mathrm{COD} \\
\therefore \quad & \frac{\text { area } \triangle \mathrm{AOB}}{\text { area } \triangle \mathrm{COD}}=\square=\frac{3^{2}}{2^{2}}=
\end{aligned}
$$

(alternate angles)
$\qquad$

## Ratio in the areas of $\triangle A O B$ and $\triangle C O D$

$\qquad$
2) If $\sin \theta=\frac{5}{13}$, where $\theta$ is an acute angle, find the value of other trigonometric ratios, using identities.

$$
\begin{array}{rlrl}
\sin \theta & =\frac{5}{13} & \ldots \text { (given) }  \tag{given}\\
\sin ^{2} \theta+\cos ^{2} \theta & & 1 & \ldots \text { (Trigonometrically Identity) } \\
\therefore \quad \cos ^{2} \theta & =1-\sin ^{2} \theta & & \\
& = & & \ldots \text { (given) } \\
\sin ^{2} \theta+\cos ^{2} \theta & =\frac{1}{2} & & \\
\cos ^{2} \theta & =1-\sin ^{2} \theta & & \\
& =1-\frac{25}{169} & & \\
& =\frac{169-25}{169} & & \\
\therefore \quad & & & \\
\therefore \quad \cos \theta & = & &
\end{array}
$$

```
        \(\pm \frac{12}{13}\)
\(\therefore \quad \cos \theta=\frac{12}{13}\)
    \(\tan \theta=\frac{\sin \theta}{\cos \theta}\)
        \(=\frac{\frac{5}{13}}{\frac{12}{13}}\)
\(\therefore \quad \tan \theta=\frac{5}{12}\)
        \(\cot \theta=\frac{1}{\tan \theta}\)
        \(=\frac{1}{\left(\frac{5}{12}\right)}\)
\(\therefore \quad \cot \theta=\)
    \(\sec \theta=\frac{1}{\cos \theta}\)
        \(=\frac{1}{\left(\frac{12}{13}\right)}\)
\(\therefore \quad \sec \theta=\)
    \(\operatorname{cosec} \theta=\frac{1}{\sin \theta}\)
    \(=\frac{1}{\left(\frac{5}{13}\right)}\)
... [From (1)]
```

$\therefore$
$\operatorname{cosec} \theta=$ $\qquad$
B) Solve the following questions. (Any two)

1) In fig, chord $A B \cong$ chord $C D$, Prove that, arc $A C \cong \operatorname{arc} B D$.

2) Draw a circle with radius 4.1 cm . Construct tangents to the circle from a point at a distance 7.3 cm from the centre.
3) A triangle $A B C$ with sides $A B=6 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$ is enlarged to $\triangle P Q R$ such that its largest side is 18 cm . Find the ratio and hence find the lengths of the remaining sides of $\triangle P Q R$.
4) Prove the following.
$\frac{(\cos \theta-\sin \theta)(1+\tan \theta)}{2 \cos ^{2} \theta-1}=\sec \theta$
Q. 4 Solve the following questions. (Any two)
5) $\triangle \mathrm{LTR} \sim \triangle \mathrm{HYD}$. In $\triangle \mathrm{HYD}$, where $\mathrm{HY}=7.2 \mathrm{~cm}, \mathrm{YD}=6 \mathrm{~cm}, \angle \mathrm{Y}=40^{\circ}$ and $\frac{\mathrm{LR}}{\mathrm{HD}}=\frac{5}{6}$ and construct $\triangle \mathrm{LTR}$ $\& \triangle H Y D$.
6) Two circles intersect in points $M$ and $N$. A secant passing through $M$ intersects the circles in $P$ and $Q$ respectively.
Tangents to the circles at $P$ and $Q$ intersect at $T$. Prove that $\square P T Q N$ is a cyclic quadrilateral.

7) $\triangle P Q R$ is a right triangle. Right angled at $Q$ such that $Q R=b$ and $a=A(P Q R)=a$ If $Q N \perp P R$ then show that $Q N=\frac{2 a b}{\sqrt{\mathrm{~b}^{4}+4 \mathrm{a}^{2}}}$

Q. 5 Solve the following questions. (Any one)
8) $\triangle \mathrm{ABC}$ is a triangle where $\angle \mathrm{C}=90^{\circ}$.

Let $B C=a, C A=b, A B=c$ and let ' $p$ ' be the length of the perpendicular $C$ on $A B$.
i) With the help of area of triangle, prove $c p=a b$,
ii) with the application of Pythagoras theorem, prove $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
2) If $\tan \theta=2$ then find the values of other trigonometric ratios.

