Question Paper

SCHOLARS ACADEMY Class Tag Line

WWW.SCHOLARSCLASSES.COM/BLOG SUB : MATHEMATICS PART - II

Q.1 A) Solve Multiple choice questions.

- Seg PA and seg PB are the tangents to the circle with centre O. A and B are the points of contacts. If PA = 5cm, what is the length of PB?
 - a. 10 b. 5 c. 2.5 d. 10
- 2) $1 + \cot^2 \theta = ?$ a. \sin^2_{θ} b. \tan^2_{θ} c. \sec^2_{θ} d. \csc^2_{θ}
- **3)** If a, b, c are sides of a triangle and $a^2 + b^2 = c^2$, name the type of triangle.
 - a. Obtuse angled triangle b. Acute angled triangle
 - c. Right angled triangle d. Equilateral triangle
- 4) Distance of point (-3,4) from the origin is
 a. 7
 b. 1
 c. 5
 d.-5

B) Solve the following questions.

1) In the adjoining figure circle with D touches the side of \angle ACB at A and B. If \angle ACB = 52°, find measure of \angle ADB.

A (2, 3), B (4, 1)

- 3) Identify, with reason, if the following is Pythagorean triplet. 4, 9, 12
- 4) In the figure, seg AC and seg BD intersect each other in point P and $\frac{AP}{CP} = \frac{BP}{DP}$. Prove that, $\triangle ABP \sim \triangle CDP$

Q.2 A) Complete the following Activities. (Any two)

1) In \angle MNP = 90°, seg NQ \perp seg MP, MQ = 9, QP = 4, find NQ.

Time: 2 hrs Marks: 40

(4)

(4)

Date: 17-01-21

1/17/2021

Activity :

... [Inscribed angle theorem]

... [Definition of measure of minor arc)

In figure XY || seg AC. If 2AX = 3BX and XY = 9. Complete the activity to find the value of AC.

B) Solve the following questions. (Any four)

(8)

- 1/17/2021
 - 1) Prove the following $\frac{\tan^3 \theta - 1}{\tan \theta - 1} = \sec^2 \theta + \tan \theta$
 - **2)** $\triangle ABC \sim \triangle PQR. A(\triangle ABC) : A(\triangle PQR) = 16 : 25. If BC = 2 cm, find QR.$
 - In altitudes YZ and XT of △WXY intersect at P. Prove that,
 (1) □WZPT is cyclic. (2) Points X, Z, T, Y are concyclic.

- 4) Find the length a diagonal of a rectangle having sides 11 cm and 60 cm.
- 5) Construct a tangent to the circle without using centre of the circle.

Q.3 A) Complete the following activity. (Any one)

In the given figure, ABCD is a trapezium in which AB \parallel DC. If 2AB = 3DC, find the ratio of the areas of $\triangle AOB$ and $\triangle COD$.

$$\frac{AB}{DC} = \frac{3}{2}$$

1)

To find : area $\triangle AOB$: area of $\triangle COD$ Proof : In $\triangle AOB$ and $\triangle COD$

2) If $\sin \theta = \frac{5}{13}$, where θ is an acute angle, find the value of other trigonometric ratios, using identities.

	sin θ	=	$\frac{5}{13}$	(given)
	$\sin^2 \theta + \cos^2 \theta$	=	1	(Trigonometrically Identity)
<i>.</i> :.	cc	$\sigma^2 \theta =$	1 – sin² θ	
		=		(given)
	sin ² θ + co	$\sigma^2 \theta =$	1	(Trigonometrically Identity)
.:.	CC	$\sigma s^2 \theta =$	1 – sin²θ	
		=	$1 - \frac{25}{169}$	
		=	$\frac{169-25}{169}$	
		=		
<i>.</i>	C	osθ=		(Taking sq. root)

(3)

Question Paper

B) Solve the following questions. (Any two)

1) In fig, chord AB \cong chord CD, Prove that, arc AC \cong arc BD.

- 2) Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.
- 3) A triangle ABC with sides AB = 6 cm, BC = 12 cm and AC = 8 cm is enlarged to △PQR such that its largest side is 18 cm. Find the ratio and hence find the lengths of the remaining sides of △PQR.
- 4) Prove the following. $\frac{(\cos \theta - \sin \theta) (1 + \tan \theta)}{2\cos^2 \theta - 1} = \sec \theta$

Q.4 Solve the following questions. (Any two)

- 1) \triangle LTR ~ \triangle HYD. In \triangle HYD, where HY = 7.2 cm, YD = 6 cm, \angle Y = 40° and $\frac{LR}{HD} = \frac{5}{6}$ and construct \triangle LTR & \triangle HYD.
- Two circles intersect in points M and N. A secant passing through M intersects the circles in P and Q respectively.

Tangents to the circles at P and Q intersect at T. Prove that DPTQN is a cyclic quadrilateral.

(8)

(6)

Question Paper

3) \triangle PQR is a right triangle. Right angled at Q such that QR = b and a = A(PQR) = a If QN \perp PR then show that ON = 2ab

Q.5 Solve the following questions. (Any one)

- 1) △ABC is a triangle where ∠C = 90°.
 Let BC = a, CA = b, AB = c and let 'p' be the length of the perpendicular C on AB.
 i) With the help of area of triangle, prove cp = ab,
 ii) with the application of Pythagoras theorem, prove 1/p² = 1/a² + 1/b²
- **2)** If $\tan \theta = 2$ then find the values of other trigonometric ratios.

(3)