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The Constitution of India

Preamble

 WE, THE PEOPLE OF INDIA, having 
solemnly resolved to constitute India into a 
SOVEREIGN SOCIALIST SECULAR 
DEMOCRATIC REPUBLIC and to secure to 
all its citizens:
 JUSTICE, social, economic and political;
 LIBERTY of thought, expression, belief, faith 
and worship;
 EQUALITY of status and    of opportunity; 
and to promote among them all
 FRATERNITY assuring the dignity of 
the individual and the unity and integrity of the 
Nation;
 IN OUR CONSTITUENT ASSEMBLY this 
twenty-sixth day of November, 1949, do HEREBY 
ADOPT, ENACT AND GIVE TO OURSELVES 
THIS CONSTITUTION.



NATIONAL ANTHEM



(Vivek Gosavi)
Director

Maharashtra State Bureau of Textbook 
Production and Curriculum Research, Pune.

PREFACE

Dear Students,

Welcome to Standard XII, an important milestone in your life.

Standard XII or Higher Secondary School Certificate opens the doors of higher 
education. Alternatively, you can pursue other career paths like joining the workforce. 
Either way, you will find that mathematics education helps you considerably. Learning 
mathematics enables you to think logically, constistently, and rationally. The curriculum for 
Standard XII Mathematics and Statistics for Science and Arts students has been designed 
and developed keeping both of these possibilities in mind.

The curriculum of Mathematics and Statistics for Standard XII for Science and Arts 
students is divided in two parts. Part I deals with topics like Mathematical Logic, Matrices, 
Vectors and Introduction to three dimensional geometry. Part II deals with Differentiation, 
Integration and their applications, Introduction to random variables and statistical methods.

The new text books have three types of exercises for focused and comprehensive 
practice. First, there are exercises on every important topic. Second, there are comprehensive 
exercises at the end of all chapters. Third, every chapter includes activities that students 
must attempt after discussion with classmates and teachers. Additional information has 
been provided on the E-balbharati website (www.ebalbharati.in).

We are living in the age of Internet. You can make use of modern technology with 
the help of the Q.R. code given on the title page. The Q.R. code will take you to links 
that provide additional useful information. Your learning will be fruitful if you balance 
between reading the text books and solving exercises. Solving more problems will make 
you more confident and efficient.

The text books are prepared by a subject committee and a study group. The books 
(Paper I and Paper II) are reviewed by experienced teachers and eminent scholars. The 
Bureau would like to thank all of them for their valuable contribution in the form of 
creative writing, constructive and useful suggestions for making the text books valuable. 
The Bureau hopes and wishes that the text books are very useful and well received by 
students, teachers and parents.

Students, you are now ready to study. All the best wishes for a happy learning 
experience and a well deserved success. Enjoy learning and be successful.

 Pune
Date :  21 February 2020
Bharatiya Saur : 2 Phalguna 1941 



Mathematics and Statistics XII (Part II) 
Arts and Science

Sr. No Area / Topic Sub Unit              Competency Statement

1. Differentiation Differentiation

The students will be able to
• state and use standard formulas of 

derivative  of standard functions
• use chain rule of derivatives 
• find derivatives of  the logarithm, 

implicit, inverse and parametric 
functions

• find second and higher order 
derivatives.

2. Applications 
of Derivatives

Applications of 
Derivatives

• find equations of tangents and normal 
to a curve

• determine nature of the function-
increasing or decreasing

• find approximate values of the 
function

• examine function for maximum and 
minimum values

• verify mean value theorems

3. Indefinite
 Integration

Indefinite
Integration

• understand the relation between 
derivative and integral

• use the method of substitution 
• solve integrals with the help of 

integration by parts
• solve the integrals by the method of 

partial fractions

4. Definite 
Integration

Definite 
Integration

•  understand integral as a limit of sum
• the properties of definite integral
• state the properties of definite integral 

and use them to solve problems 



5.

Application 
of Definite 
Integration

Application 
of Definite 
Integration

• find the area under the curve, bounded 
by the curves using definite integrals.

6. Differential 
Equation

Differential 
Equation

• form a differential equation and find 
its order and degree

• solve the first order and first degree 
differential equation by various 
methods

• apply the differential equations to 
study the polpulation, growth and 
decay in amount of substance and 
physics.

7. Probability 
Distribution

Probability 
Distribution

• understand the random variable and its 
types. 

• find probability mass function and its 
probability distribution.

• find the expected value, variance and 
the standard deviation 

• find the probability density function of 
continuous random variable 

• find distribution function of c.r.v.

8 Binomial 
Distribution

Binomial 
Distribution

• understand random experiment with 
two or more outcomes.

• determine probability distribution of 
random experiment with parameters n 
and p.

• find mean, variance, expected value 
and standard deviation for the 
binomial distribution.
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Let us Study

• Derivatives of Composite functions. • Geometrical meaning of Derivative. 

• Derivatives of Inverse functions •	 Logarithmic	Differentiation	

• Derivatives of Implicit functions.  • Derivatives of Parametric functions. 

• Higher order Derivatives.  

Let us Recall

• The derivative of f (x) with respect to x, at x = a is given by 

•	 The	 derivative	 can	 also	 be	 defined	 for	 	 f (x) at any point x on the open interval as

 . If the function is given as y = f (x) then its derivative is written as  

 .

•	 For	a	differentiable	function	y = f (x) if δx is a small increment in x and the corresponding increment 

in y is δy then  .

• Derivatives of some standard functions. 

y = f (x)

c (Constant) 0
xn nxn−1

1
x

−
 

1
x2

1
xn −

 

n
xn+1

sin x cos x
cos x −	sin x
tan x sec2 x

y = f (x)

sec x sec x tan x

cosec x −	cosec x cot x

cot x −	cosec2 x

e x e x

a x a x log a

log x
1
x

log a x
1

x log a

Table 1.1.1

1.  DIFFERENTIATION
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Rules of Differentiation : 

If u and v	are	differentiable	functions	of	x such that 

(i) y = u ± v  then    (ii) y = uv  then  

(iii) y = 
u
v

 where v ≠ 0 then 

Introduction :

The history of mathematics presents the development of calculus as being accredited to Sir Isaac 
Newton (1642-1727) an English physicist and mathematician and Gottfried Wilhelm Leibnitz (1646-
1716) a German physicist and mathematician. The Derivative is one of the fundamental ideas of calculus. 
It's	all	about	rate	of	change	in	a	function.	We	try	to	find	interpretations	of	these	changes	in	a	mathematical	
way. The symbol δ will be used to represent the change, for example δx represents a small change in the 
variable x and it is read as "change in x" or "increment in x". δy is the corresponding change in y if y is 
a function of x. 

We have already studied the basic concept, derivatives of standard functions and rules of 
differentiation	 in	previous	standard.	This	year,	 in	 this	chapter	we	are	going	 to	study	 the	geometrical	
meaning of derivative, derivatives of Composite, Inverse, Logarithmic, Implicit and Parametric functions 
and	also	higher	order	derivatives.	We	also	add	some	more	rules	of	differentiation.	

Let us Learn

1.1.1 Derivatives of Composite Functions (Function of another function) :

So far we have studied the derivatives of simple functions like sin x, log x, e x etc. But how about 
the derivatives of sin , log sin (x2 + 5)  or e tan x etc ? These are known as composite functions. In 
this	section	let	us	study	how	to	differentiate	composite	functions.

1.1.2 Theorem :  If y = f (u)	is	a	differentiable	function	of	u and u = g (x)	is	a	differentiable	function	of	

x such that the composite function y = f [g (x)]	is	a	differentiable	function	of	x then .

Proof : Given that y = f (u) and u = g (x). We assume that u is not a constant function. Let there be a 
small increment in the value of x say δx then δu and δy are the corresponding increments in u and 
y respectively. 

As δx, δu, δy are small increments in x, u and y respectively such that δx ≠ 0, δu ≠ 0 and δy ≠ 0. 

We have . 

 Taking the limit as δx → 0 on both sides we get, 
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 As δx → 0, we get, δu → 0 (⸪ u is a continuous function of x) 

    . . . . . (I)

 Since y	is	a	differentiable	function	of	u and u	is	a	differentiable	function	of	x. 
 we have, 

   and    . . . . . (II)

 From (I) and (II), we get 

     . . . . . (III) 

	 The	R.H.S.	of	(III)	exists	and	is	finite,	implies	L.H.S.of	(III)	also	exists	and	is	finite		

 . Then equation (III) becomes, 

  

Note:

1. The derivative of a composite function can also be expressed as follows. y = f (u)	is	a	differentiable	

function of u and u = g (x) is	 a	 differentiable	 function	 of	 x such that the composite function                       

y = f [ g (x)]	is	defined	then

  . 

2. If y = f (v)	is	a	differentiable	function	of	v and v = g (u)	is	a	differentiable	function	of	u and u = h (x) 

is	a	differentiable	function	of	x then

 . 

3. If y	is	a	differentiable	function	of	u1, ui is	a	differentiable	function	of	ui+1 for i = 1, 2, ..., n−1 and un 

is	a	differentiable	function	of	x, then

   

 This rule is also known as Chain rule. 
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y
dy
dx

[ f (x)] n n [ f (x)] n−1 ⋅ f '(x)

√ f (x)
f '(x)

2√ f (x)

1
[ f (x)]n −

 

n ⋅ f '(x)

[ f (x)] n+1

sin [ f (x)] cos [ f (x)]⋅ f '(x)
cos [ f (x)] −	sin [ f (x)]⋅ f '(x)
tan [ f (x)] sec2 [ f (x)]⋅ f '(x)
sec [ f (x)] sec [ f (x)] ⋅ tan [ f (x)] ⋅ f '(x)

y
dy
dx

cot [ f (x)] −	cosec2 [ f (x)]⋅ f '(x)

cosec [ f (x)] −	cosec [ f (x)] ⋅ cot [ f (x)] ⋅ f '(x)

a f (x) a f (x) ⋅ log a ⋅ f '(x)

e f (x) e f (x) ⋅ f '(x)

log [ f (x)]
f '(x)

f (x)

log a [ f (x)]
f '(x)

f (x) log a

1.1.3 Derivatives of some standard Composite Functions :

Table 1.1.2
SOLVED EXAMPLES 

Ex. 1 : Differentiate	the	following	w. r. t. x.

(i)   y =  √ x2 + 5    (ii)  y = sin (log x)   (iii) y = e tan x

(iv)   log (x5 + 4)    (v)  53 cos x	−	2   (vi) y = 
3

(2x2 −	7)5

Solution :  (i) y =  √ x2 + 5 

Method 1 : 

 Let u = x2 + 5 then y = √ u , where y is 
a	 differentiable	 function	 of	 u and u is a 
differentiable	function	of	x then

   . . . . . (I)

 Now, y = √ u
	 Differentiate	w. r. t. u

  and u = x2 + 5

	 Differentiate	w. r. t. x

 
du
dx

 = 
d
dx

 (x2 + 5) = 2x

 Now, equation (I) becomes, 

  

Method 2 : 

 We have y =  √ x2 + 5 

	 Differentiate	w. r. t. x 

 

 [Treat x2 + 5 as u in mind and use the formula 
of derivative of √ u ]
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(vi) Let y = 
3

(2x2 −	7)5

	 Differentiate	w. r. t. x

 

  

  

 

 Note : Hence onwards let's use Method 2.

(ii) y = sin (log x) 

Method 1 : 

 Let u = log x then y = sin u, where y is 
a	 differentiable	 function	 of	 u and u is a 
differentiable	function	of	x then

   . . . . . (I)

 Now, y = sin u 

	 Differentiate	w. r. t. u

  = cos u and u = log x

	 Differentiate	w. r. t. x

  = 
1
x

 Now, equation (I) becomes, 

 

Method 2 : 

 We have  y = sin (log x) 

	 Differentiate	w. r. t. x 

 [sin (log x)]

 [Treat log x as u in mind and use the formula 
of derivative of sin u]

 

 

 

(iii) y = e tan x

		 Differentiate	w. r. t. x 

 [e tan x]

 

 

(iv)  Let y = log (x5 + 4)  

	 Differentiate	w. r. t. x

  [log (x5 + 4)]

 

 
(v)  Let y = 53 cos x	−	2 

	 Differentiate	w. r. t. x 

 [53 cos x	−	2]

 dy
dx

 = 53 cos x	−	2 · log 5 ×  (3 cos x	−	2)

 dy
dx

 = −	3 sin x · 53 cos x	−	2 · log 5 
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(ii) y = cot2 (x3)
	 Differentiate	w. r. t. x

 

  

  = 2 cot (x3)  [cot (x3)]

  = 2 cot (x3)[− cosec2 (x3)]  (x3)

  = − 2 cot (x3)cosec2 (x3)(3x2)

∴ 
dy
dx

 = − 6x2 cot (x3)cosec2 (x3)

(i) y =  √ sin x3  

	 Differentiate	w. r. t. x

 

  

  

  

∴ 

Ex. 2 : Differentiate	the	following	w. r. t. x.

(i)   y =  √ sin x3    (ii)  y = cot2 (x3)   (iii) y = log [cos (x5)]
(iv)   y = (x3 + 2x − 3)4 (x + cos x) 3 (v)  y = (1 + cos2 x) 4 × √ x + √tan x
Solution : 

(iii) y = log [cos (x5)]

	 Differentiate	w. r. t. x

 
dy
dx

 = (log [cos (x5)])

   

   

∴ 
dy
dx

 = − tan (x5) (5x4) = − 5x4 tan (x5)

(iv) y = (x3 + 2x − 3)4 (x + cos x) 3  

	 Differentiate	w. r. t. x

 

  = (x3 + 2x − 3)4 ⋅  (x + cos x) 3 + (x + cos x) 3⋅  (x3 + 2x − 3)4
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  = (x3 + 2x − 3)4 ⋅3 (x + cos x) 2 ⋅  (x + cos x) + (x + cos x) 3⋅ 4(x3 + 2x − 3)3 ⋅  (x3 + 2x − 3)

  = (x3 + 2x − 3)4 ⋅3 (x + cos x) 2  (1 − sin x) + (x + cos x) 3 ⋅ 4(x3 + 2x − 3)3 (3x2 + 2)

∴ 
dy
dx

 = 3(x3 + 2x − 3)4 (x + cos x) 2  (1 − sin x) + 4 (3x2 + 2) (x3 + 2x − 3)3 (x + cos x)3

(v) y = (1 + cos2 x) 4 × √ x + √tan x

	 Differentiate	w. r. t. x

   

  

  

  

  

  

 

 
Ex. 3 : Differentiate	the	following	w. r. t. x.

(i)  y = log3 (log5 x)    (ii)  

(iii)     (iv) 

(v)     (vi) 
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Solution : 

(i) y = log3 (log5 x)

  = log3  = log3 (log x) − log3 (log 5) 

       ∴   y =  − log3 (log 5) 
	 	 	 	 	 	 	Differentiate	w. r. t. x

       

       

         [Note that log3(log 5) is constant]

       

     ∴     

(ii) 

       

       

     ∴  [	⸪	log	e = 1]

       Differentiate	w. r. t. x

      

       

       

       

     ∴ 
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(iii)  

       ∴   

	 	 	 	 	 	 	 	Differentiate	w. r. t. x

       

        

        

        

         

       ∴  

(iv)  

       

       

       

       ∴  

	 	 	 	 	 	 	 	Differentiate	w. r. t. x
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(vi) 
 y = a cot x   [⸪	alog a f (x) = f (x)]
 Differentiate	w. r. t. x

 (a cot x )

   = a cot x log a ·  (cot x)

   = a cot x log a (− cosec2 x)

 	− cosec2 x· a cot x log a

       

        

        

        

        

             

       

(v)  

   

   

   [⸪	alog a f (x) = f (x)]

  = sin2 x + cos2 x
∴ y = 1
	 Differentiate	w. r. t. x

 

Ex. 4  : If  f (x) = √ 7g (x)	− 3 , g (3) = 4 and g' (3) =	5,	find	f ' (3).

Solution : Given that : f (x) = √ 7g (x)	− 3 
   Differentiate	w. r. t. x

     

  ∴ 

   For x = 3, we get

    = 
35

2(5)
 = 

7 
2

  [Since g (3) = 4 and g' (3) = 5]
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Ex. 5  : If  F (x) = G {3G [5G(x)]}, G(0) = 0 and G' (0) =	3,	find	F' (0).
Solution : Given that : F (x) = G {3G [5G(x)]}
   Differentiate	w. r. t. x

   F' (x) =  G {3G [5G(x)]}
    = G' {3G [5G(x)]}3·  [G [5G(x)]]

    = G' {3G [5G(x)]}3·G' [5G(x)] 5·  [G(x)]

   F' (x) = 15·G' {3G [5G(x)]}G' [5G(x)] G' (x)
   For x = 0, we get

   F' (0) = 15·G' {3G [5G(0)]}G' [5G(0)] G' (0)
    = 15·G' [3G (0)]G' (0)·(3)   [⸪	G(0) = 0 and G' (0) = 3]
    = 15·G' (0)(3)(3) = 15·(3)(3)(3) = 405

Ex. 6  : Select	the	appropriate	hint	from	the	hint	basket	and	fill	in	the	blank	spaces	in	the	following	
paragraph. [Activity]

   "Let f (x) = sin x and g (x) = log x then f [g(x)] = _ _ _ _ _ _ _ _ _ _ _ _ _ and
   g [ f (x)] = _ _ _ _ _ _  _ _ _ . Now f ' (x) = _ _ _ _ _ _ _ _ _ _ and  g' (x) = _ _ _ _ _ _ _ _.
   The derivative of  f [g(x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ _ __ _ _ _ _.

   Therefore  [ f [g(x)]] = _ _ _ _  _ _ _ _ _ and = _ _ _ _ _ _ _ _ _ _ _ _.

   The derivative of g [ f (x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ _ __ _ _ _ _.

   Therefore  [g [ f (x)]] = _ _ _ _ _ _ _ _ _ and  = _ _ _ _ _ _ _ _ _ _ _."

Hint basket : { f ' [g(x)]·g' (x), cos (log x)
x

, 1, g' [ f (x)]·f ' (x), cot x, √ 3, 

       sin (log x), log (sin x), cos x, 1
x

}

Solution : sin (log x), log (sin x), cos x, 1
x

, f ' [g(x)]·g' (x), cos (log x)
x

, 1, g' [ f (x)]·f ' (x), cot x, √ 3.

EXERCISE 1.1

(1)	 Differentiate	w. r. t. x.

 (i) (x3 −	2x −	1)5
 (ii) 

 (iii)  (iv) 

 (v)  

 (vi) 
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(2)	 Differentiate	the	following	w.r.t. x

 (i) cos (x2 + a2) (ii)  

 (iii)  (iv)  

 (v) cot3[log (x3)] (vi) 5sin3 x + 3

 (vii) cosec (√cos x) (viii) log [cos (x3 −	5)]
 (ix) e3 sin2 x − 2 cos2 x (x) cos2 [log (x2 + 7)]
 (xi) tan [cos (sin x)] (xii) sec[tan (x4 + 4)]
 (xiii) elog [(log x)2 − log x2 ] (xiv) sin √sin √x 
 (xv) log[sec (e x 

2)] (xvi) loge2 (log x) 

 (xvii) [ log [log(log x)]]2 
 (xviii) sin2 x2	−	cos2 x2

(3)	 Differentiate	the	following	w.r.t. x

 (i) (x2 + 4x + 1)3 + (x3 − 5x − 2)4 

 (ii) (1 + 4x)5 (3 + x − x2)8

 (iii)  (iv)  

 (v) (1 + sin2 x)2 (1 + cos2 x)3

 (vi) √cos x + √cos √x 

 (vii) log (sec 3x + tan 3x) (viii) 

 
(ix) 

 (x)  (xi) 

 (xii) log [tan3 x·sin4 x·(x2 + 7)
7]

 (xiii)  

 (xiv) 

 (xv)  

 (xvi)  

 (xvii) 

 (xviii)  

 (xix) y = (25)log5 (sec x) − (16)log4 (tan x) 

 (xx)  

(4) A table of values of f, g, f ' and  g' is given

x f (x) g(x) f '(x) g'(x)

2 1 6 −3 4

4 3 4 5 −6

6 5 2 −4 7

 (i) If r(x) = f [g(x)]	find	r' (2).

 (ii) If R(x) = g[3 + f (x)]	find	R' (4).

 (iii) If s(x) = f [9 −	f (x)]	find	s' (4).

 (iv) If S(x) = g [ g(x)	]	find	S' (6).

(5) Assume that f ' (3) =	−	1,	g' (2) = 5, g (2) = 3 

and y = f [g(x)] then 

(6) If , f (1) = 4, g (1) = 3, 

f ' (1) = 3, g' (1) =	4	find	h' (1).

(7) Find the x co-ordinates of all the points on 
the curve y = sin 2x	−	2	 sin	x,	 0	≤	x < 2π 

where  0.
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(8) Select	 the	 appropriate	 hint	 from	 the	 hint	 basket	 and	 fill	 up	 the	 blank	 spaces	 in	 the	 following	
paragraph. [Activity]

 "Let f (x) = x2 + 5 and g (x) = ex + 3 then

  f [ g (x)] = _ _ _ _ _ _ _ _ and 

 g [ f (x)] =_ _ _ _ _ _ _ _. 

 Now f '(x) = _ _ _ _ _ _ _ _ and 

 g' (x) = _ _ _ _ _ _ _ _. 

 The derivative of f [g (x)] w. r. t. x in terms 

of f and g is _ _ _ _ _ _ _ _. 

Therefore  [ f [g(x)]] = _ _ _ _ _ _ _ _ _  and  

= _ _ _ _ _ _ _ _ _ _ _. 

The derivative of g [ f (x)] w. r. t. x in terms of    
f and g is _ _ _ _ _ _ __ _ _ _ _. 

Therefore  [g [ f (x)]] = _ _ _ _ _ _ _ _ _ 

and  = _ _ _ _ _ _ _ _ _ _ _."

1.2.1 Geometrical meaning of Derivative :

 Consider a point P on the curve f (x). At x = a, the 

coordinates of P are (a, f (a)). Let Q be another point on the 
curve, a little to the right of P i.e. to the right of x = a, with 
a value increased by a small real number h. Therefore the 
coordinates of Q are ((a + h), f (a + h)). Now we can calculate 
the slope of the secant line PQ i.e. slope of the secant line 

connecting the points P (a, f (a)) and Q ((a + h), f (a + h)), by 
using formula for slope.

Slope of secant PQ 

 
Suppose we make h smaller and smaller then a + h will approach a as h gets closer to zero, Q will 

approach P, that is as h → 0, the secant coverges to the tangent at P.

∴ (Slope of secant PQ) =  = f ' (a)

 So we get, Slope of tangent at P = f ' (a)   ..... [ If limit exists]

Thus the derivative of a function y = f (x) at any point P (x1, y1) is the slope of the tangent at that 

point on the curve. If we consider the point a −	h to the left of a, h > 0, then with R = ((a −	h), f (a −	h)) 
we	will	find	the	slope	of	PR	which	will	also	converge	to	the	slope	of	tangent	at	P.

For Example : If y = x2 + 3x + 2 then slope of the tangent at (2,3) is given by

Slope = (2x + 3)(2,3) = 2 (2) + 3)  ∴ m = 7

Fig. 1.2.1

Hint basket : { f ' [g(x)]·g' (x), 2e2x + 6ex, 8, g' [ f (x)]· f ' (x), 2xe x2+5,	−	2e6, e2x + 6ex + 14, e x2+5 + 3, 2x, ex}
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1.2.2 Derivatives of Inverse Functions :

We know that if y = f (x) is a one-one and onto function then x = f  −1 ( y) exists. If f  −1 ( y) is 
differentiable then we can find its derivative. In this section let us discuss the derivatives of some inverse 
functions and the derivatives of inverse trigonometric functions.

Example 1 : Consider f (x) = 2x	−	2	then	its	inverse	is	f  −1 (x) = 
x + 2

2
. Let g(x) = f  −1 (x). 

 If we find the derivatives of these functions we see that 
d
dx

 [ f (x)] = 2 and 
d
dx

 [g (x)] = 
1
2

.

 These derivatives are reciprocals of one another.

Example 2 : Consider y = f (x) = x2 . Let g = f  −1.

 ∴  g ( y) =  x = √ y

 ∴  g' ( y) = 
1

2 √ y
 also f ' (x) = 2x

 Now 
d
dx

 [g ( f (x))] =  = 1 and g [ f (x)] = x ∴ 
d
dx

 [g ( f (x))] = 
d
dx

 (x) = 1

 At a point ( x, x2 ) on the curve, f ' (x) = 2x and g' ( y) = 
1

2 √ y
 = 

1
2x

 =  
1

f '(x)
 .

1.2.3 Theorem :  Suppose y = f (x)	is	a	differentiable	function	of	x on an interval I and y is One-one, onto and 

 
dy
dx

 ≠	0	on I. Also if  f  −1( y) is	differentiable	on	f (I ) then  
d
dy

 [ f  −1( y)] = 
1

f '(x)
  or  

dx
dy

 =  where  
dy
dx

 ≠	0.

Proof : Given that y = f (x) and x = f  −1 (y)	are	differentiable	functions. 
 Let there be a small increment in the value of x say δx then correspondingly there will be an 

increment in the value of y say δy. As δx and δy are increments, δx ≠ 0 and δy ≠ 0. 

We have,  
δx
δy

 × 
δy
δx

 = 1

  ∴ 
δx
δy

 = , where 
δy
δx

 ≠ 0

 Taking the limit as δx → 0, we get, 

    
 as δx → 0, δy → 0, 

       . . . . . (I)   

 Since y = f (x)	is	a	differentiable	function	of	x.  
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 we have,  and 
dy
dx

 ≠ 0  . . . . . (II)

 From (I) and (II), we get 

      . . . . . (III) 

 As 
dy
dx

 ≠ 0,  exists	and	is	finite.	∴ limδy→0 
δx
δy

  = 
dx
dy
	exists	and	is	finite.

 Hence, from (III) 
dx
dy

 = where 
dy
dx

 ≠ 0

An alternative proof using derivatives of composite functions rule.

We know that  f  −1 [ f (x)] =  x   [Identity function]
Taking derivative on bothe sides we get,

 
d
dx

 [ f  −1 [ f (x)]] = 
d
dx

 (x)

i.e. ( f  −1)' [ f (x)] 
d
dx

 [ f (x)]  = 1

i.e. ( f  −1)' [ f (x)] f ' (x) = 1

∴ ( f  −1)' [ f (x)] = 
1

f ' (x)
    . . . . . (I)

 So, if y = f (x) is a differentiable function of x and x =  f  −1 ( y) exists and is differentiable then 

 ( f  −1)' [ f (x)] = ( f  −1)' ( y) = 
dx
dy

 and f ' (x) = 
dy
dx

 

∴ (I) becomes

 
dx
dy

 =  where 
dy
dx

 ≠ 0

SOLVED EXAMPLES 

Ex. 1 : Find the derivative of the function y = f (x) using the derivative of the inverse function 
  x =  f  −1 ( y) in the following
  (i)  (ii)   (iii) y = ln x
Solution : 
  (i) 
	 	 	 We	first	find	the	inverse	of	the	function	y = f (x), i.e. x in term of y.
   y3 = x + 4  ∴ x = y3	− 4 ∴ x =  f  −1 ( y) =  y3	− 4

   
dy
dx

 =  =  

      for x ≠ −4
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  (ii)   
	 	 	 We	first	find	the	inverse	of	the	function	y = f (x), i.e. x in term of y.
   y2 = 1 + √ x i.e. √ x = y2 − 1, ∴ x =  f  −1 ( y) = ( y2	− 1)2

   
dy
dx

 =  = 

      

         

  (iii) y = log x
	 	 	 We	first	find	the	inverse	of	the	function	y = f (x), i.e. x in term of y.
   y = log x ∴ x =  f  −1 ( y) = e y

   
dy
dx

 =  =  = 
1
e y  = 

1
e ln x = 

1
x .

Ex. 2 : Find the derivative of the inverse of 
function y = 2x3 − 6x and calculate its 
value at x = −2.

Solution : Given : y = 2x3 − 6x
   Diff.	w. r. t. x we get,

   
dy
dx

 = 6x2 − 6 = 6 (x2 − 1)

   we have, 
dx
dy

 = 

  ∴ 
dx
dy

 = 
1

6 (x2 − 1)
   at x = −	2, 
   we get, y = 2(−2)3 −	6(−2) 
       = −	16 + 12 = −	4

   

     = 
1

6 ((−2)2 − 1) 

     = 
1
18

Ex. 3 : Let f and g be the inverse functions of 
each other. The following table lists a 
few values of f, g and f '

x f (x) g(x) f '(x)

−4 2 1
1
3

1 −4 −2 4

  find	g' (−4).

Solution : In	order	to	find	g' (−4),	we	should	first	
find	an	expression	for	g' (x) for any input 
x. Since f and g are inverses we can use 
the following identify which holds for 
any	two	diffetentiable	inverse	functions.

  g' (x) = 
1

f ' [g(x)]
 ... [check, how?]

     ... [Hint : f [g(x)] = x] 

 ∴ g' (−4) = 
1

f '[g (−4)]
 

    = 
1

f '(1)
= 

1
4
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Ex. 4 : Let f (x) = x5 + 2x − 3. Find ( f −1)' (−3).
Solution : Given : f (x) = x5 + 2x − 3
   Diff.	w. r. t. x we get,
   f '(x) = 5x4 + 2
   Note that y = −3	corresponds	to	x = 0. 

  ∴ ( f −1)' (−3)	 = 
1

f ' (0)

     = 
1

5(0) + 2
 = 

1
2

1.2.4 Derivatives of Standard Inverse trigononmetric Functions :

We observe that inverse trigonometric functions are multi-valued functions and because of this, 
their derivatives depend on which branch of the function we are dealing with. We are not restricted to 
use these branches all the time. While solving the problems it is customary to select the branch of the 
inverse trigonometric function which is applicable to the kind of problem we are solving. We have to 
pay more attention towards the domain and range.

1. If y = sin−1 x,	−1	≤ x ≤	1,	−	
π
2

 ≤ y ≤	
π
2

 then prove that  
dy
dx

 = 
1

√1	−	x2
 , |x| < 1.

Proof : Given that y = sin−1 x,	−1	≤ x ≤	1,	−	
π
2

 ≤ y ≤	
π
2

 

  ∴ x = sin y  . . . . (I)
	 	 	 Differentiate	w. r. t. y

   
dx
dy

 = 
d
dy

(sin y)

   
dx
dy

 = cos y = ± √cos2 y = ± √1	−	sin2 y

  ∴ 
dx
dy

 = ± √1	−	x2 . . . . [⸪ sin y = x]

   But cos y is positive since y lies in 1st or 4th	quadrant	as	−	
π
2

 ≤ y ≤	
π
2

 

  ∴ 
dx
dy

 = √1	−	x2

   We have 
dy
dx

 =  

  ∴ 
dy
dx

 = 
1

√1	−	x2
 , |x| < 1

2. If y = cos−1 x,	−1	≤ x ≤	1, 0 ≤ y ≤	π then prove that  
dy
dx

 =	−	
1

√1	−	x2
.

[As home work for students to prove.]
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3. If y = cot−1 x, x ∈ R, 0 < y < π then 
dy
dx

 =	−	
1

1 + x2
.

Proof : Given that y = cot−1 x, x ∈ R, 0 < y < π

   ∴ x = cot y   . . . . (I)

       Differentiate	w. r. t. y

    
dx
dy

 = 
d
dy

(cot y)

    
dx
dy

 = −	cosec2 y =	− (1 + cot2 y)

   ∴ 
dx
dy

 = − (1 + x2)  . . . . [⸪ cot y = x]

    We have 
dy
dx

 =  

   ∴ 
dy
dx

 = 
1

− (1 + x2)
   ∴  

dy
dx

 = −	
1

1 + x2

4. If y = tan−1 x, x ∈ R,	−	
π
2

 < y < 
π
2

 then 
dy
dx

 = 
1

1 + x2
. [left as home work for students to prove.] 

5. If y = sec−1 x, such that |x| ≥	1 and 0 ≤ y ≤	π, y ≠	
π
2

 then 
dy
dx

 = 
1

x√ x2 − 1
 if x > 1

     
dy
dx

 =	−	
1

x√ x2 − 1
  if  x < −	1

Proof : Given that y = sec−1 x, |x| ≥	1 and 0 ≤ y ≤	π, y ≠	
π
2

 

  ∴ x = sec y  . . . . (I)
	 	 	 Differentiate	w. r. t. y

   
dx
dy

 = 
d
dy

(sec y)

   
dx
dy

 = sec y · tan y 

  ∴ 
dx
dy

 = ± sec y ·√tan2 y 

    = ± sec y ·√sec2 y −	1 

  ∴ 
dx
dy

 = ± x √ x2 − 1  . . . . . [⸪ sec y = x]

 We use the sign ± because for y in 1st and 2nd quadrant. sec y · tan y > 0.
 Hence we choose x √ x2 − 1 if x > 1 and −	x √ x2 − 1 if x < −	1
 In 1st quadrant both sec y and tan y are positive.
 In 2nd quadrant both sec y and tan y are negative.
 ∴ sec y · tan y	is	positive	in	both	first	and	second	quadrant.

Fig. 1.2.2
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Also, for x > 0, x √ x2 − 1 > 0
and for x	<	0,	−	x √ x2 − 1 > 0
dx
dy

 = x √ x2 − 1 ,   when x > 0, |x| > 1 i.e. x > 1

 = −	x √ x2 − 1 ,  when x < 0, |x| > 1 i.e. x < −	1
dy
dx

 =  
1

x√ x2 − 1
   if x > 1

dy
dx

 =  −	
1

x√ x2 − 1
  if x < −	1

Note 1 : A function is increasing if its derivative is positive and is decreasing if its derivative is     
negative.

Note 2 : The derivative of sec−1 x is always positive because the graph of sec−1 x is always increasing.

6. If y =	−	cosec	x, such that |x|	≥	1	and	−	
π
2

 ≤ y ≤	
π
2

, y ≠	0	then 
dy
dx

 =	−	
1

x√ x2 − 1
 if  x > 1

      
dy
dx

 = 
1

x√ x2 − 1
  if  x < −	1

 [ Left as home work for students to prove ]

Note 3 : The derivative of cosec−1 x is always negative because the graph of cosec −1 x is always 
decreasing.

1.2.5 Derivatives of Standard Inverse trigonometric Functions :

y
dy
dx

Conditions

sin −1 x 1
√1	−	x2

 , |x| < 1
−1	≤	x ≤	1

−	
π
2
	≤	y ≤	

π
2

cos −1 x −	
1

√1	−	x2  , |x| < 1 −1	≤	x ≤ 1
0 ≤	y ≤ π

tan −1 x
1

1 + x2

x ∈ R

−	
π
2

 < y < 
π
2

cot −1 x −	
1

1 + x2
x ∈ R

0 < y < π

y
dy
dx

Conditions

sec −1 x
1

x√ x2 − 1
    for x > 1

−
1

x√ x2 − 1
  for x < −	1

|x| ≥	1
0 ≤ y ≤	π

y ≠	
π
2

 

cosec −1 x
−

1
x√ x2 − 1

 for x > 1

1
x√ x2 − 1

    for x < −	1

|x|	≥	1	

−	
π
2
	≤	y ≤	

π
2

 

y ≠	0

Table 1.2.1
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1.2.6 Derivatives of Standard Inverse trigonometric Composite Functions : 

y
dy
dx

sin −1 [ f (x)]
f ' (x)

√1	−	[	f (x)]2
 , | f (x)| < 1

cos −1 [ f (x)] −
f ' (x)

√1	−	[	f (x)]2
 , | f (x)| < 1

tan −1 [ f (x)]
f ' (x)

1 + [ f (x)]2

y
dy
dx

cot −1 [ f (x)] −	
f ' (x)

1 + [ f (x)]2

sec −1 [ f (x)]
f ' (x)

f (x) √[ f (x)]2 − 1
 , for | f (x)| > 1

cosec −1 [ f (x)]
−	

f ' (x)

f (x) √[ f (x)]2 − 1
 , for | f (x)| > 1

Table 1.2.2

Some Important Formulae for Inverse Trigonometric Functions :

(1) sin−1 (sin θ) = θ,  sin(sin−1 x) = x (2) cos−1 (cos θ) = θ, cos(cos−1 x) = x
(3) tan−1 (tan θ) = θ, tan(tan−1 x) = x (4) cot−1 (cot θ) = θ, cot(cot−1 x) = x
(5) sec−1 (sec θ) = θ, sec(sec−1 x) = x (6) cosec−1 (cosec θ) = θ, cosec(cosec−1 x) = x

(7) sin−1 (cos θ) = sin−1	 sin 
π
2

 −	θ  = 
π
2

 −	θ (8) cos−1 (sin θ) = cos−1	 cos 
π
2

 −	θ  = 
π
2

 −	θ

(9) tan−1 (cot θ) = tan−1	 tan 
π
2

 −	θ  = 
π
2

 −	θ (10) cot−1 (tan θ) = cot−1	 cot 
π
2

 −	θ  = 
π
2

 −	θ

(11) sec−1 (cosec θ) = sec−1	 sec 
π
2

 −	θ   = 
π
2

 −	θ

(12) cosec−1 (sec θ) = cosec−1	 cosec 
π
2

 −	θ   = 
π
2

 −	θ

(13) sin−1 (x) = cosec−1	
1
x

(14) cosec−1 (x) = sin−1	
1
x

(15) cos−1 (x) = sec−1	
1
x

(16) sec−1 (x) = cos−1	
1
x

(17) tan−1 (x) = cot−1	
1
x

(18) cot−1 (x) = tan−1	
1
x

(19) sin−1 x + cos−1 x = 
π
2

(20) tan−1 x + cot−1 x = 
π
2

(21) sec−1 x + cosec−1 x = 
π
2

(22) tan−1 x + tan−1 y = tan−1	
x + y
1 −	xy

 (23) tan−1 x −	tan−1 y = tan−1	
x − y
1 + xy

      Table 1.2.3In above tables, x is a real variable with restrictions.
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Some Important Substitutions :

Expression Substitutions

√1	−	x2 x = sin θ or x = cos θ

√1	−	x2 x = tan θ or x = cot θ

√ x2 + 1 x = sec θ or x = cosec θ

 

a + x
a − x or  

a − x
a + x

x = a cos 2θ or x = a cos θ

 

1 + x
1 − x or  

1 − x
1 + x

x = cos 2θ or x = cos θ

 

a + x2

a − x2  or  

a − x2

a + x2
x2 = a cos 2θ or x2 = a cos θ

SOLVED EXAMPLES 

Ex. 1 : Using derivative prove that sin−1 x + cos−1 x = 
π
2

.

Solution :  Let  f  (x) = sin−1 x + cos−1 x . . . . . (I)

   We have to prove that f  (x) = 
π
2

   Differentiate	(I) w. r. t. x

   d
dx

[ f  (x)] = d
dx

[sin−1 x + cos−1 x]

    f  ' (x) = 
1

√1	−	x2
	−	

1
√1	−	x2

 = 0

   f  ' (x) = 0 ⇒ f  (x) is a constant function.
   Let  f  (x) = c. For any value of x, f  (x) must be c only. So conveniently we can choose x = 0, 
  ∴ from (I) we get,

   f (0) = sin−1 (0) + cos−1 (0) = 0 + 
π
2

 = 
π
2

 ⇒ c = 
π
2

 ∴ f  (x) = 
π
2

   Hence, sin−1 x + cos−1 x = 
π
2

.

Ex. 2 : Differentiate	the	following	w. r. t. x.

  (i) sin−1	(x3)  (ii) cos−1	(2x2 −	x)  (iii) sin−1	(2x) 

  (iv) cot−1 
1
x2

 (v) cos−1 
1 + x

2
  (vi) sin2 (sin−1	(x2))

Expression Substitutions

2x
1 + x2

x = tan θ

1 − x2

1 + x2 x = tan θ

3x − 4x3 or 1 − 2x2 x = sin θ
4x3 − 3x or 2x2 −	1 x = cos θ

3x − x3

1 − 3x2 x = tan θ

2 f (x)

1 + [ f (x)]2 or 
1 − [ f (x)]2

1 + [ f (x)]2 f (x) = tan θ

Table 1.2.4
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Solution : 
(i) Let y = sin−1	(x3)
 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

(sin−1	(x3))

  = 
1

√1	−	(x3)2
 · 

d
dx

 (x3)

  = 
1

√1	−	x6
 (3x2)

∴ 
dy
dx

 = 
3x2

√1	−	x6

(ii) Let y = cos−1	(2x2 −	x)
 Hence cos y = 2x2 −	x . . . (I)
 Differentiate	w. r. t. x.

−	sin	y·
dy
dx = 4x −	1

 dy
dx

 = 
1 −	4x
sin y  = 

1 −	4x

√1	−	cos2 y

∴ 
dy
dx

 = 
1	−	4x

√1	−	x2 (2x −	1)2
  . . . from (I)

Alternate Method : 
 If y = cos−1	(2x2 −	x)
	 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

(cos−1	(2x2 −	x))

  = 
−	1

√1	−	(2x2 − x)2
 · 

d
dx (2x2 −	x)

  = 
−	1

√1	−	x2 (2x −	1)2 · (4x −	1)

∴ 
dy
dx

 = 
1	−	4x

√1	−	x2 (2x −	1)2
 

(iii) Let y = sin−1	(2x)
 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

(sin−1	(2x))

  = 
1

√1	−	(2x)2
 · 

d
dx (2x)

  = 
1

√1	−	22x
 (2x log 2)

∴ 
dy
dx

 = 
2x log 2

√1	−	4x

(iv) Let y = cot−1 
1
x2

 = tan−1 (x2)

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 (tan−1 (x2))

  = 
1

1 + (x2)2
 · 

d
dx

 (x2)

∴ 
dy
dx

 = 
2x

1 + x4
  

(vi) Let  y = sin2 (sin−1	(x2))
     = [sin (sin−1	(x2)]

2    = (x2)2

∴  y = x4

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 (x 
4

 )  ∴ 
dy
dx

 = 4x 
3

(v) Let y = cos−1 
1 + x

2
 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 cos−1 
1 + x

2

  = − 
1

1	− 1 + x
2

 

2
· 

d
dx

 
1 + x

2

  = − 
1

1	−
 1 + x

2

 × 
1

2 
1 + x

2

 × 
d
dx 

1 + x
2

  = −	 √2

√1	−	x
 × 

1

√2 √1 + x
 × 

1
2

 

∴ 
dy
dx

 = −	
1

2 √1	−	x2
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Ex. 3 : Differentiate	the	following	w. r. t. x.

  (i) cos−1	(4 cos3 x −	3	cos	x)  (ii) cos−1	[sin (4x)] (iii) sin−1	 
1	−	cos	x

2

  (iv) tan−1 
1	−	cos	3x

sin 3x
 (v) cot−1 

cos x
1 + sin x

Solution : 

(i) Let y = cos−1	(4 cos3 x −	3	cos	x) 

    = cos−1	(cos 3x)
∴       y = 3x
 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

(3x)

∴ 
dy
dx

 = 3

(ii) Let y = cos−1	[sin (4x)]

    = cos−1	 cos 
π
2

 −	4x

∴       y = 
π
2

 −	4x

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 
π
2

 −	4x  =	0	−	4x log 4

∴ 
dy
dx

 =	−	4x log 4

(iii) Let y = sin−1	 
1	−	cos	x

2

    = sin−1	 2 sin2( x
2 )

2

    = sin−1	 sin 
x
2

∴       y = 
x
2

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 
x
2

  ∴ 
dy
dx

 = 
1
2

(iv) Let y = tan−1 
1	−	cos	3x

sin 3x

    = tan−1	
2 sin2( 3x

2 )
2 sin ( 3x

2 ) cos ( 3x
2 )

    = tan−1	 tan 
3x
2

∴       y = 
3x
2

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 
3x
2

  ∴ 
dy
dx

 = 
3
2

(v) Let y = cot−1 
cos x

1 + sin x
 = tan−1 

1 + sin x
cos x

 = tan−1	
[cos ( 

x
2 ) + sin ( 

x
2 )]2

cos2 ( 
x
2 ) − sin2 ( 

x
2 )

 = tan−1	
[cos ( 

x
2 ) + sin ( 

x
2 )]2

[cos ( 
x
2 ) − sin ( 

x
2 )] [cos ( 

x
2 ) + sin ( 

x
2 )]

 

 = tan−1	
cos ( 

x
2 ) + sin ( 

x
2 )

cos ( 
x
2 ) − sin ( 

x
2 )

  = tan−1	
1 + tan ( 

x
2 )

1	−	tan	( 
x
2 )

....Divide Numerator & Denominator by cos 
x
2

 = tan−1		 tan 
π
4

 + 
x
2

   ∴ y = 
π
4

 + 
x
2

      Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 
π
4

 + 
x
2

 = 0 + 
1
2
  ∴ 

dy
dx

 = 
1
2
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Ex. 4 : Differentiate	the	following	w. r. t. x.

  (i) sin−1	
2 cos x + 3 sin x

√13
  (ii) cos−1	

3 sin x2 + 4 cos x2

5
 (iii) sin−1	

a cos x	−	b sin x

√a2 + b2

Solution : 

(i) Let y = sin−1	
2 cos x + 3 sin x

√13
 

    = sin−1	
2

√13
 cos x + 

3

√13
 cos x  

 Put 
2

√13
 = sin α, 

3

√13
 = cos α

 Also, sin2 α + cos2 α = 
4
3

 + 
9
13

 = 1

 And tan α = 
2
3

 ∴ α = tan−1	
2
3

       y =  sin−1 (sin α cos x + cos α sin x)
       y =  sin−1 (sin x cos α + cos x sin α)
       y =  sin−1 [sin (x + α)]

∴       y =  x + tan−1	
2
3

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 x + tan−1	
2
3

 = 1 + 0

∴ 
dy
dx

 = 1

(ii) Let y = cos−1	
3 sin x2 + 4 cos x2

5

    = cos−1	
3
5

 sin x2 + 
4
5

 cos x2  

 Put 
3
5

 = sin α, 
4
5

 = cos α

 Also, sin2 α + cos2 α = 
9
25

 + 
16
25

 = 1

 And tan α = 
3
4

 ∴ α = tan−1	
3
4

       y =  cos−1 (sin α sin x2 + cos α cos x2)
       y =  cos−1 (cos x2 cos α + sin x2 sin α)
       y =  cos−1 [cos (x2 − α)]

∴       y =  x2 −	tan−1	
3
4

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 x2 −	tan−1	
3
4

 = 2x	−	0

∴ 
dy
dx

 = 2x

(iii) Let y = sin−1	
a cos x	−	b sin x

√a2 + b2
 = sin−1	

a

√a2 + b2
 cos x	−	

b

√a2 + b2
 sin x  

 Put 
a

√a2 + b2
 = sin α, 

b

√a2 + b2
 = cos α

 Also, sin2 α + cos2 α = 
a2

a2 + b2
 + 

b2

a2 + b2
 = 1 And tan α = 

a
b

 ∴ α = tan−1	
a
b

       y =  sin−1 (sin α cos x − cos α sin x)
 But sin (α − x) = sin α cos x − cos α sin x
       y =  sin−1 [sin (α − x)]

∴       y =  tan−1	
a
b

 − x

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 tan−1	
a
b

 − x  = 0	−	1 ∴ 
dy
dx

 =	−1
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Ex. 5 : Differentiate	the	following	w. r. t. x.

  (i) sin−1	 2x
1 + x2

  (ii) cos−1	(2x √1−	x2) (iii) cosec−1	
1

3x	−	4x3

  (iv) tan−1 
2ex

1−	e2x
 (v) cos−1 

1	−	9x2

1 + 9x2
 (vi) cos−1 

2x	−	2− 
x

2x + 2−
 
x

  (vii) tan−1 
3	−	x
3 + x

 (viii) sin−1 5√1−	x2 −	12x
13

 (ix) sin−1 
2x+1

1 + 4 
x

Solution : 

(i) Let y = sin−1	 2x
1 + x2

 

 Put  x = tan θ ∴ θ = tan−1	x

∴ y =  sin−1	 2 tan θ
1 + tan2 θ

 y =  sin−1	(sin 2θ) = 2θ
∴ y =  2 tan−1	x
 Differentiate	w. r. t. x.

 
dy
dx

 = 2 d
dx

 (tan−1	x)

∴ 
dy
dx

 = 
2

1 + x2

(ii) Let y = cos−1	(2x √1−	x2)
 Put  x = sin θ ∴ θ = sin−1	x

∴ y = cos−1	(2 sin θ √1−	sin2 θ)
 y = cos−1	(2 sin θ √cos2 θ)
 y = cos−1	(2 sin θ cos θ)  =  cos−1	(sin 2θ) 

 y = cos−1	 cos 
π
2

 −	2θ  = 
π
2

 −	2θ

∴ y = 
π
2

 −	2	sin−1	x

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 
π
2

 −	2	sin−1	x

 
dy
dx

 = 0 − 
2 × 1

√1	−	x2

∴ 
dy
dx

 = − 
2

√1	−	x2

(iii) Let y = cosec−1	
1

3x	−	4x3
 

 y = sin−1	(3x	−	4x3)
 Put  x = sin θ ∴ θ = sin−1	x

 y = sin−1	(3 sin θ	−	4	sin3 θ)
 y = sin−1	(sin 3θ) = 3θ
∴ y = 3 sin−1	x
 Differentiate	w. r. t. x.

 
dy
dx

 = 3 d
dx

 (sin−1	x)

∴ 
dy
dx

 = 
3

√1	−	x2

(iv) Let y = tan−1 
2ex

1−	e2x

 Put  ex = tan θ ∴ θ = tan−1	(ex)

 y =  tan−1	 2 tan θ
1 + tan2 θ

 y =  tan−1	(tan 2θ) = 2θ

∴ y =  2 tan−1	(ex)
	 Differentiate	w. r. t. x.

 
dy
dx

 = 2 d
dx

 [tan−1	(ex)]

∴ 
dy
dx

 = 
2

1 + (ex)2 
d
dx

 (ex) = 
2ex

1−	e2x
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(v) Let y = cos−1 
1	−	9x2

1 + 9x2
 

 y =  cos−1 
1	−		(3x)2

1 +  (3x)2

 Put 3x = tan θ ∴ θ = tan−1	(3x)

∴ y =  cos−1	 1	−	tan
2 θ

1 + tan2 θ
 

 y =  cos−1	(cos 2θ) = 2θ

 y =  2 tan−1	(3x)
	 Differentiate	w. r. t. x.

 
dy
dx

 = 2 d
dx

 [tan−1	(3x)]

 
dy
dx

 = 
2

1 + (3x)2 
d
dx

 (3x) 

∴ 
dy
dx

 = 
6

1 + 9x2

(vi) Let y = cos−1 
2x	−	2− 

x

2x + 2−
 
x

 

 y = cos−1 
2x (2x	−	2− 

x)
2x (2x + 2−

 
x)

 y = cos−1 
22x	−	1
22x + 1

 = cos−1 −	
1	−		(2x)2

1 +  (2x)2

 Put 2x = tan θ ∴ θ = tan−1	(2x)

∴ y =  cos−1	 −	1	−	tan
2 θ

1 + tan2 θ
 =  cos−1	[−	cos	2θ]

 y =  cos−1	[cos (π	−	2θ)] = π	−	2θ
 y =  π	−	2	tan−1	(2x)
	 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 [π	−	2	tan−1	(2x)]

 
dy
dx

 =	0	−	
2

1 + (2x)2  d
dx

 (2x) =	−	
2·2x·log 2

1 + 22x

∴ 
dy
dx

 =	−	
2x+1 log 2
1 + 22x

(vii) Let y = tan−1 
3	−	x
3 + x

 

 Put x = 3 cos 2θ ∴ θ = 
1
2

 cos−1	
x
3

∴ y =  tan−1	 3	−	3	cos	2θ
3 + 3 cos 2θ

 =  tan−1	 3(1	−	cos	2θ)
3(1 + cos 2θ)

 =  tan−1	 2 sin2 θ
2 cos2 θ

 y =  tan−1	(√tan2 θ) =  tan−1	(tan θ)

 y =  θ = 
1
2

 cos−1	
x
3

	 Differentiate	w. r. t. x.

 
dy
dx

 = 
1
2

 · d
dx

 cos−1	
x
3

  = 
1
2

 − 
1

1	−
 x

3
2  

d
dx 

x
3

 = −	
1
2

 × 
1

9 −
 
x2

9

 × 
1
3

 

  = −	
1
2

 × 
1

√9 − x2

3

 × 
1
3

∴ 
dy
dx

 = −	
1

2√9 − x2

. . . [Multiply & 
 Devide by 2x]
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(viii) Let y = sin−1 5√1−	x2 −	12x
13

 Put x = sin θ ∴ θ = sin−1	x

∴ y =  sin−1	 5√1−	sin2 θ − 12 sin θ
13

 =  sin−1	 5√cos2 θ − 12 sin θ
13

 =  sin−1	 5 cos θ − 12 sin θ
13

∴ y =  sin−1	
5
13

 cos θ − 
12
13

 sin θ  

 Put 
5
13

 = sin α, 
12
13

  = cos α

 Also, sin2 α + cos2 α = 
25
169

 + 
144
169

 = 1 

 And tan α = 
5
12

 ∴ α = tan−1	
5
12

       y =  sin−1 (sin α cos θ − cos α sin θ) =  sin−1 [sin (α − θ)] = (α − θ)

∴       y =  tan−1	
5
12

 − sin−1	x

	 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 tan−1	
5
12

 − sin−1	x  =	0	−	
1

√1 − x2

∴ 
dy
dx

 =	−	
1

√1 − x2

(ix) Let y = sin−1 
2x+1

1 + 4 
x

 = sin−1 
2·2x

1 + (2x)2  

 Put 2x = tan θ ∴ θ = tan−1	(2x)

∴ y =  sin−1	 2 tan θ
1 + tan2 θ

 =  sin−1	(sin 2θ) = 2θ =  2 tan−1	(2x)

	 Differentiate	w. r. t. x.

 
dy
dx

 = 2 d
dx

 [tan−1	(2x)] = 
2

1 + (2x)2 · d
dx

 (2x) = 
2

1 + 22x
 (2x·log 2) 

∴ 
dy
dx

 =	−	
2x+1 log 2

1 + 4x

Ex. 6 : Differentiate	the	following	w. r. t. x.

  (i) tan−1	 4x
1 + 21x2

  (ii) tan−1	 7x
1	−	12x2

 

  (iii) cot−1	
b sin x	−	a cos x
a sin x + b cos x

 (iv) tan−1	 5x + 1
3	−	x −	6x2
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(i) Let y = tan−1	 4x
1 + 21x2

 

   = tan−1	 7x −	3x
1 + (7x) (3x)

  y = tan−1	(7x)	−	tan−1	(3x)

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 [tan−1	(7x)	−	tan−1	(3x)]

  = d
dx

 [tan−1	(7x)]	−	 d
dx

 [tan−1	(3x)]

  = 
1

1 + (7x)2 · 
d
dx

 (7x)	−	
1

1 + (3x)2 · 
d
dx

 (3x)

∴ 
dy
dx

 = 
7

1 + 49x2
	−	

3
1 + 9x2

(ii) Let y = tan−1	 7x
1	−	12x2

   = tan−1	 3x + 4x
1	−	(3x) (4x)

  y = tan−1	(3x) + tan−1	(4x)

 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 [tan−1	(3x) + tan−1	(4x)]

  = d
dx

 [tan−1	(3x)] + d
dx

 [tan−1	(4x)]

  = 
1

1 + (3x)2 · 
d
dx

 (3x) + 
1

1 + (4x)2 · 
d
dx

 (4x)

∴ 
dy
dx

 = 
3

1 + 9x2
 + 

4
1 + 16x2

Solution : 

(iii) Let y = cot−1	
b sin x	−	a cos x
a sin x + b cos x

 = tan−1	 a sin x + b cos x
b sin x	−	a cos x

 = tan−1	

a
b   + cot x

1	−	 (a
b) (cot x)

   = tan−1	
a
b

  + tan−1	(cot x) = tan−1	
a
b

  + tan−1	 tan 
π
2

 −	x  

  y = tan−1	
a
b

  + 
π
2

 −	x

  Differentiate	w. r. t. x.

  
dy
dx

 = d
dx

 tan−1	
a
b

  + 
π
2

 −	x

   = d
dx

 tan−1	
a
b

 + d
dx

 
π
2

 −	 d
dx

 (x)

   = 0 + 0 −	1

 ∴ 
dy
dx

 = −	1	 	

(iv) Let y = tan−1	 5x + 1
3	−	x −	6x2

 = tan−1	 5x + 1
1 + 2 −	x −	6x2

 = tan−1	 5x + 1
1	−	(6x2 + x −	2)

   = tan−1	 5x + 1
1	−	(6x2 + 4x	−	3x −	2)

 = tan−1	
5x + 1

1	−	[2x(3x +	2)	−	(3x + 2)]

   = tan−1	
5x + 1

1	−	(3x + 2)(2x −	1)  = tan−1	
(3x + 2) + (2x −	1)
1	−	(3x + 2)(2x −	1)
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  y = tan−1	(3x + 2) + tan−1	(2x −	1)
 Differentiate	w. r. t. x.

 
dy
dx

 = d
dx

 [tan−1	(3x + 2) + tan−1	(2x −	1)]

  = d
dx

 [tan−1	(3x + 2)] + d
dx

 [tan−1	(2x −	1)]

  = 
1

1 + (3x + 2)2  · 
d
dx

 (3x + 2) +  
1

1 + (2x −	1)2  · 
d
dx

 (2x −	1)

∴ 
dy
dx

 = 
3

1 + (3x + 2)2  + 
2

1 + (2x −	1)2

(1) Find the derivative of the function y = f (x) 
using the derivative of the inverse function   
x = f −1	( y)  in the following

 (i) y = √x (ii) y = 2 −	√x
 (iii)  (iv) y = log (2x	−	1)
 (v) y = 2x + 3 (vi) y = ex	−	3

 (vii) y = e2x	−	3 (viii) y = log2 
x
2

(2) Find the derivative of the inverse function of 
the following

 (i) y = x2·ex (ii) y = x cos x
 (iii) y = x·7x (iv) y = x2 + log x
 (v) y = x log x
(3) Find the derivative of the inverse of the 

following	functions,	and	also	find	their	value	
at the points indicated against them.

 (i) y = x5 + 2x3 + 3x,  at x = 1
 (ii) y = ex + 3x + 2,   at x = 0
 (iii) y = 3x2 + 2 log x3, at x = 1
 (iv) y = sin (x − 2) + x2, at x = 2
(4) If f (x) = x3 + x − 2, find	( f −1)' (0).
(5) Using derivative prove

 (i) tan−1	x + cot−1	x = 
π
2

 (ii) sec−1	x + cosec−1	x = 
π
2

 . . . [for | x | ≥	1]

(6)	 Differentiate	the	following	w. r. t. x.
 (i) tan−1	(log x) (ii) cosec−1	(e−x )
 (iii) cot−1	(x3) (iv) cot−1	(4x )

 (v) tan−1	(√x) (vi) sin−1	 
1 + x2

2

 (vii) cos−1	(1	−	x2) (viii) sin−1		(x
3
2)

 (ix) cos3 [cos−1 (x3)] (x) sin4  [sin−1	(√x)]

(7)	 Differentiate	the	following	w. r. t. x.

 (i) cot−1	[cot (ex2)] 

 (ii) cosec−1	
1

cos (5x)

 (iii) cos−1	
1 + cos x

2

 (iv) cos−1	
1	−	cos	(x2)

2

 (v) tan−1	
1	− tan ( 

x
2 )

1 + tan ( 
x
2 )

 (vi) cosec−1	
1

4 cos3 2x − 3 cos 2x

 (vii) tan−1	
1 + cos ( 

x
3 )

sin ( 
x
3 )

 (viii) cot−1	
sin 3x

1 + cos 3x

EXERCISE 1.2
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 (ix) tan−1	
cos 7x

1 + sin 7x

 (x) tan−1	
1 + cos x
1	−	cos	x

 (xi) tan−1	(cosec x + cot x)

 (xii) cot−1	
1 + sin (4x

3 ) + 1 − sin (4x
3 )

1 + sin (4x
3 ) − 1 − sin (4x

3 )
(8)	 Differentiate	the	following	w. r. t. x.

 (i) sin−1	
4 sin x + 5 cos x

√41

 (ii) cos−1	 √
3 cos x	−	sin	x

2
 

 (iii) sin−1	
cos √x + sin √x

√2
 

 (iv) cos−1	
3 cos 3x	−	4	sin	3x

5

 (v) cos−1	
3 cos (ex) + 2 sin (ex)

√13

 (vi) cosec−1	
10

6 sin (2x)	−	8	cos	(2x)

(9)	 Differentiate	the	following	w. r. t. x.

 (i) cos−1 
1	−	x2

1 + x2
  (ii) tan−1 

2x
1	−	x2

 (iii) sin−1 
1	−	x2

1 + x2
  (iv) sin−1	(2x √1	−	x2)

 (v) cos−1 (3x	−	4x3)  (vi) cos−1 
ex	−	e −x

ex + e −x

 (vii) cos−1 
1	−	9x

1 + 9x
 (viii) sin−1	

4x + 1
2

1 + 24x

 (ix) sin−1 
1	−	25x2

1 + 25x2
  (x) sin−1	 1	−	x

3

1 + x3

 (xi) tan−1	
2x 5

2

1	−	x5
 (xii) cot−1 

1	−	√x
1 + √x

(10)	Differentiate	the	following	w. r. t. x.

 (i) tan−1 
8x

1	−	15x2
  (ii) cot−1	

1 + 35x2

2x

 (iii) tan−1 
2√x

1 + 3x
  (iv) tan−1	 2x + 2

1	−	3(4x)

 (v) tan−1	 2x

1 + 22x + 1
 (vi) cot−1	

a2 −	6x2

5ax

 (vii) tan−1	 a + b tan x
b −	a tan x

 

 (viii) tan−1	 5 −	x
6x2 −	5x −	3

 (ix) cot−1	
4 −	x −	2x2

3x + 2

1.3.1 Logarithmic Differentiation

The complicated functions given by formulas that involve products, quotients and powers can often 
be	simplified	more	quickly	by	taking	the	natural	logarithms	on	both	the	sides.	This	enables	us	to	use	
the	laws	of	logarithms	to	simplify	the	functions	and	differentiate	easily.	Especially	when	the	functions	
are of the form y = [ f (x)]g(x)	it	is	recommended	to	take	logarithms	on	both	the	sides	which	simplifies	to	
log y = g(x). log [ f (x)],	now	it	becomes	convenient	to	find	the	derivative.	This	process	of	finding	the	
derivative	is	called	logarithmic	differentiation.

SOLVED EXAMPLES 

Ex. 1 : Differentiate	the	following	w. r. t. x.

  (i)  
(x2 + 3)2 (x3 + 5)2

(2x2  + 1)3     (ii) 
ex2 (tan x) x

2

(1 + x2)
3
2  cos3 x

3
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  (iii) (x + 1)
3
2  (2x + 3)

5
2  (3x + 4)

2
3 for x ≥	0 (iv) xa + xx + ax (v) (sin x)tan x −	xlog x

Solution : 

(i) Let y =  
(x2 + 3)2 (x3 + 5)2

(2x2  + 1)3

 Taking log of both the sides we get, 

 log y = log 
(x2 + 3)2 (x3 + 5)2

(2x2  + 1)3  = log 
(x2 + 3)2 (x3 + 5)

2
3

(2x2  + 1)
3
2

   = log (x2 + 3)2 (x3 + 5)
2
3 	−	log	(2x2  + 1)

3
2

   = log (x2 + 3)2 + log (x3 + 5)
2
3 	−	log	(2x2  + 1)

3
2

 log y = 2 log (x2 + 3) + 
2
3

 log (x3 + 5)	−	 3
2

 log (2x2  + 1)

 Differentiate	w. r. t. x.

 
d
dx

 (log y) = d
dx

 2 log (x2 + 3) + 
2
3

 log (x3 + 5)	−	 3
2

 log (2x2  + 1)

  
1
y

 
dy
dx

  = 2·
d
dx

 [log (x2 + 3)] + 
2
3

·
d
dx

 [log (x3 + 5)]	−	 3
2

·
d
dx

 [log (2x2  + 1)]

    = 
2

x2 + 3
·

d
dx

 (x2 + 3) + 
2

3(x3 + 5)
·

d
dx

 (x3 + 5) −	
3

2(2x2 + 1)
·

d
dx

 (2x2 + 1)

   
dy
dx

 = y 
2

x2 + 3
(2x) + 

2
3(x3 + 5)

(3x2) −	
3

2(2x2 + 1)
(4x)

∴   
dy
dx

 = 
(x2 + 3)2 (x3 + 5)2

(2x2  + 1)3   
4x

x2 + 1
 + 

2x2

(x3 + 5)
 −	

6x
2x2 + 1

(ii) Let y = 
ex2 (tan x) x

2

(1 + x2)
3
2  cos3 x

 Taking log of both the sides we get, 

 log y = log 
ex2 (tan x) x

2

(1 + x2)
3
2  (cos x)3

 = log ex2 (tan x)
x
2 	−	log	 (1 + x2)

3
2  (cos x)3

     = log ex2 + log (tan x)
x
2 	−	 log (1 + x2)

3
2  + log (cos x)3

     = x2 log e + 
x
2

 log (tan x)	−	
3
2

 log (1 + x2)	−	3	log	(cos x)

    ∴ log y = x2 + 
x
2

 log (tan x)	−	
3
2

 log (1 + x2)	−	3	log	(cos x)

3

3

3
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Differentiate	w. r. t. x.
d
dx

 (log y) =  d
dx

 x2 + 
x
2

 log (tan x)	−	
3
2

 log (1 + x2)	−	3	log	(cos x)

 
1
y

 
dy
dx

  =  d
dx

 (x2) + 
x
2

·
d
dx

 [log (tan x)] + log (tan x) 
d
dx

 
x
2

	−	
3
2

 
d
dx

 [log (1 + x2)]	−	3 d
dx

 [log (cos x)]

   =  2x + 
x
2

·
1

tan x
·

d
dx

 (tan x) + log (tan x) 
1
2

 −	
3

2(1 + x2)
·

d
dx

 (1 + x2)	−	
3

cos x
·

d
dx

 (cos x)

   =  2x + 
x
2

·(cot x) (sec2 x) + 
1
2

 log (tan x)	−	
3

2(1 + x2)
·(2x)	−	

3
cos x

 (−	sin x)

   =  2x + 
x
2

 × 
cos x
sin x

 × 
1

cos2 x
 + 

1
2

 log (tan x)	−	
3x

1 + x2
 + 3 tan x

  
dy
dx

 =  y 2x + 
x

2 sin x cos x
 + 

1
2

 log (tan x)	−	
3x

1 + x2
 + 3 tan x

∴  
dy
dx

 = 
ex2 (tan x) x

2

(1 + x2)
3
2  cos3 x

 2x + x cosec 2x + 
1
2

 log (tan x)	−	
3x

1 + x2
 + 3 tan x

(iii) Let y = (x + 1)
3
2  (2x + 3)

5
2  (3x + 4)

2
3

 Taking log of both the sides we get,

 log y = log (x + 1)
3
2  (2x + 3)

5
2  (3x + 4)

2
3

   = log (x + 1)
3
2  + log (2x + 3)

5
2  + log (3x + 4)

2
3

 log y = 
3
2

 log (x + 1) + 
5
2

 log (2x + 3) + 
2
3

 log (3x + 4)

Differentiate	w. r. t. x.
d
dx

 (log y) =  d
dx

 
3
2

 log (x + 1) + 
5
2

 log (2x + 3) + 
2
3

 log (3x + 4)

     
1
y

 · 
dy
dx

 = 
3
2

 · 
d
dx

 [log (2x + 1)] + 
5
2

 ·
d
dx

 [log (3x + 2)] +  
2
3

 ·
d
dx

 [log (3x + 4)]

   =  
3

2(2x + 1)
 · 

d
dx

 (2x + 1) + 
5

2(3x + 1)
 · 

d
dx

 (3x + 2) + 
2

3(3x + 4)
 · 

d
dx

 (3x + 4) 

  
dy
dx

 =  y 
3

2(2x + 1)
(2) + 

5
2(3x + 1)

 (3) + 
2

3(3x + 4)
 (3)

∴  
dy
dx

 = (x + 1)
3
2  (2x + 3)

5
2  (3x + 4)

2
3  

3
2x + 1

 + 
15

2(3x + 1)
 + 

2
3x + 4

(iv) Let y = xa + xx + ax

 Here the derivatives of xa and ax	 can	be	 found	directly	but	we	can	not	find	 the	derivative	of	xx 

without	the	use	of	logarithm.	So	the	given	function	is	split	in	to	two	functions,	find	their	derivatives	
and then add them.
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Let u = xa + ax and v = xx

∴ y = u + v, , where u and v	are	differentiable	functions	of	x.

 
dy
dx

 = 
du
dx

 + 
dv
dx

     . . . . . (I)

Now, u = xa + ax

 Differentiate	w. r. t. x.

 
du
dx

 = 
d
dx

 (xa) + 
d
dx

 (ax)

 
du
dx

 = axa −1 + ax log a   . . . . . (II)

And, v = xx

Taking log of both the sides we get,
 log v = log xx

 log v = x log x
Differentiate	w. r. t. x.

 
d
dx

 (log v) = d
dx

 (x log x)

  
1
v

 
dv
dx

 = x 
d
dx

 (log x) + log x 
d
dx

 (x)

   dv
dx

 = v x × 
1
x

 + log x (1)

   dv
dx

 = xx [1 + log x]   . . . . . (III)

Substituting (II) and (III) in (I) we get,

 
dy
dx

 = axa−1 + ax log a + xx [1 + log x]

(v)    Let y = (sin x)tan x −	xlog x

 Let u = (sin x)tan x and v = xlog x

∴  y = u −	v, , where u and v	are	differentiable	functions	of	x.

 
dy
dx

 = 
du
dx

 − 
dv
dx

     . . . . . (I)

Now, u = (sin x)tan x , taking log of both the sides we get,
 log u = log (sin x)tan x  ∴ log u = tan x log (sin x)
Differentiate	w. r. t. x.

 
d
dx

 (log u) = 
d
dx

 [tan x log (sin x)]

  
1
u

 
du
dx

 = tan x 
d
dx

 [log (sin x)] + log (sin x) 
d
dx

 (tan x)

    = tan x·
1

sin x
·

d
dx

·(sin x) + log (sin x)·(sec2)
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du
dx

 = u tan x·
1

sin x
·(cos x) + sec2 x·log (sin x)

   
du
dx

 = (sin x)tan x [tan x·cot x + sec2 x·log (sin x)]

   
du
dx

 = (sin x)tan x [1 + sec2 x·log (sin x)]  . . . . . (II)

And,   v = xlog x

Taking log on both the sides we get,

   log v = log (xlog x)
   log v = log x log x = (log x)2

Differentiate	w. r. t. x.

   
d
dx

 (log v) = d
dx

 [(log x)2]

  
1
v

 
dv
dx

 = 2 log x 
d
dx

 (log x)

   
dv
dx

 = u 2 log x
x

 = 2xlog x log x
x

   . . . . . (III)

Substituting (II) and (III) in (I) we get,

   
dy
dx

 = (sin x)tan x [1 + sec2 x·log (sin x)]	−	
2xlog x log x

x

1.3.2 Implicit Functions

Functions can be represented in a variety of ways. Most of the functions we have dealt with so far 
have been described by an equation of the form y =  f (x) that expresses y solely in terms of the variable 
x. It is not always possible to solve for one variable explicitly in terms of another. Those cases where it 
is possible to solve for one variable in terms of another to obtain y =  f (x) or x =  g (y) are said to be in 
explicit form.

If an equation in x and y is given but x is not an explicit function of y and y is not an explicit function 
of x then either of the variables is an Implicit function of the other.

1.3.3 Derivatives of Implicit Functions

1.	 Differentiate	both	sides	of	 the	equation	with	 respect	 to	x (independent variable), treating y as a 
differentiable	function	of	x.

2. Collect the terms containing 
dy
dx

 on one side of the equation and solve for 
dy
dx

.
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SOLVED EXAMPLES 

Ex. 1 : Find 
dy
dx

 if

  (i) x5 + xy3 + x2y + y4 = 4   (ii) y3 + cos (xy) = x2	−	sin	(x + y)

  (iii) x2 + e xy = y2 + log (x + y)

Solution : 

(i) Given that : x5 + xy3 + x2y + y4 = 4

 Differentiate	w. r. t. x.

 
d
dx

 (x5)  + 
d
dx

 (xy3) + 
d
dx

 (x2y) + 
d
dx

 ( y4) = 
d
dx

 (4)

 5x4 + x 
d
dx

 ( y3) + y3 
d
dx

 (x) + x2 
d
dx

 (y) + y 
d
dx

 (x2)+ 4y3 
d
dx

 ( y) = 0

 5x4 + x (3y2) 
dy
dx

 + y3 (1) + x2 dy
dx

 + y (2x)+ 4y3 dy
dx

  = 0

 x2 dy
dx

 + 3xy2 
dy
dx

 + 4y3 dy
dx

 =	−	5x4	−	2xy	−	y3

 (x2 + 3xy2 + 4y3) 
dy
dx

 =	−	(5x4 + 2xy + y3)

∴ 
dy
dx

 = −		
5x4 + 2xy + y3

x2 + 3xy2 + 4y3

(ii) Given that : y3 + cos (xy) = x2	−	sin	(x + y)

 Differentiate	w. r. t. x.

 
d
dx

 ( y3) + 
d
dx

 [cos (xy)] = 
d
dx

 (x2)	−	
d
dx

 [sin (x + y)]

 3y2 
d
dx

 ( y)	−	sin	(xy) 
d
dx

 (xy) = 2x −	cos	(x + y) 
d
dx

 (x + y)

 3y2 
dy
dx
	−	sin	(xy) x

dy
dx

 + y(1)  = 2x −	cos	(x + y) 1 + 
dy
dx

 

 3y2 
dy
dx
	−	x sin (xy) 

dy
dx

 −	y sin (xy) = 2x −	cos	(x + y)	−	cos	(x + y) 
dy
dx

 

 3y2 
dy
dx
	−	x sin (xy) 

dy
dx

 + cos (x + y) 
dy
dx

 = 2x + y sin (xy)	−	cos	(x + y)

 [3y2	−	x sin (xy) + cos (x + y)] 
dy
dx

 = 2x + y sin (xy)	−	cos	(x + y)

∴ 
dy
dx

 = 
2x + y sin (xy)	−	cos	(x + y)
3y2	−	x sin (xy) + cos (x + y)
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(iii)  Given that : x2 + e xy = y2 + log (x + y)

  Recall that  
d
dx

 g ( f (x) ) =   g' ( f (x) ) · 
d
dx

 f (x)

      Differentiate	w. r. t. x.

      
d
dx

 (x2) + 
d
dx

 [e xy ] = 
d
dx

 (y2) + 
d
dx

 [log (x + y)]

      2x + e xy 
d
dx

 (xy) = 2y 
dy
dx

 + 
1

x + y
 

d
dx

 (x + y)

      2x + e xy x 
dy
dx

 + y(1)  = 2y 
dy
dx

 + 
1

x + y
 1 + 

dy
dx

      2x + xe xy 
dy
dx

 + ye xy = 2y 
dy
dx

 + 
1

x + y
 + 

1
x + y

 · 
dy
dx

      2x + ye xy  −	
1

x + y
 = 2y 

dy
dx

 −	xe xy 
dy
dx

 + 
1

x + y
 · 

dy
dx

      2x + ye xy  −	
1

x + y
 = 2y −	xe xy + 

1
x + y

  
dy
dx

      
2x (x + y) + yexy (x + y)	−	1

x + y
 = 

2y (x + y)	−	xexy (x + y) + 1
x + y

 
dy
dx

     ∴ 
dy
dx

 =  
2x (x + y) + yexy (x + y)	−	1
2y (x + y)	−	xexy (x + y) + 1

Ex. 2 : Find xm·yn = (x + y) m + n , then prove that 
dy
dx

 = 
y
x

.

Solution : Given that : xm·yn = (x + y) m + n

      Taking log on both the sides, we get

      log [xm·yn] = log [(x + y) m + n] 

      m log x + n log y = (m + n) log (x + y)

	 	 	 	 	 	 Differentiate	w. r. t. x.

      m 
d
dx

 (log x) + n 
d
dx

 (log y) = (m + n) 
d
dx

 [log (x + y)]

      
m
x

 + 
n
y

 · 
dy
dx

 = 
m + n
x + y

 · 
d
dx

 (x + y)

      
m
x

 + 
n
y

 · 
dy
dx

 = 
m + n
x + y

 · 1 + 
dy
dx

      
m
x

 + 
n
y

 · 
dy
dx

 = 
m + n
x + y

 + 
m + n
x + y

 · 
dy
dx

      
n
y

 ·
dy
dx

 −	
m + n
x + y

 · 
dy
dx

 = 
m + n
x + y

 − 
m
x
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n
y

 −	
m + n
x + y

 
dy
dx

 = 
m + n
x + y

 − 
m
x

     
n (x + y)	−	(m + n) y

y (x + y)
 
dy
dx

 = 
(m + n) x	−	m (x + y)

x (x + y)

     
nx + ny	−	my	−	ny

y
 
dy
dx

 = 
mx + nx	−	mx	−	my

x

     
nx	−	my

y
 
dy
dx

 = 
nx	−	my

x

    ∴ 
dy
dx

 = 
y
x

Ex. 3 : If sin 
pxm − qym

pxm + qym
 = r , then show that 

dy
dx

 = 
y
x

, where r is a constant.

Solution : Given that : sin 
pxm − qym

pxm + qym
 = r

      
pxm − qym

pxm + qym
 = sin −1 r

      
pxm − qym

pxm + qym
 = t  . . . . . . [ Let t = sin −1 r ]

      pxm − qym = ptxm + qtym

      pxm − ptxm = qym + qtym

      p (1 − t) xm = q (1 + t) ym

      ym = 
p (1 − t)
q (1 + t)

 xm

      ym = s·xm   . . . . . .  (I) . . . . . . Let s = 
p (1 − t)
q (1 − t)

 

    	 	 Differentiate	w. r. t. x

      
d
dx

 ( ym ) = s 
d
dx

 ( xm )

      mym −1 dy
dx

 = s·mxm −1

      
dy
dx

 = s·
x m −1

y m −1
 xm −1

      
dy
dx

 = 
y m

x m
 × 

x m −1

y m −1
  . . . . . .  [ From (I)]

    ∴  
dy
dx

 = 
y
x
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Ex. 4 : If sec	−1 
x3 + y3

x3 − y3
 = 2a , then show that 

dy
dx

 = 
x2 tan2 a

y2
, where a is a constant.

Solution : Given that : sec	−1 
x3 + y3

x3 − y3
 = 2a  . . . . . [We will not eliminate a, as answer contains a ]

    ∴  cos	−1 
x3 − y3

x3 + y3
 = 2a

      
x3 − y3

x3 + y3
 = cos 2a 

      x3 − y3 = x3 cos 2a + y3 cos 2a

      x3 − x3 cos 2a = y3 cos 2a + y3

      x3 (1 − cos 2a) = y3 (1 + cos 2a)

      y3 = 
1 − cos 2a
1 + cos 2a

 x3

      y3 = 
2 sin2 a
2 cos2 a

 x3

      y3 = (tan2 a) x3  . . . . . .  (I) 

    	 	 Differentiate	w. r. t. x

      
d
dx

 ( y3) = (tan2 a)  
d
dx

 ( x3 )

      3y2 dy
dx

 = (tan2 a) 3x2

    ∴  
dy
dx

 = 
x2 tan2 a

y2

Ex. 5 : If y =  tan x +  tan x + √ tan x + ... ∞ , then show that 
dy
dx

 = 
sec2 x
2y − 1

.

Solution : Given that : y =  tan x +  tan x + √ tan x + ... ∞  . . . . . . .  (I) 

   Squaring both sides, we get

   y2 = tan x +  tan x + √ tan x + ... ∞ , which is same as

   y2 = tan x +  tan x +  tan x + √ tan x + ... ∞ 

   y2 = tan x + y   . . . . . . .  [ From (I) ]  

 	 	 Differentiate	w. r. t. x

   
d
dx

 ( y2) = 
d
dx

 (tan x) +  
dy
dx
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     2y 
dy
dx

 −	
dy
dx

 = sec2 x

     (2y −	1)	
dy
dx

 = sec2 x

    ∴  
dy
dx

 = 
sec2 x
2y −	1

Ex. 6 : If  √ 1 −	x2 + √ 1 −	y2 = a (x −	y) , then show that 
dy
dx

 = 
1 −	y2

1 −	x2
.

Solution : Given that : √ 1 −	x2 + √ 1 −	y2 = a (x −	y)  . . . . . . .  (I) 

   Put x = sin α, y = sin β

   ∴ α = sin−1 x, β = sin−1	y

   Equation (I) becomes, 

   √ 1 −	sin2 α + √ 1 −	sin2 β = a (sin α −	sin β)

   cos α + cos β = a (sin α −	sin β)

   2 cos 
α + β

2
 cos 

α − β
2

 = 2a cos 
α + β

2
 sin 

α − β
2

   cos 
α − β

2
 = a sin 

α + β
2

 ⇒ cot 
α − β

2
 = a

   
α − β

2
 = cot−1 a ∴ α − β = 2 cot−1	a

  ∴ sin−1 x −	sin−1 y = 2 cot−1	a

 	 	 Differentiate	w. r. t. x

   
d
dx

 (sin−1 x) − 
d
dx

 (sin−1 y) =  
d
dx

 (2 cot−1 a)

   
1

√ 1 −	x2
 −	

1

√ 1 −	y2
 · 

dy
dx

 = 0

  ∴ 
dy
dx

 = 
1 −	y2

1 −	x2

EXERCISE 1.3

(1)	 Differentiate	the	following	w. r. t. x

 (i) 
(x + 1)2

(x + 2)3 (x + 3)4
  

 (ii) 
4x	−	1

(2x + 3) (5 −	2x)2
 

 (iii) (x2 + 3)
3
2 ·sin3 2x·2x2

 (iv) 
(x2 + 2x + 2)

3
2

(√ x + 3)3 (cos x)x
 

 (v) 
x5·tan3 4x

sin2 3x
  (vi) xtan−1x

 (vii) (sin x)x  (viii) sin xx

3
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(2)	 Differentiate	the	following	w. r. t. x.
 (i) x 

e + x 
x + e 

x + e 
e

  (ii) x 
x

 

x + e 
x

 

x

 (iii) (log x) 
x	−	(cos	x) 

cot x 
 (iv) x 

e
 

x + (log x) 
sin x (v) etan x + (log x) 

tan x

 (vi) (sin x)tan x + (cos x) 
cot x

 (vii) 10 
x

 

x + x 
x

 

10 + x 
10

 

x 

 (viii) [(tan x)tan x] tan x at x = 
π
4

(3) Find 
dy
dx

 if

 (i) √ 
x + √ 

y = √ 
a (ii) x√ 

x + y√ 
y = a√ 

a
 (iii) x + √ 

xy + y = 1  
 (iv) x3+ x2 y + xy2 + y3 = 81

 (v) x2 y2 −	tan−1	√ 
x2 + y2 = cot−1	√ 

x2 + y2

 (vi) xe y + yex = 1 (vii)  e x + y = cos (x	−	y)

 (viii) cos (xy) = x + y (ix) e 
e

 

x −	y = 
x
y

 (x) x + sin(x + y) = y	−	cos (x	−	y)

(4) Show that 
dy
dx

 = 
y
x

 in the following, 

 where a and p are constants.

 (i) x7 y5  = (x + y)12

 (ii) x p y4  = (x + y) p + 4, p∈N

 (iii) sec 
x5 + y5

x5 − y5  = a2

 (iv) tan−1	
3x2 − 4y2

3x2 + 4y2  = a2

 (v) cos−1	
7x4 + 5y4

7x4 − 5y4  = tan−1	a

 (vi) log 
x20 − y20

x20 + y20  = 20

 (vii) e
x7	−	y7

x7 + y7 = a 

 (viii) sin 
x3 − y3

x3 + y3  = a3

(5) (i) If log (x + y) =  log (xy) + p, where p is

  constant then prove that 
dy
dx

 = − 
y2

x2
.

 (ii) If log10 
x3 − y3

x3 + y3  = 2, 

  show that 
dy
dx

 = − 
99x2

101y2
.

 (iii) If log5 
x4 + y4

x4 − y4  = 2, 

  show that 
dy
dx

 = − 
12x3

13y3
.

 (iv) If e x + e y = e x + y, then

  show that 
dy
dx

 = − e y − x.

 (v) If sin−1 
x5 − y5

x5 + y5  = 
π
6

, 

  show that 
dy
dx

 = 
x4

3y4
.

 (vi) If xy = e  x − y, then

  show that 
dy
dx

 = 
log x

(1 + log x)2
.

 (vii) If y =  cos x +  cos x + √ cos x +... ∞, 

  then show that 
dy
dx

 = 
sin x

1 − 2y
.

 (viii) If y =  log x +  log x + √ log x +... ∞, 

  then show that 
dy
dx

 = 
1

x(2y − 1)
.

 (ix) If y = x 
x

 

x...∞ 

, then

  show that 
dy
dx

 = 
y2

x(1 −  log y)
.

 (x) If e 
y = y 

x
 , then 

  show that 
dy
dx

 = 
(log y)2

log y −	1
.
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1.4.1 Derivatives of Parametric Functions

Consider the equations x =  f (t ), y =  g (t ). These equations may imply a functional relation between 
the variables x and y. Given the value of t in some domain [a, b],	we	can	find	x and y.

For example x = a cos t and y = a sin t. The functional relation between these two functions is that, 
x2 + y2 = a2 cos2 t + a2 sin2 t = a2 (cos2 t + sin2 t ) = a2 represents the equation of a circle of radius a with 
center at the origin. And the domain of t is [0, 2π].	We	can	find	x and y for any t ∈ [0, 2π].

If two variables x and y	are	defined	separately	as	functions	by	an	inter	mediating	varibale	t, then that 
inter mediating variable is known as parameter. Let us discuss the derivatives of parametric functions.

1.4.2 Theorem :  If x = f (t ) and y = g (t )	are	differentiable	functions	of	t so that y	is	a	differentiable	

function of x and if  
dx
dt

 ≠ 0 then 
dy
dx

 = 
 
dy
dt
dx
dt

.

Proof : Given that x = f (t ) and y = g (t ). 
 Let there be a small increment in the value of t say δt then δx and δy are the corresponding increments 

in x and y respectively. 
As δt, δx, δy are small increments in t, x and y respectively such that δt ≠ 0 and δx ≠ 0.

   Consider, the incrementary ratio 
δy
δx

 , and note that δx → 0 ⇒ δt → 0 .

   i.e.  
δy
δx

 = 
 
δy
δt
δx
δt

 , since 
δx
δt

 ≠ 0

    Taking the limit as δt → 0 on both sides we get, 

     
lim
δx→0  

δy
δx

 = lim
δt→0

 

 
δy
δt
δx
δt

    As δt → 0, δx → 0 

    lim
δx→0

δy
δx

 =  

lim
δt→0

δy
δt

lim
δt→0

δx
δt

      . . . . . (I)

    Since x and y	are	differentiable	function	of	t. we have, 

    lim
δt→0

 

δx
δt

 = 
dx
dt

  and  lim
δt→0

 

δy
δt

 = 
dy
dt

 	exist	and	are	finite	 .	.	.	.	.	(II)

    From (I) and (II), we get 

    lim
δx→0

 

δy
δx

 = 
 
dy
dt
dx
dt

       . . . . . (III) 

	 	 	 	 The	R.H.S.	of	(III)	exists	and	is	finite,	implies	L.H.S.of	(III)	also	exist	and	finite		

    ∴ lim
δx→0

 

δy
δx

 = 
dy
dx

    Thus the equation (III) becomes, 

      
dy
dx

 = 
 
dy
dt
dx
dt

   where 
dx
dt

 ≠ 0
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SOLVED EXAMPLES 

Ex. 1 : Find 
dy
dx

 if

  (i) x = at 
4, y = 2at 

2   (ii) x = t	−	√ t , y = t	+	√ t 

  (iii) x = cos (log t ),  y = log (cos t )  (iv) x = a (θ + sin θ), y = a (1 − cos θ)

  (v) x =	√ 1 −	t 

2,  y = sin−1 t

Solution : 

(i) Given, y = 2at 
2

 Differentiate	w. r. t. t

 
dy
dt

 = 2a 
d
dt

 (t 
2

 ) = 2a (2t ) = 4at. . . . . (I)

 And, x = at 
4

 Differentiate	w. r. t. t

 
dx
dt

 = a 
d
dt

 (t 
4

 ) = a (4t 
3

 ) = 4at 
3. . . . . (II)

 Now,  
dy
dx

 = 
 
dy
dt
dx
dt

 = 
4at
4at3

 ...[From (I) and (II)]

 ∴   
dy
dx

 = 
1
t2

(ii) Given, y = t	+	√ t 
 Differentiate	w. r. t. t

 
dy
dt

 = 
d
dt

 (t	+	√ t ) = 1 + 
1

2√ t

 
dy
dt

 = 
2√ t + 1

2√ t
   . . . . . (I)

 And, x = t	−	√ t 
 Differentiate	w. r. t. t

 
dx
dt

 = 
d
dt

 (t	−	√ t ) =	1	−	
1

2√ t

 
dx
dt

 = 
2√ t − 1

2√ t
   . . . . . (II)

Now, 
dy
dx

 = 
 
dy
dt
dx
dt

 = 
 

2√t + 1

2√t

2√t −	1
2√t

 ...[From (I) and (II)]

∴  
dy
dx

 = 
2√ t + 1

2√ t − 1

(iii) Given, y = log (cos t )
 Differentiate	w. r. t. t

 
dy
dt

 = 
d
dt

 [log (cos t )] = 
1

cot t
·

d
dt

 (cos t ) = 
1

cot t
 (−	sin	t )   ∴ 

dy
dt

 =	−	tan	t  . . . . . (I)

 And, x = cos (log t )
 Differentiate	w. r. t. t

 
dx
dt

 =  
d
dt

 [cos (log t )] =	−	sin	(log	t )·
d
dt

 (log t ) =	−	
sin (log t )

t
  ∴ 

dx
dt

 =	−	
sin (log t )

t
 . . . . . (II)

Now, 
dy
dx

 = 
 
dy
dt
dx
dt

 = 
 −	tan	t

−
sin (log t )

t

 ...[From (I) and (II)]

∴  
dy
dx

 = 
t · tan t

sin (log t )
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(iv) Given, y = a (1 − cos θ)
 Differentiate	w. r. t. θ

 
dy
dθ

 = a 
d

dθ
 [(1	−	cos θ)] = a	[0	−	(−	sin θ)]

 
dy
dt

 = a sin θ   . . . . . (I)

 And, x = a (θ + sin θ)
 Differentiate	w. r. t. θ

 
dx
dt

 = a 
d

dθ
 (θ + sin θ) = a (1 + cos θ) 

 
dx
dt

 = a (1 + cos θ)  . . . . . (II)

Now, 
dy
dx

 = 
 

dy
dt
dx
dt

 = 
 a sin θ

a (1 + cos θ)
 ...[From (I) and 

(II)]

∴  
dy
dx

 = 
2 sin ( 

θ
2 ) · cos ( 

θ
2 )

2 cos2 ( 
θ
2 )

 = tan 
θ
2

(v) Given, y = sin−1 t
 Differentiate	w. r. t. t

 
dy
dt

 = 
d
dt

 (sin−1 t ) = 
1

√ 1 − t2

 
dy
dt

 = 
1

√ 1 − t2
  . . . . . (I)

 And, x =	√ 1 −	t 

2

 Differentiate	w. r. t. t

 
dx
dt

 = 
d
dt

 (√ 1 −	t 

2
  ) = 

1
2√ 1 − t2

·
d
dt

 (1 −	t 

2)

 
dx
dt

 = 
1

2√ 1 − t2
·(−2t 

 )  = −	
t

√ 1 − t2
   . . . . . (II)

Now, 
dy
dx

 = 
 

dy
dt
dx
dt

 = 
 

1
√1	−	t2

− 
t

√1	−	t2
 ... [From (I) and (II)]

∴  
dy
dx

 = −	
1
t

Ex. 2 : Find 
dy
dx

 if (i) x = sec2 θ, y = tan3 θ, at θ = π
3

  (ii) x = t + 
1
t
, y = 

1
t2

, at t = 
1
2

     (iii) x = 3 cos t − 2 cos3 t, y = 3 sin t − 2 sin3 t, at t = 
π
6

Solution : 

(i) Given, y = tan3 θ
 Differentiate	w. r. t. θ

 
dy
dθ

 = 
d

dθ
 (tan θ)3 = 3 tan2 θ 

d
dθ

 (tan θ) ∴ 
dy
dθ

 = 3 tan2 θ · sec2 θ   . . . . . (I)

 And, x = sec2 θ
 Differentiate	w. r. t. θ

 
dx
dθ

 = 
d

dθ
 (sec2 θ) = 2 sec θ · 

d
dθ

 (sec θ) 

 
dx
dθ

 = 2 sec θ · sec θ tan θ = 2 sec2 θ · tan θ    . . . . . (II)

Now, 
dy
dx

 = 
 
dy
dθ
dx
dθ

 = 
3 tan2 θ · sec2 θ
2 sec2 θ · tan θ

    . . . [From (I) and (II)]

∴  
dy
dx

 = 
3
2

 tan θ 

  At θ = π
3

, we get 

  
dy
dx

 
θ =

π
3

= 
3
2

 tan 
π
3

 = 
3√ 3

2
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(ii) Given, y = 
1
t2

 Differentiate	w. r. t. t

 
dy
dt

 = 
d
dt

 
1
t2

 

 
dy
dt

 = − 
2
t3

    . . . . . (I)

 And, x = t + 
1
t

 Differentiate	w. r. t. t

 
dx
dt

 = 
d
dt

 t + 
1
t

 = 1 − 
1
t2

 
dx
dt

 = − t
2 −	1

t2
   . . . . . (II)

Now, 
dy
dx

 = 
 
dy
dt
dx
dt

 =  
− 

2
t3

t2 −1
t2

  . . . [From (I) and (II)]

∴  
dy
dx

 = −	
2

t (t2 −	1)

  At  t = 
1
2

, we get 

  
dy
dx

 
t = 1

2  
= −	

 2
1
2  1

2
2
	−	1

     = −	
 2

1
2  1

4  −	1
 

  
dy
dx

 
t = 1

2  
= −	

 2
1
2  −	 3

4

 

  
dy
dx

 
t = 1

2  
= 

16
3

(iii) Given, y = 3 sin t − 2 sin3 t

 Differentiate	w. r. t. t

 
dy
dt

 = 
d
dt

 (3 sin t − 2 sin3 t)

  = 3 
d
dt

 (sin t ) − 2 (sin t )3

  = 3 cos t − 2(3) sin2 t 
d
dt

 (sin t )

  = 3 cos t − 6 sin2 t (cos t ) 

  = 3 cos t (1 − 2 sin2 t)

 
dy
dt

 = 3 cos t cos 2t . . . . . (I)

 And, x = 3 cos t − 2 cos3 t

 Differentiate	w. r. t. t

 
dx
dt

 = 
d
dt

 (3 cos t − 2 cos3 t)

  = 3 
d
dt

 (cos t) − 2 
d
dt

 (cos3 t)

  = 3(−	sin t) − 2 (3) cos2 t 
d
dt

 (cos t)

  = −	3 sin t − 6 cos2 t (−	sin t)

  = 6 cos2 t sin t − 3 sin t

  = 3 sin t (2 cos2 t − 1)

 
dx
dt

 =  3 sin t cos 2t . . . . . (II)

Now, 
dy
dx

 = 
 
dy
dt
dx
dt

 = 
3 cos t cos 2t
3 sin t cos 2t

 . . . . . [From (I) 
and (II)]

∴  
dy
dx

 = −	cot t

  At  t = 
π
6

, we get  

  
dy
dx

 
t = π

6  
= −	cot 

π
6

 = √ 3
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Ex. 3 : If x2 + y2 = t + 
1
t

 and x4 + y4 = t2 + 
1
t2

 , then 

show that x3y 
dy
dx

 = 1.

Solution : 

 Given that, x4 + y4 = t2 + 
1
t2

 . . . (I)

 And  x2 + y2 = t + 
1
t

 Squaring both sides,

 (x2 + y2)2
 = t + 

1
t

2

 

x4 + 2 x2y2 + y4 = t2 + 2 + 
1
t2

  
 

x4 + 2 x2y2 + y4 = x4 + y4 + 2  . . . [ From (I)]

 2 x2y2 = 2 ∴ x2y2 = 1 . . . (II)

	 Differentiate	w. r. t. x

 
d
dx

 (x2y2) = 
d
dx

 (1)

 x2 d
dx

 ( y2) + y2 d
dx

 (x2) = 0

 x2 (2y)  
dy
dx

 + y2 (2x) = 0

 2x2y  
dy
dx

 = −	2xy2 ⇒ 
dy
dx

 =	−	
2xy2

2x2y
 

    
dy
dx

 =	−  
x − 

1
x2

x2y
 . . . [ From (II)]

  ∴  
dy
dx

 = 
1

x3y
   ∴ x3y 

dy
dx

 = 1

Ex. 4 : If x = a t −	
1
t

 and y = b t + 
1
t

, 

  then show that 
dy
dx

 = 
b2x
a2y

 .

Solution :

 Given that, x = a t −	
1
t

 and y = b t + 
1
t

 i.e. x
a

 = t −	
1
t

 . . . (I) and y
b

 = t + 
1
t

 . . . (II)

	 Square	of	(I)		−		Square	of	(II)	gives,

 x2

a2
 −	

y2

b2
 = t	−	

1
t

2  

−	 t + 
1
t

2

    = t2 −	2	+	
1
t2

 − t2 −	2	−	
1
t2

∴ 
x2

a2
 −	

y2

a2
 = −	4

	 Differentiate	w. r. t. x

 
1
a2

 · 
d
dx

 (x2) −	 1
b2

 · 
d
dx

 ( y2)= 
d
dx

 (−	4)

 
1
a2

 (2x) −	 1
b2

 (2y) · 
d
dx

 = 0

 
1
a2

 (2x) −	 1
b2

 (2y) · 
dy
dx

 = 0

 
2y
b2

 · 
dy
dx

 = 
2x
a2

 ⇒ 
dy
dx

 = 
b2x
a2y

  ∴  
dy
dx

 = 
b2x
a2y

 

Ex. 5 : If x = √ a 
sin−1t and y = √ a 

cos−1t , then show that 
dy
dx

 = −	
y
x

.

Solution : Given that, x = √ a 
sin−1	t and y = √ a 

cos−1	t 

   i.e. x = √ a 
sin−1	t . . . (I) and y = √ a 

cos−1	t  . . . (II)

	 	 	 Differentiate	(I)	w. r. t. t

   
dx
dt

 = 
d
dt

 √ a 
sin−1	t   = 

1

2√a 
sin−1	t

 · 
d
dt

 (a 
sin−1t ) 

       = 
1

2√a 
sin−1	t

·a 
sin−1	t · log a 

d
dt

 (sin−1	t )
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    = 
a 

sin−1	t · log a

2√a 
sin−1	t

·
1

√1 − x2
  

   
dx
dt

 = √a 
sin−1	t· log a
2√1 − x2

 = 
x log a
2√1 − x2  . . . (III) . . . [From (I)] 

   Now y = √ a 
cos−1	t 

	 	 	 Differentiate	(II)	w. r. t. t

   
dy
dt

 = 
d
dt

 √ a 
cos−1	t  = 

1

2√a 
cos−1	t

 · 
d
dt

 (a 
cos−1t ) 

    = 
1

2√a 
cos−1	t

·a 
cos−1	t · log a 

d
dt

 (cos−1	t )

    = 
a 

cos−1	t · log a

2√a 
cos−1	t

 −	
1

√1 − x2
 

   
dy
dt

 = 
−	√a 

cos−1	t· log a
2√1 − x2

 =	−	
y log a
2√1 − x2  . . . (IV) . . . [From (II)]    

Now,   
dy
dx

 = 
 
dy
dt
dx
dt

 = 
−

 

y log a
2√1 −	x2

x log a
2√1 −	x2

 . . . . . [From (III) and (IV)]

  ∴ 
dy
dx

 = −	
y
x

1.4.3 Differentiation of one function with respect to another function :

If y	is	differentiable	function	of	x, then the derivative of y with respect to x is 
dy
dx

.

Similarly, if u =  f (x), v =  g (x)	differentiable	function	of	x, such that 
du
dx

 = f ' (x) and 
dv
dx

 = g' (x) 

then the derivative of u with respect to v is 
du
dv

 = 
 
du
dx
dv
dx

 = 
f ' (x)
g' (x)

.

SOLVED EXAMPLES 

Ex. 1 : Find the derivative of 7x w. r. t. x7.

Solution : Let : u = 7x and v =  x7,	then	we	have	to	find	
du
dv

.

  ∴  
du
dv

 = 
 
du
dx
dv
dx

  . . . (I)

  Now, u = 7x  
	 	 Differentiate	w. r. t. x

  
du
dx

  = 
d
dx

 (7x) = 7x log 7  . . . (II)

  And, v =  x7  
	 	 Differentiate	w. r. t. x

  
dv
dx

  = 
d
dx

 (x7) = 7x6 . . . (III)

  Substituting (II) and (III) in (I) we get,

  ∴  
du
dv

 = 
7x log 7

7x6
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Ex. 2 : Find the derivative of cos−1	x  w. r. t. √1 − x2.

Solution : Let u = cos−1	x and v =  √1 − x2,	then	we	have	to	find	
du
dv

.

  i.e.  
du
dv

 = 
 
du
dx
dv
dx

   . . . (I)

  Now, u = cos−1	x  
	 	 Differentiate	w. r. t. x

  
du
dx

  = 
d
dx

 (cos−1	x) =	−	
1

√1 − x2
 . . . (II)

  And, v =  √1 − x2

	 	 Differentiate	w. r. t. x

  
dv
dx

  = 
d
dx

 (√1 − x2 ) = 
1

2√1 − x2 · 
d
dx

 (1 − x2 ) = 
1

2√1 − x2 · (−	2x )

  
dv
dx

  =	−	
x

√1 − x2
  . . . (III)

  Substituting (II) and (III) in (I) we get,

  
du
dv

 = 
−

 

1

√1 −	x2

−
 

x

√1 −	x2

 ∴ 
du
dv

 = 
1
x

Ex. 3 : Find the derivative of tan−1	
√1 + x2 −	1

x
 w. r. t. sin−1	 2x

1 + x2
.

Solution : Let u = tan−1	
√1 + x2 −	1

x  and v =  sin−1	 2x
1 + x2

,	then	we	have	to	find	
du
dv

.

   i.e.  
du
dv

 = 
 
du
dx
dv
dx

    . . . (I)

   Now, u = tan−1	
√1 + x2 −	1

x

   Put x = tan θ ∴ θ = tan−1 x

   u = tan−1	
√1 + tan2 θ −	1

tan θ  = tan−1	
sec θ −	1

tan θ  = 
1

cos  θ  −	1
sin  θ 
cos  θ 

 = tan−1	
1	−	cos	θ

sin θ

    = tan−1	
2 sin2 

θ 
2

2 sin 
θ 
2  cos 

θ 
2

 = tan−1	 tan 
θ
2

   u = 
θ
2 = 

1
2 tan−1	x

	 	 	 Differentiate	w. r. t. x

   
du
dx

  = 
1
2

 
d
dx

 (tan−1	x) = 
1

2(1 + x2)
  . . . (II)
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  And, v =  sin−1	 2x
1 + x2

 =  sin−1	 2 tan θ
1 + tan2 θ

 = sin−1	( sin 2θ)  = 2θ

    v =  2 tan−1	x
	 	 Differentiate	w. r. t. x

  
dv
dx

  = 2 
d
dx

 (tan−1	x) = 
2

1 + x2
 . . . (III)

  Substituting (II) and (III) in (I) we get,

    
du
dv

 = 

1
2(1 + x2)

2
1 + x2

 = 
1
4

EXERCISE 1.4

(1) Find 
dy
dx

 if

 (i) x = at2 , y = 2at
 (ii) x = a cot θ, y = b cosec θ
 (iii) x = √ 

a2 + m2, y = log (a2 + m2)
 (iv) x = sin θ, y = tan θ
 (v) x = a(1	−	cos	θ), y = b(θ	−	sin	θ)

 (vi) x = t + 
1
t

 a

 , y = at + 1
t  ,

  where a > 0, a ≠ 1 and t ≠ 0.

 (vii) x = cos−1	
2t

1 + t2
, y = sec−1	(√ 

1 + t2)

 (viii) x = cos−1	(4t3 −	3t ), y = tan−1	 √ 
1	−	t2

t
(2) Find 

dy
dx

 if

 (i) x = cosec2 θ, y = cot3 θ, at θ = 
π
6

 (ii) x = a cos3 θ, y = a sin3 θ, at θ = 
π
3

 (iii) x = t2 + t + 1, y = sin 
πt
2

 + cos 
πt
2

, 
  at t = 1 
 (iv) x = 2 cos t + cos 2t , y = 2 sin t − sin 2t,

  at t = 
π
4

 (v) x = t + 2 sin(πt), y = 3t − cos(πt), 

  at t = 
1
2

(3) (i) If x = a√ sec θ	−	tan θ, y = a√ sec θ + tan θ, 

   then show that 
dy
dx

 = −	
y
x

.

 (ii) If x = esin 3t, y = ecos 3t, then

  show that 
dy
dx

 = −	
y log x
x log y

.

 (iii) If x = 
t + 1
t − 1

, y = 
t − 1
t + 1

, then 

  show that y2  + 
dy
dx = 0.

 (iv) If x = a cos3 t, y = a sin3 t, then  

  show that 
dy
dx

 = −	
y
x

 
1
3.

 (v) If x = 2 cos4 (t + 3), y = 3 sin4 (t + 3), 

  show that 
dy
dx

 = −	
3y
2x

.

 (vi) If x = log (1 + t2), y = t −	tan−1 t, 

  show that 
dy
dx

 = √ 
ex	−	1

2
.

 (vii) If x = sin−1 (e 
t ), y = √ 

1	−	e2t,

  show that sin x  + 
dy
dx = 0.

 (viii) If x = 
2bt

1 + t2
, y = a 

1	−	t2

1 + t2
,

  show that 
dx
dy

  =	−	
b2 y
a2 x

.
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(4)	(i)	 Differentiate	x sin x w. r. t. tan x.

	 (ii)	Differentiate	sin−1 
2x

1 + x2  

  w. r. t. cos−1 
1 − x2

1 + x2 .

	 (iii)	Differentiate	tan−1 
x

√ 1 − x2

  w. r. t. sec−1 
1

2x2 − 1
 .

	 (iv)	Differentiate	cos−1 
1 − x2

1 + x2  w. r. t. tan−1 x.

	 (v)	Differentiate	3x w. r. t. logx 3.

	 (vi)	Differentiate	tan−1 
cos x

1 + sin x
 

   w. r. t. sec−1 x.

	 (vii)	Differentiate	xx w. r. t. xsin x.

	 (viii)	Differentiate	tan−1 √ 1 + x2 −	1
x

    w. r. t. tan−1	 2x√ 1 − x2

1 − 2x2
.

1.5.1 Higher order derivatives :

If f (x)	is	differentiable	function	of	x on an open interval I, then its derivative f ' (x) is also a function 

on I, so f ' (x) may have a derivative of its own, denoted as ( f ' (x))' = f '' (x). This new function f '' (x) is 

called the second derivative of f (x). By Leibniz notation, we write the second detivative of

 y =  f (x) as y'' = f '' (x) = 
d
dx

 
dy
dx

 = 
d2 y
dx2

	 By	method	of	first	principle

 f ' (x) = lim
h→0

f (x + h) − f (x)
h

 = 
dy
dx

 and

 f '' (x) = lim
h→0

f ' (x + h) − f ' (x)
h

 = 
d2 y
dx2

Further if f '' (x)	is	a	differentiable	function	of	x then its derivative is denoted as 
d
dx

[ f '' (x)] = f ''' (x).

Now the new function f ''' (x) is called the third derivative of f (x). We write the third of y = f (x) as 

y ''' = f ''' (x) = 
d
dx

 
d2 y
dx2

 = 
d3 y
dx3

 . The fourth derivative, is usually denoted by f (4) (x). Therefore 

f (4) (x) = 
d4 y
dx4

.

In general, the nth derivative of f (x), is denoted by f (n) (x)	and	it	obtained	by	differentiating		f (x), 

n times. So, we can write the nth derivative of y = f (x) as y(n) = f (n) (x) = 
dn y
dxn

. These are called higher order 

derivatives.

Note : The higher order derivatives may also be denoted by y2, y3, . . . , yn.
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For example: Consider f (x) = x3 − x 

  Differentiate	w. r. t. x

  f ' (x) = 
d
dx

 [ f (x)] = 3x2 − 1

  Differentiate	w. r. t. x

  f '' (x) = 
d
dx

 [ f ' (x)] = 6x

  Differentiate	w. r. t. x

  f ''' (x) = 
d
dx

 [ f '' (x)] = 6

Which is the slope of the line represented by     f '' (x). Hence forth all its next derivatives are zero. 

Note : From the above example we can deduce one important result that, if f (x) is a polynomial of 
degree n, then its nth order derivative is a constant and all the onward detivatives are zeros.

SOLVED EXAMPLES 

Ex. 1 : Find the second order derivative of the following :
  (i) x3 + 7x2	−	2x	−	9	 	 	 (ii)	 x2 ex   (iii) e2x sin 3x
  (iv) x2 log x   (v) sin (log x)
Solution :

 (i) Let y = x3 + 7x2	−	2x	−	9
	 	 Differentiate	w. r. t. x

  
dy
dx

 = 
d
dx

 (x3 + 7x2	−	2x	−	9)

  
dy
dx

 = 3x2 + 14x	−	2

   Differentiate	w. r. t. x

  
d
dx

 
dy
dx

 = 
d
dx

 (3x2 + 14x	−	2)

  
d2 y
dx2

 = 6x + 14

 (ii) Let y = x2 ex

	 	 Differentiate	w. r. t. x

  
dy
dx

 = 
d
dx

 (x2 ex) 

  
dy
dx

 = x2 
d
dx

 (ex) + ex 
d
dx

 (x2)

  
dy
dx

 = x2 ex + 2x ex = ex (x2 + 2x)

   Differentiate	w. r. t. x

  
d
dx

 
dy
dx

 = 
d
dx

 [ex (x2 + 2x)]

  
d2 y
dx2

 = ex 
d
dx

 (x2 + 2x) + (x2 + 2x) 
d
dx

 (ex)

   = ex (2x + 2) + (x2 + 2x) (ex)

   = (x2 + 4x + 2) ex

  
d2 y
dx2

 = (x2 + 4x + 2) ex
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(iii) Let y = e2x sin 3x
	 Differentiate	w. r. t. x

 
dy
dx

 = 
d
dx

 (e2x sin 3x) = e2x 
d
dx

 (sin 3x) + sin 3x 
d
dx

 (e2x)

 
dy
dx

 = e2x (cos 3x) (3) + sin 3x (e2x) (2)

 
dy
dx

 = e2x (3 cos 3x + 2 sin 3x)

 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 [e2x (3 cos 3x + 2 sin 3x)]

 
d2 y
dx2

 = e2x 
d
dx

 (3 cos 3x + 2 sin 3x) + (3 cos 3x + 2 sin 3x) 
d
dx

 (e2x)

  = e2x [3 (−	sin 3x) (3) + 2 (cos 3x)(3)] + (3 cos 3x + 2 sin 3x) e2x (2)

  = e2x [−	9	sin 3x + 6 cos 3x + 6 cos 3x + 4 sin 3x]

 
d2 y
dx2

 = e2x [12 cos 3x − 5 sin 3x]

(iv) Let y = x2 log x
	 Differentiate	w. r. t. x

 
dy
dx

 = 
d
dx

 (x2 log x) 

 
dy
dx

 = x2 
d
dx

 (log x) + log x 
d
dx

 (x2)

 
dy
dx

 = x2 · 
1
x

 + log x (2x)

 
dy
dx

 = x (1 + 2 log x)

 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 [x (1 + 2 log x)]

 
d2 y
dx2

 = x 
d
dx

 (1 + 2 log x) + (1 + 2 log x) 
d
dx

 (x)

  = x · 
2
x

 + (1 + 2 log x) (1)

 
d2 y
dx2

 = 3 + 2 log x

(v) Let y = sin (log x)
	 Differentiate	w. r. t. x

 
dy
dx

 = 
d
dx

 [sin (log x)] 

 
dy
dx

 = cos (log x) 
d
dx

 (log x)

 
dy
dx

 = 
cos (log x)

x
 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 
cos (log x)

x

 
d2 y
dx2  = 

x d
dx  [cos (log x)] −	cos (log x) d

dx  (x)

x2
 

 = 
x [− sin (log x)] 

d
dx  (log x) − cos(log x)(1)

x2
 

   = 
−  

x sin (log x)
x  − cos(log x)

x2

 
d2 y
dx2

 = −	
sin (log x) + cos (log x)

x2
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Ex. 2 : Find 
d2 y
dx2

 if, (i) x = cot−1		 √ 
1	−	t2

t
 and x = cosec−1	

1 + t2

2t
 (ii) x = a cos3 θ, y = b sin3 θ at θ = 

π
4

Solution :

(i) x = cot−1		 √ 
1	−	t2

t
 and x = cosec−1	

1 + t2

2t
 Put t = sin θ  ∴ θ = sin−1	t

 x = cot−1		 √ 
1	−	sin2 θ

sin θ
 = cot−1	 √ 

sin2 θ
sin θ

 x = cot−1	(cot θ) = θ ∴ x = sin−1	t

 Differentiate	w. r. t. t

 
dx
dt

 = 
d
dt

 (sin−1	t) = 
1

√ 
1	−	t2

   . . . (I)

 y = cosec−1	
1 + t2

2t
 = sin−1	 2t

1 + t2

 Put t = tan θ  ∴ θ = tan−1	t

 y = sin−1		 2 tan θ
1 + tan2 θ

 = sin−1	(sin 2θ) = 2θ

∴ y = 2 tan−1	t

 Differentiate	w. r. t. t

 
dy
dt

 = 2 
d
dt

 (tan−1	t) = 
2

1 + t2
   . . . (II)

 We know that,

 
dy
dx

 = 
 
dy
dt
dx
dt

 = 

2
1 + t2

1

√1 −	t2

 . . . [From (I) and (II)] ∴ 
dy
dx

 =  2 √ 
1	−	t2

1 + t2
  

         Differentiate	w. r. t. x

         
d
dx

·
dy
dx

 =  
d
dx

 · 2 √ 
1	−	t2

1 + t2
 

          
d2 y
dx2

 = 2 
d
dt

 · √ 
1	−	t2

1 + t2
  × 

dt
dx

           = 2 × 
(1 + t2) d

dt
 (√ 

1	−	t2) −	√ 
1	−	t2 d

dt
 (1 + t2)

(1 + t2)2  × 
1
dx
dt

 

           = 2 × 
(1 + t2) 1

2√1 −	t2

 d
dt

 (√ 
1	−	t2) −	√ 

1	−	t2 (2t)

(1 + t2)2  × 
1
1

√1 −	t2

 [From (I)]

           = 2 × 
(1 + t2) 1

2√1 −	t2

 (−	2t) −	2t (√ 
1	−	t2)

(1 + t2)2  × √ 
1	−	t2

           = 2 × 
(1 + t2) −	t

2√1 −	t2

 −	2t (√ 
1	−	t2)

(1 + t2)2  × √ 
1	−	t2

           = 2 × 
−t (1 + t2) −	2t (1	−	t2)

(1 + t2)2  = 2 × 
−	t −	t3 −	2t + 2t3

(1 + t2)2  

           = 2 × 
t3 −	3t

(1 + t2)2  

          
d2 y
dx2

 = 
2t (t2 −	3)
(1 + t2)2
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(ii) x = a cos3 θ, y = b sin3 θ at θ = 
π
4

Solution :
 Given that : x = a cos3 θ

 Differentiate	w. r. t. θ

 
dx
dθ

 = 
d

dθ
 (a cos3 θ) =  a (3) (cos2 θ) 

d
dθ

 (cos θ)

 
dx
dθ

 = −3a cos2 θ sin θ . . . (I)

 y = b sin3 θ

 Differentiate	w. r. t. θ

 
dy
dθ

 = 
d

dθ
 (b sin3 θ) =  b (3) (sin2 θ) 

d
dθ

 (sin θ)

 
dy
dθ

 = 3b sin2 θ cos θ . . . (II)

        We know that,

         
dy
dx

 = 
 
dy
dθ
dx
dθ

 = 
3b sin2 θ cos θ 
−3a cos2 θ sin θ

    . . . [From (I) and (II)]

        ∴ 
dy
dx

 =	−	
b
a

·tan θ

         Differentiate	w. r. t. x

         
d
dx

dy
dx

 =		−	
b
a

·
d
dx

(tan θ)

          
d2 y
dx2

 =	−	
b
a

·
d

dθ
· (tan θ) × 

dθ
dx

           =	−	
b
a

 (sec2 θ) × 
1
dx
dθ

 

           =	−	
b
a

 (sec2 θ) × 
1

−3a cos2 θ sin θ
 . . . [From (I)]

          
d2 y
dx2

 = 
b

3a2
 × 

sec2 θ
cos2 θ sin θ

          
d2 y
dx2

 = 
b sec4 θ
3a2 sin θ

          When θ = 
π
4

          
d2 y
dx2

 
θ =

π
4  

= 
b sec4 π

4

3a2 sin π
4

 = 
b (√2	)4

3a2 1
√ 2

          
d2 y
dx2

 
θ =

π
4   

= 
4	√2b

3a2
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Ex. 3 : If ax2 + 2hxy + by2 = 0 then show that 
d2 y
dx2

 = 0.

Solution : Given that ax2 + 2hxy + by2 = 0 . . . (I)
     ax2 + hxy + hxy + by2 = 0
     x(ax + hy) + y(hx + by) = 0
     y(hx + by) =	−	x(ax + hy)

     
y
x

 =	−	
ax + hy
hx + by

  . . . (II)

   Differentiate	(I)	w. r. t. x

     a 
d
dx

 (x2) + 2h 
d
dx

 (xy) + b 
d
dx

 (y2) = 0

     a (2x) + 2h a 
dy
dx

 + y(1)  + b (2y) 
dy
dx

 = 0

     2 ax + hx 
dy
dx

 + hy + by 
dy
dx

 = 0

     (hx + by) 
dy
dx

 =	−	ax −	hy

     
dy
dx

 = −	
ax + hy
hx + by

     From (II), we get

   ∴  
dy
dx

 = 
y
x

   . . . (III)

   Differentiate	(III),	w. r. t. x

       
d
dx

 
dy
dx

 = 
d
dx

y
x

       
d2 y
dx2

 = 
 x dy

dx	−	y(1)
x2  = 

 x y
x 	−	y
x2 . . . [From (II) ]

     ∴  
d2 y
dx2

 = 
y	−	y

x2
 = 0 

Ex. 4 : If y = cos (m cos−1 x)	then	show	that	(1	−	x2)  
d2 y
dx2

 −	x
dy
dx

 + m2y = 0.

Solution : Given that y = cos (m cos−1 x) 
   ∴  cos−1 y = m cos−1 x
   Differentiate	(I)	w. r. t. x

   
d
dx

 (cos−1 y) = m 
d
dx

 (cos−1 x)

	 	 	 −	
1

√ 
1	−	y2

 · 
dy
dx

 = −	
m

√ 
1	−	x2
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     √ 
1	−	x2 · 

dy
dx

 = m √ 
1	−	y2

     Squaring both sides

     (
 
1	−	x2) · 

dy
dx

 2

 = m2 (1	−	y2)

     Differentiate	w. r. t. x

     (
 
1	−	x2) 

d
dx

 
dy
dx

 2

 + 
dy
dx

 2

 
d
dx

 (
 
1	−	x2)= m2 

d
dx

 (1	−	y2)

     (
 
1	−	x2)·2 

dy
dx

 

· 
d
dx

 · 
dy
dx

 

+ 
dy
dx

 2

 (−	2x) = m2 (−	2y) 
dy
dx

     2(
 
1	−	x2)· 

dy
dx

· 
d2 y
dx2

 

−	2x 
dy
dx

 2

= −2m2y 
dy
dx

     Dividing throughout by 2
dy
dx

 we get,

     (
 
1	−	x2)·

d2 y
dx2

 

−	x 
dy
dx

 =	−	m2y

   ∴  (
 
1	−	x2)·

d2 y
dx2

 

−	x 
dy
dx

 + m2y = 0

Ex. 5 : If x = sin t, y = emt	then	show	that	(1	−	x2) 
d2 y
dx2

 −	x
dy
dx

 − m2y = 0.

Solution : Given that x = sin t  ∴ t = sin−1 x 
     and y = emt  ∴ y = em sin−1 x . . . (I)
     Differentiate	w. r. t. x

     
dy
dx

 = 
d
dx

 (em sin−1 x) = em sin−1 x · m 
d
dx

 (sin−1 x)

     
dy
dx

 = 
m·em sin−1 x

√ 
1	−	x2

 

     √ 
1	−	x2 

dy
dx

 = my   . . . [From (I)]
     Squaring both sides

     (
 
1	−	x2) · 

dy
dx

 2

 = m2y2

     Differentiate	w. r. t. x

     (
 
1	−	x2) 

d
dx

 
dy
dx

 2

 + 
dy
dx

 2

 
d
dx

 (
 
1	−	x2)= m2 

d
dx

 (y2)

     (
 
1	−	x2)·2 

dy
dx

 

· 
d
dx

 · 
dy
dx

 

+ 
dy
dx

 2

 (−	2x) = m2 (2y) 
dy
dx
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     2(
 
1	−	x2)· 

dy
dx

· 
d2 y
dx2

 

−	2x 
dy
dx

 2

= 2m2y 
dy
dx

     Dividing throughout by 2
dy
dx

 we get,

     (
 
1	−	x2)·

d2 y
dx2

 

−	x 
dy
dx

 = m2y

   ∴  (
 
1	−	x2)·

d2 y
dx2

 

−	x 
dy
dx

 −	m2y = 0

1.5.2 Successive differentiation (or nth order derivative) of some standard functions :

Successive	Differentiation	is	the	process	of	differentiating	a	given	function	successively	for	n times 
and	the	results	of	such	differentiation	are	called	successive	derivatives.	The	higher	order	derivatives	are	
of	utmost	importance	in	scientific	and	engineering	applications.

There	is	no	general	formula	to	find	nth derivative of a function. Because each and every function has 
it's	own	specific	general	formula	for	it's	nth	derivative.	But	there	are	algorithms	to	find	it.

So, here is the algorithm, for some standard functions.
Let us use the method of mathematical induction whereever applicable.

Step 1 :-	 Use	simple	differentiation	to	get	1st, 2nd and 3rd order derivatives.
Step 2 :-	 Observe	the	changes	in	the	coefficients,	the	angles,	the	power	of	the	function	and	the	signs	of	

each term etc.
Step 3 :- Express the nth derivative with the help of the patterns of changes that you have observed. 

This will be your general formula for the nth derivative of the given standard function.

SOLVED EXAMPLES 

Ex. 1 : Find the nth derivative of the following :

  (i) xm    (ii) 
1

ax + b
  (iii) log x

  (iv) sin x   (v) cos (ax + b)  (vi) eax sin (bx + c)
Solution :
 (i) Let y = xm

	 	 Differentiate	w. r. t. x

  
dy
dx

 = 
d
dx

 (xm) = mxm −	1

	 	 Differentiate	w. r. t. x

  
d
dx

 
dy
dx

 = m 
d
dx

 xm −	1

  
d2 y
dx2

 = m·(m −	1)	xm −	2

	 Differentiate	w. r. t. x

 
d
dx

 
d2 y
dx2

 = m·(m −	1)	
d
dx

 (xm −	2)

 
d3 y
dx3

 = m·(m −	1)·(m −	2)	xm −	3

  In general nth order derivative will be

 
dn y
dxn

 = m·(m −	1)·(m −	2)...[m −	(n −	1)]	xm −	n

 
dn y
dxn

 = m·(m −	1)·(m −	2)...[m −	n + 1] xm −	n
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case (i) :- If m > 0 and m > n, then

 
dn y
dxn

 = 
m·(m −	1)·(m −	2)...	[m −	(n −	1)]	· (m −	n)... 2·1

(m −	n) · [m −	n −	1]...	2·1
 xm −	n

 
dn y
dxn

 = 
m!. xm −	n

(m −	n)!
case (ii) :- If m > 0 and m = n, then

 
dn y
dxn

 = 
n!. xm −	n

(n −	n)!
 = 

n!. x0

0!
 = n!

case (iii) :- If m > 0 and m < n, then

 
dn y
dxn

 = 0

(ii) Let y = 
1

ax + b
	 	 Differentiate	w. r. t. x

  
dy
dx

 = 
d
dx

 
1

ax + b
 = 

−1
(ax + b)2

·
d
dx

 (ax + b)

  
dy
dx

 = 
(−	1)·a

(ax + b)2

	 	 Differentiate	w. r. t. x

  
d
dx

 
dy
dx

 = (−	1)(a) 
d
dx

 
1

(ax + b)2

  
d2 y
dx2

 = (−	1)(a) 
−2

(ax + b)3
·

d
dx

 (ax + b)

  
d2 y
dx2

 = 
(−	1)2·2·1·a2

(ax + b)3

	 	 Differentiate	w. r. t. x

  
d
dx

 
d2 y
dx2

 = (−	1)2·2·1·a2·
d
dx

 
1

(ax + b)3

  
d3 y
dx3

 = (−	1)2·2·1·a2·
−3

(ax + b)4
·

d
dx

 (ax + b)

  
d3 y
dx3

 = 
(−	1)3·3·2·1·a3

(ax + b)4

  In general nth order derivative will be

  
dn y
dxn

 = 
(−	1)n·n·(n −	1)...	2·1·an

(ax + b)n + 1

  
dn y
dxn

 = 
(−	1)n·n!·an

(ax + b)n + 1

(iii) Let y = log x
	 Differentiate	w. r. t. x

 
dy
dx

 = 
d
dx

 (log x) = 
1
x

	 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 
1
x

 
d2 y
dx2

 = 
−	1
x2

 = 
(−	1)1

x2

	 Differentiate	w. r. t. x

 
d
dx

 
d2 y
dx2

 = (−	1)1 
d
dx

 
1
x2

 
d3 y
dx3

 = (−	1)1 
−	2
x3

 = 
(−	1)2·1·2

x3

 In general nth order derivative will be

 
dn y
dxn

 = 
(−	1)n −	1·1·2·3... (n −	1)

xn

 
dn y
dxn

 = 
(−	1)n −	1·(n −	1)!

xn
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(iv) Let y = sin x 

	 Differentiate	w. r. t. x

 
dy
dx

 = 
d
dx

 (sin x) = cos x

 
dy
dx

 = sin 
π
2 + x

	 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 sin 
π
2 + x

 
d2 y
dx2

 = cos 
π
2 + x  

d
dx

 
π
2 + x

 
d2 y
dx2

 = sin 
π
2 + 

π
2 + x  (1)

 
d2 y
dx2

 = sin 
2π
2  + x

	 Differentiate	w. r. t. x

 
d
dx

 
d2 y
dx2

 = 
d
dx

 sin 
2π
2  + x

 
d3 y
dx3

 = cos 
2π
2  + x  

d
dx

 
2π
2  + x

  = sin 
π
2 + 

2π
2  + x  (1)

 
d3 y
dx3

 = sin 
3π
2  + x

 In general nth order derivative will be

 
dn y
dxn

 = sin 
nπ
2  + x   

(v) Let y = cos (ax + b)
	 Differentiate	w. r. t. x

 
dy
dx

  = 
d
dx

 [cos (ax + b)]

  =	−	sin	(ax + b) 
d
dx

 (ax + b)

  = cos 
π
2 + ax + b  (a)

 
dy
dx

  = a cos 
π
2 + ax + b

	 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 a cos 
π
2 + ax + b

 
d
dx

 
dy
dx

 = a 
d
dx

 cos 
π
2 + ax + b

 
d2 y
dx2

 = a −	sin	
π
2 + ax + b  

d
dx

 
π
2 + ax + b

  = a cos 
π
2 + 

π
2 + ax + b  (a)

 
d2 y
dx2

 = a2 cos 
2π
2  + ax + b

	 Differentiate	w. r. t. x

 
d
dx

 
d2 y
dx2

 = 
d
dx

 a2 cos 
2π
2  + ax + b

 
d
dx

 
d2 y
dx2

 = a2 
d
dx

 cos 
2π
2  + ax + b

 
d3 y
dx3

 = a2 −sin	
2π
2  + ax + b  

d
dx

2π
2 + ax +b

  = a2 cos 
π
2 + 

2π
2  + ax + b  (a)

 
d3 y
dx3

 = a3 cos 
3π
2  + ax + b

 In general nth order derivative will be

 
dn y
dxn

 = an cos 
nπ
2  + ax + b
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(vi) Let y = eax sin (bx + c)
	 Differentiate	w. r. t. x

 
dy
dx

  = 
d
dx

 [eax sin (bx + c)] = eax 
d
dx

 [sin (bx + c)] + [sin (bx + c)] 
d
dx

 (eax)

  = eax cos (bx + c) 
d
dx

 (bx + c) + sin (bx + c) · eax · 
d
dx

 (ax)

  = eax [ b cos (bx + c) + a sin (bx + c)]

  = eax √ 
a2 + b2 

b

√ 
a2 + b2

 cos (bx + c) + 
a

√ 
a2 + b2

  sin (bx + c) 

 Let 
b

√ 
a2 + b2

 = sin α, 
b

√ 
a2 + b2

 = cos α, α = tan−1	 
b
a

 . . . (I)

 
dy
dx

 = eax √ 
a2 + b2 [ sin α · cos (bx + c) + sin (bx + c) · cos α]

 
dy
dx

 = eax (
 
a2 + b2)

1
2  · sin (bx + c + α)

	 Differentiate	w. r. t. x

 
d
dx

 
dy
dx

 = 
d
dx

 eax (
 
a2 + b2)

1
2  · sin (bx + c + α)

   = (
 
a2 + b2)

1
2  

· 
d
dx

 [eax · sin (bx + c + α)]

   = (
 
a2 + b2)

1
2  

eax 
d
dx

 [sin (bx + c + α)] + [sin (bx + c + α)] 
d
dx

 [eax]  

   = (
 
a2 + b2)

1
2  

eax cos (bx + c + α) 
d
dx

 (bx + c + α) + sin (bx + c + α)· eax 
d
dx

 (ax)

   = eax (
 
a2 + b2)

1
2  

[b cos (bx + c + α) + a sin (bx + c + α)]

   = eax (
 
a2 + b2)

1
2  
√ 

a2 + b2 
b

√ 
a2 + b2

  cos (bx + c + α) + 
a

√ 
a2 + b2

  sin (bx + c + α)

  
d2 y
dx2

 = eax (
 
a2 + b2)

2
2  

[sin α cos (bx + c + α) + sin (bx + c + α) cos α] . . . [ from (I) ]

  
d2 y
dx2

 = eax (
 
a2 + b2)

2
2 · sin (bx + c + 2α)

 Similarly,

  
d3 y
dx3

 = eax (
 
a2 + b2)

3
2 · sin (bx + c + 3α)

 In general nth order derivative will be

  
dn y
dxn

 = eax (
 
a2 + b2)

n
2 · sin (bx + c + nα) where α = tan−1	 

b
a

.
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(1) Find the second order derivative of the 

following :

 (i) 2x5  −	4x3  −	
2
x2  −	9 (ii) e 

2x  · tan x

 (iii) e 
4x  · cos 5x  (iv) x 

3  log x 

 (v) log (log x)  (iv) x 
x

(2) Find 
d2 y
dx2

 of the following :

 (i) x = a (θ −	sin	θ), y = a (1	−	cos	θ)

 (ii) x = 2at2, y = 4at

 (iii) x = sin θ, y = sin3 θ when θ = 
π
2

 (iv) x = a cos θ, y = b sin θ at θ = 
π
4

(3) (i) If x = at2 and y = 2at then show that 

  xy 
d2 y
dx2

 + a = 0

 (ii) If y = em tan−1 x, show that

  (1 + x2) 
d2 y
dx2

 + (2x	−	m) 
dy
dx

 = 0

 (iii) If x = cos t, y = emt show that

	 	 (1	−	x2) 
d2 y
dx2

 − x 
dy
dx

 − m2y = 0

 (iv) If y = x + tan x, show that

  cos2 x · 
d2 y
dx2

 − 2y + 2x = 0

 (v) If y = eax · sin (bx), show that

  y2	−	2ay1
 + (a2 + b2) y = 0

 (vi) If sec−1	
7x3 − 5y3 
7x3 + 5y3 

 = m, 

  show that 
d2 y
dx2

 = 0.

EXERCISE 1.5

 (vii) If 2y = √ 
x + 1 + √ 

x	−	1,	

  show that 4(x2	−	1)	y2
 + 4x y1	−	y = 0.

 (viii) If y = log (x + √ 
x2 + a2 )m

,

  show that (x2 + a2) 
d2 y
dx2

 + x 
dy
dx

 = 0 

 (ix) If y = sin (m cos−1	x) then show that

	 	 (1	−	x2) 
d2 y
dx2

 − x 
dy
dx

 + m2y = 0

 (x) If y = log (log 2x), show that

  x y2
 + y1 (1 + x y1) = 0.

 (xi) If x2 + 6xy + y2  = 10, show that

  
d2 y
dx2

 = 
80

(3x + y)3 .

 (xii) If x = a sin t −	b cos t , y = a cos t + b sin t ,

  show that 
d2 y
dx2

 = −	
x2 + y2

y3
.

(4) Find the nth derivative of the following :

 (i) (ax + b) 
m  (ii) 

1
x

 (iii) e 
ax + b    (iv) a 

px + q

 (v) log (ax + b)  (vi) cos x

 (vii) sin (ax + b)  (viii) cos (3	−	2x)

 (ix) log (2x + 3)  

 (x) 
1

3x	−	5
  

 (xi) y = e 
ax · cos (bx + c)

 (xii) y = e 
8x · cos (6x + 7)
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  Let us Remember 

֍ If a function f (x) is differentiable	at	x = a then it is continuous at x = a, but the converse is not 
true. 

֍ Chain Rule : If y	is	differerentiable	function	of	u and u	is	differerentiable	function	of	x then y 

is	differerentiable	function	of	x and  
dy
dx

 = 
dy
du

 · 
du
dx

֍ If y = f (x) is a differentiable	of	x such that the inverse function x = f 	−1( y) exists then

    
dy
dx

 = 
1

dy
dx

,  where 
dy
dx

 ≠	0

֍ Derivatives of Inverse Trigonometric functions :

f (x) sin −1 x cos −1 x tan −1 x cot −1 x sec −1 x cosec −1 x

f ' (x)

1
√1	−	x2

 , 

|x| < 1

−	
1

√1	−	x2  , 

|x| < 1

1
1 + x2

x ∈ R

−	
1

1 + x2

x ∈ R

1
x√ x2 − 1
|x| < 1

−
1

x√ x2 − 1
|x| < 1

MISCELLANEOUS  EXERCISE 1

(I) Choose the correct option from the given alternatives :

 (1) Let f (1) = 3, f ' (1) =	−	
1
3 , g (1) =	−	4	and	g' (1) =	−	

8
3  . The derivative of √ 

[ f (x)]2 + [g (x)]2 

  w. r. t. x at x = 1 is 

  (A)	 −	
29
15  (B) 

7
3  (C) 

31
15  (D) 

29
15

֍	 This	is	a	simple	shortcut	to	find	the	derivative	of	(function)	(function)

 
d
dx

  f  
g = f  

g   
g
f

 · f ' + (log  f ) · g'

֍ If y = f (t ) and y = g (t ) is a differentiable	of	t such that y is a function of x then

    
dy
dx

 = 

dy
dt
dx
dt

,  where 
dx
dt

 ≠	0

֍ Implict function of the form x m y n = (x + y) m + n , m, n ∈ R	always	have	the	first	order	derivative		
dy
dx

 = 
y
x

 and second order derivative 
d2y
dx2

 = 0
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 (2) If y = sec (tan−1 x) then 
dy
dx

 at x = 1, is equal to : 

  (A) 
1
2  (B) 1 (C) 

1

√ 
2  (D) √ 

2

 (3) If f (x) = sin−1	
4x +

1
2

1+ 24x 
, which of the following is not the derivative of f (x)

  (A) 
2·4x log 4

1 + 42x
 (B) 

4x + 1 log 2
1 + 42x

 (C) 
4x + 1 log 4

1 + 44x
 (D) 

22(x + 1) log 2
1 + 24x

 (4) If x y = y x, then 
dy
dx

  = ...

  (A) 
x ( x log y −	y )

y ( y log x −	x )  (B) 
y ( y log x −	x )

x ( x log y −	y )  (C) 
y2 (1	−	 log x )

x2 (1	−	 log y )  (D) 
y (1	−	 log x )

x (1	−	 log y )

 (5) If y = sin (2 sin−1 x), then 
dy
dx

  = ...

  (A) 
2	−	4x2

√ 
1	−	x2

  (B) 
2 + 4x2

√ 
1	−	x2

  (C) 
4x2	−	1

√ 
1	−	x2

  (D) 
1	−	2x2

√ 
1	−	x2

 

 (6) If y = tan−1 
x

1 + √ 
1	−	x2

 + sin 2 tan−1	
1	−	x
1 + x , then 

dy
dx

  = ...

  (A) 
x

√ 
1	−	x2

  (B) 
1	−	2x

√ 
1	−	x2

  (C) 
1	−	2x

2 √ 
1	−	x2

  (D) 
1	−	2x2

√ 
1	−	x2

 (7) If y is a function of x and log (x + y) = 2xy, then the value of  y' (0) = ...

  (A) 2 (B) 0 (C)	 −1 (D) 1

 (8) If g is the inverse of a function f and f ' (x) = 
1

1 + x7
 , then the value of  g' (x) is equal to :

  (A) 1 + x7 (B) 
1

1 + [g(x)]7 (C) 1 + [g(x)]7 (D) 7x6

 (9) If x √ 
y + 1 + y √ 

x + 1 = 0 and x ≠	y then 
dy
dx

 = ...

  (A) 
1

(1 + x)2
 (B) −	

1
(1 + x)2

 (C) (1 + x)2 (D) −	
x

x + 1

 (10) If y = tan−1 
a	−	x
a + x  ,	where		−	a < x < a then 

dy
dx

  = ...

  (A) 
x

√ 
a2	−	x2

  (B) 
a

√ 
a2	−	x2

  (C) −	
1

2√ 
a2	−	x2

 (D) 
1

2√ 
a2	−	x2
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 (11) If x = a (cos θ + θ  sin θ), y = a (sin θ −	θ cos θ) then d2 y
dx2

 
θ =

π
4  

= ...

  (A) 8 √ 
2

aπ
 (B) −	

8 √ 
2

aπ
 (C) 

aπ

8 √ 
2

 (D) 
4 √ 

2
aπ

 (12) If y = a cos (log x) and A
d2 y
dx2

 + B
dy
dx

 + C = 0, then the values of A, B, C are ...

  (A) x2, −x,	−y (B) x2, x, y (C) x2, x,	−y (D) x2, −x, y

(II) Solve the following :

 (1) f (x) =	−x,	 for	−2	≤	x < 0 g(x) =	6	−	3x,	 for	0	≤	x	≤	2

   = 2x,	 for	0	≤	x	≤	2	 	 = 
2x	−	4

3
, for 2 < x	≤	7

   = 
18	−	x

4
, for 2 < x	≤	7

  Let u(x) = f [ g(x)], v(x) = g [ f (x)] and w(x) = g [ g(x)]. 

  Find each derivative at x = 1, if it exists i.e. find u' (1), v' (1) and w' (1). if it doesn't exist then 
explain why ?

 (2) The values of f (x), g(x), f ' (x) and g' (x) are given in the following table.
x f (x) g(x) f ' (x) g' (x)
−1 3 2 −3 4
2 2 −1 −5 −4

Match the following.

A Group - Function B Group - Derivative

(A) 
d
dx

 [ f (g (x))] at x =	−1

(B) 
d
dx

 [ g ( f (x)	−	1)] at x =	−1

(C) 
d
dx

 [ f ( f (x)	−	3)] at x = 2

(D) 
d
dx

 [ g ( g (x))] at x = 2

1.					−16

2.       20

3.					−20

4.       15

5.       12

 (3) Suppose that the functions f and g and their derivatives with respect to x have the following 
values at x = 0 and x = 1.

x f (x) g(x) f ' (x) g' (x)

0 1 1 5
1
3

1 3 −4 − 

1
3

− 

8
3

(i) The derivative of f [ g(x)] w. r. t. x at x = 0 is ......
(ii) The derivative of g [ f (x)] w. r. t. x at x = 0 is ......

(iii) The value of 
d
dx

 [x10 + f (x)]−2  

x = 1
 is ......

(iv) The derivative of  f [(x + g(x)] w. r. t. x at x = 0 is ......
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 (4) Differentiate the following w. r. t. x 

  (i) sin 2 tan−1 
1	−	x
1 + x    (ii) sin2 cot−1 

1 + x
1	−	x  

  (iii) tan−1 √ 
x	(3	−	x)
1	−	3x

   (iv) cos−1 √ 
1 + x −	√ 

1	−	x
2

  (v) tan−1 
x

1 + 6x2
 + cot−1 

1	− 10x2

7x
  (vi) tan−1 √ 

1 + x2 + x

√ 
1 + x2 −	x

 (5) (i) If √ 
y + x + √ 

y	−	x = c, then show that 
dy
dx = 

y
x  −  

y2

x2  −	1.

  (ii) If x √ 
1 − y2 + y √ 

1	−	x2 = 1, then show that 
dy
dx = −  

1 −	y2

1 −	x2  .

  (iii) If x sin (a + y) + sin a cos (a + y) = 0, then show that 
dy
dx = 

sin2 (a + y)
sin a  .

  (iv) If sin y = x sin (a + y), then show that 
dy
dx = 

sin2 (a + y)
sin a  .

  (v) If x = e
x
y  , then show that 

dy
dx = 

x − y
x log x  .

  (vi) If y = f (x) is a differentiable function then show that 
d2 x
dy2

 = −	
dy
dx

−3

·
d2 y
dx2

 .

 (6) (i) Differentiate tan−1 √ 
1 + x2 −	1

x
 w. r. t. tan−1	 2x √ 

1	−	x2

1	−	2x2
.

  (ii) Differentiate  log √ 
1 + x2 + x

√ 
1 + x2 −	x

 w. r. t. cos (log x).

  (iii) Differentiate tan−1 √ 
1 + x2 −	1

x
 w. r. t. cos−1 

1 + √ 
1 + x2

2√ 
1 + x2

 .

 (7) (i) If y2 = a2 cos2 x + b2 sin2 x , show that y + 
d2 y
dx2

 = 
a2 b2

y3
 .

  (ii) If log y = log (sin x)	−	x2 , show that 
d2 y
dx2

 + 4x 
dy
dx

 + (4x2 + 3) y = 0.

  (iii) If x = a cos θ, y = b sin θ, show that a2 y 
d2 y
dx2

 + 
dy
dx

2

 + b2 = 0.

  (iv) If y = A cos (log x) + B sin (log x), show that x2 y2
 + x y1

 + y = 0.

  (v) If y = A emx + B enx, show that y2
 −	(m + n) y1

 + (mn) y = 0.

v v v
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Let us Study

• Applications of Drivatives to Tangents and Normals  • Derivative as a rate measure

• Approximations

• Rolle's Theorem and Lagrange's Mean Value Theorem.  • Increasing and Decreasing Functions

• Maxima and Minima

Let us Recall

• Continuous functions. 
• Derivatives of Composite, Inverse Trigonometric, Logarithmic, Parametric functions. 
• Relation between derivative and slope. 
• Higher Order Derivatives.

2.1.1 Introduction :

In the previous chapter we have studied the derivatives of various functions such as composite 
functions, Inverse Trigonometric functions, Logarithmic functions etc. and also the relation between 
Derivative and slope of the tangent. In this chapter we are going to study various applications of 
differentiation such as application to (i) Geometry, (ii) Rate measure (iii) Approximations (iv) Rolle's 
Theorem and Lagrange's Mean Value Therorem (v) Increasing and Decreasing functions and (vi) 
Maxima and Minima. 

Let us Learn

2.1.2 Application of Derivative in Geometry :

2. APPLICATIONS OF DERIVATIVES 

In the previous chapter we have studied the relation between derivative and slope of a line or slope 
of a tangent to the curve at a given point on it. 

Let y = f (x) be a continuous function of x representing a curve in XY- plane and P (x1, y1) be any 
point on the curve. 

Then 
dy
dx

 

(x1, y1)

 = [ f ' (x)](x1, y1) represents slope, also called gradient, of the tangent to the curve at 

P (x1, y1). The normal is perpendicular to the tangent. Hence, the slope of the normal at P will be the negative 
of reciprocal of the slope of tangent at P. Let m and m' be the slopes of tangent and normal respectively,
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then m =  
dy
dx

 

(x1, y1)

and m' = − 1
dy
dx

(x1, y1)

 if  
dy
dx

 

(x1, y1)

≠ 0.

Equation of tangent at P (x1, y1) is given by y − y1 = m (x − x1) i.e. y − y1  =  
dy
dx

 

(x1, y1)

 (x − x1)

and equation of normal at P (x1, y1) is given by 

y − y1 = m' (x − x1) where m'  = − 1
dy
dx

(x1, y1)

 

SOLVED EXAMPLES 

Ex. 1 : Find the equations of tangent and normal to the curve at the given point on it.

  (i)  y = 2x3 − x2 + 2 at 
1
2 , 2  (ii) x3 + 2x2 y − 9xy = 0 at (2, 1) 

  (iii) x = 2 sin3 θ, y = 3 cos3 θ at θ = 
π
4 

Solution :

(i) Given that : y = 2x3 − x2 + 2

 Differentiate w. r. t. x

 
dy
dx

 = 
d
dx

 (2x3 − x2 + 2) = 6x2 − 2x

 Slope of tangent at 
1
2 , 2  = m = 6 

1
2

2

 − 2 
1
2

   ∴  m = 
1
2

 Slope of normal at 
1
2 , 2  = m' = − 2

 Equation of tangent is given by

 y − 2 = 
1
2  x − 

1
2  ⇒ 2y − 4 = 

2x − 1
2

 4y − 8 = 2x − 1 ⇒ 2x − 4y + 7 = 0
 Equation of normal is given by

 y − 2 = − 2 x − 
1
2  ⇒ y − 2 = − 2x + 1

 2x + y − 3 = 0

(ii) Given that : x3 + 2x2 y − 9xy = 0

 Differentiate w. r. t. x

3x2  + 2 x2 dy
dx

 + y
d
dx

 (x2)  − 9 x dy
dx

 + y
d
dx

 (x)  = 0

3x2  + 2x2 dy
dx

 + 4xy − 9x
dy
dx

 − 9y = 0

(2x2  − 9x) 
dy
dx

 = 9y − 4xy − 3x2 ∴ 
dy
dx

 = 
9y − 4xy − 3x2

2x2  − 9x
 Slope of tangent at (2, 1)

dy
dx

 
(1, 2) 

= m = 
9(1) − 4(2)(1) − 3(4)

2(4)  − 9(1)
 = 

9 − 8 − 12
8 − 9

      m = 
−11
−1

  ∴ m = 11

 Slope of normal at (2, 1) = m' = − 
1
11

 

 Equation of tangent is given by
 y − 1 = 11(x − 2) ⇒ 11x − y − 21 = 0

 Equation of normal is given by

 y − 1 = − 
1
11

 (x − 2) ⇒ 11y − 11 = − x + 2

 x + 11y − 13 = 0
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(iii) Given that :  y = 3 cos3 θ

 Differentiate w. r. t. θ

 
dy
d θ

 = 3 
d

d θ
 (cos θ)3 = 9 cos2 θ 

d
d θ

 (cos θ)

∴ 
dy
d θ

 = − 9 cos2 θ sin θ

 Now, x = 2 sin3 θ

 Differentiate w. r. t. θ

 
dx
d θ

 = 2 
d

d θ
 (sin θ)3 = 6 sin2 θ 

d
d θ

 (sin θ)

∴ 
dx
d θ

 = 6 sin2 θ cos θ

     We know that

     
dy
dx

 = 
 
dy
d θ
dx
d θ

 = − 
9 cos2 θ sin θ
6 sin2 θ cos θ

 = − 
3
2

 cot θ

     Slope of tangent at θ = 
π
4 is

     
dy
dx

 
θ =

π
4  

= m = − 
3
2

 cot 
π
4  = − 

3
2

     Slope of normal at θ = 
π
4  = m' = 

2
3

     When, θ = 
π
4

     x = 2 sin3 
π
4  = 2 

1

√ 
2

3 

= 
1

√ 
2

     y = 3 cos3 
π
4  = 3 

1

√ 
2

3 

= 
3

2√ 
2

     ∴ The point is P = 
1

√ 
2

, 
3

2√ 
2

     Equation of tangent at P is given by

     y − 
3

2√ 
2

 = − 
3
2

  x − 
1

√ 
2

 ⇒ y − 
3

2√ 
2

 = − 
3x
2

 + 
3

2√ 
2

     
3x
2

 + y − 
3

√ 
2

 = 0  i.e. 3x + 2y − 3√ 
2 = 0

     Equation of normal is given by

     y − 
3

2√ 
2

 = 
2
3

 x − 
1

√ 
2

 ⇒ y − 
3

2√ 
2

 = 
2x
2

 − 
2

3√ 
2

     
2x
3

 − y − 
2

3√ 
2

 + 
3

2√ 
2

 = 0 

     i.e. 4√ 
2x − 6√ 

2y + 5 = 0 . . . [ Multiply by 6√ 
2 ]
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Ex. 2 : Find points on the curve given by y = x3 − 6x2 + x + 3 where the tangents are parallel to the line   
y = x + 5.

Solution : Equation of curve is y = x3 − 6x2 + x + 3
    Differentiate w. r. t. x

    
dy
dx

 = 
d
dx

 (x3 − 6x2 + x + 3) = 3x2 − 12x + 1

    Given that the tangent is parallel to y = x + 5 whose slope is 1. 

  ∴ Slope of tangent = 
dy
dx

 = 1 ⇒ 3x2 − 12x + 1 = 1

      3x (x − 4) = 0 so, x = 0 or x = 4

    When x = 0, y = (0)3 − 6(0)2 + (0) + 3 = 3 

    When x = 4, y = (4)3 − 6(4)2 + (4) + 3 = −25

    So the required points on the curve are (0, 3) and (4, −25).

2.1.3 Derivative as a Rate measure : 

If y = f (x) is the given function then a change in x from x1 to x2 is generally denoted by 

δx = x2 − x1 and the corresponding change in y is denoted by δy = f (x2) − f (x1). The difference quotient 

δy
δx

 = 
 f (x2) − f (x1)

x2 − x1

 is called the average rate of change with respect to x. This can also be interpreted 

geometrically as the slope of the secant line joining the points P ( x1, f (x1)) and Q ( x2, f (x2)) on the graph 
of function y = f (x). 

Consider the average rate of change over smaller and smaller intervals by letting x2 to approach x1 and 

therefore letting δx to approach 0. The limit of these average rates of change is called the instantaneous 

rate of change of y with respect to x at x = x1, which is interpreted as the slope of the tangent to the curve        

y =  f (x) at P ( x1, f (x1)). Therefore instantaneous rate of change is given by 

lim
δx → 0

δy
δx

 = lim
x2 → x1

f (x2) − f (x1)
x2 − x1

We recognize this limit as being the derivative of f (x) at x = x1, i.e. f ' (x1). We know that one 

interpretation of the derivative f ' (a) is the instantaneous rate of change of y = f (x) with respect x when 

x = a. The other interpretation is f (x) at f ' (a) is the slope of the tangent to y = f (x) at (a, f (a)).

SOLVED EXAMPLES 

Ex. 1 : A stone is dropped in to a quiet lake and waves in the form of circles are generated, radius of the 
circular wave  increases at the rate of 5 cm/ sec. At the instant when the radius of the circular 
wave is 8 cm, how fast the area enclosed is increasing ? 

Solution : Let R be the radius and A be the area of the circular wave.
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   ∴  A = π·R2

     Differentiate w. r. t. t

     
dA
dt

  = π 
d
dt

 (R2)

     
dA
dt

  = 2πR 
dR
dt

  . . . (I)

     Given that 
dR
dt

 = 5 cm/sec. 

     Thus when R = 8 cm, from (I) we get, 

     
dA
dt

  = 2π(8) (5)  = 80π

  Hence when the radius of the circular wave is 8 cm, the area of the circular wave is increasing at 
the rate of 80π cm2/ sec.

Ex. 2 : The volume of the spherical ball is increasing at the rate of 4π cc/sec. Find the rate at which the 
radius and the surface area are changing when the volume is 288π cc.  

Solution : Let R be the radius, S be the surface area and V be the volume of the spherical ball. 

     V = 
4
3

 πR3 . . . (I)

     Differentiate w. r. t. t

     
dV
dt

  = 
4π
3

·
d
dt

 (R3)

     4π  = 
4π
3

·3R2 dR
dt

  . . . [Given 
dV
dt

 = 4π cc/sec ]

     
dR
dt

  = 
1
R2

  . . . (II)

     When volume is 288π cc. 

     i.e.  
4
3

 π·R3 = 288π we get, R3 = 216 ⇒ R = 6 . . . [From (I)]

     From (II) we get, 
dR
dt

 = 
1
36

     So, the radius of the spherical ball is increasing at the rate of 
1
36

 cc/sec.

     Now, S = 4πR2

     Differentiate w. r. t. t. 

     
dS
dt

  = 4π
d
dt

 (R2) = 8πR 
dR
dt

     So, when R = 6 cm

     
dS
dt

 
R = 6 

= 8π(6) 
1
36

 = 
4π
3

  ∴ Surface area is increasing at the rate of 
4π
3

 cm2/ sec.
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Ex. 3 : Water is being poured at the rate of 36 m3/sec in to a cylindrical vessel of base radius 3 meters. 
Find the rate at which water level is rising.  

Solution : Let R be the radius of the base, H be the height and V be the volume of the cylindrical vessel 
at any time t. R, V and H are functions of t.

       V = πR2 H

       V = π(3)2 H = 9π H . . . [ Given : R = 3]

       Differentiate w. r. t. t

       
dV
dt

 = 9π 
dH
dt

       
dH
dt

 = 
1

9π
·
dV
dt

  . . . (I)

    Given that,

       
dV
dt

 = 36 m3/sec  . . . (II)

    From (I) we get,  
dH
dt

 = 
1

9π
· (36) = 

4
π

  ∴ Water level is rising at the rate of 
4
π

 meter/sec.

Ex. 4 : A man of height 180 cm is moving away from a lamp post at the rate of 1.2 meters per second. 
If the height of the lamp post is 4.5 meters, find the rate at which (i) his shadow is lengthening. 

  (ii) the tip of the shadow is moving.
Solution : Let OA be the lamp post, MN be the man, MB = x be the length of shadow and OM = y be 

the distance of the man from the lamp post at time t. Given that man is moving away from 
the lamp post at the rate of 1.2 meter/sec.  x and y are functions of t.

   Hence 
dy
dt

 = 1.2. The rate at which shadow is lengthening = 
dx
dt

. 

   B is the tip of the shadow and it is at a distance of (x + y) from the post.

   
x

1.8
 = 

x + y
4.5

 i.e. 45x = 18x + 18y  i.e.  27x = 18y

         ∴  x = 
2y
3

       Differentiate w. r. t. t

       
dx
dt

 = 
2
3

 × 
dy
dt

 = 
2
3

 × 1.2 = 0.8 meter/sec. 

    rate at which the tip of the shadow is moving is given by

       
d
dt

 (x + y) = 
dx
dt

 + 
dy
dt

      

      ∴ 
d
dt

 (x + y) = 0.8 + 1.2 = 2 meter/sec.

 Shadow is lengthening at the rate of 0.8 meter/ sec. and its tip is moving at the rate of 2 meters/sec.
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2.1.4 Velocity, Acceleration and Jerk :  

If s = f (t ) is the desplacement function of a particle that moves along a straight line, then f ' (t ) is 
the rate of change of the displacement s with respect to the time t. In other  words, f ' (t ) is the velocity 
of the particle. The speed of the particle is the absolute value of the velocity, that is, | f ' (t )|. 

The rate of change of velocity with respect to time is valled the acceleration of the particle denoted 
by a (t ). Thus the acceleration function is the derivative of the velocity function and is therefore the 
second derivative of the position function s = f (t ).

Thus, a = 
dy
dt

 = 
d 

2s
dt 

2
  i.e. a (t ) = v' (t ) = s'' (t ).

Let us consider the third derivative of the position function s = f (t ) of an object that moves along a 
straight line. s''' (t ) = v'' (t ) = a' (t ) is derivative of the acceleration function and is called the Jerk (  j ). 

Thus,  j = 
d a
dt

 = 
d 

3s
dt 

3
. Hence the jerk j is the rate of change of acceleration. It is aptly named because 

a jerk means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

SOLVED EXAMPLES 

Ex. 1 : A car is moving in such a way that the 
distance it covers, is given by the equation 
s = 4t2 + 3t where s is in meters and t is in 
seconds. What would be the velocity and the 
acceleration of the car at time t = 20 second ? 

Solution : Let v be the velocity and a be the 
acceleration of the car.

 Distance traveled by the car is given by 
   s = 4t2 + 3t
 Differentiate w. r. t. t.
∴ Velocity of the car is given by 

 v = 
ds
dt

 = 
d
dt

 (4t2 + 3t ) = 8t + 3  . . . (I) 

 and Acceleration of the car is given by

 a = 
d
dt

 
dv
dt

 = 
d
dt

 (8t + 3 ) = 8 . . . (II) 

 Put t = 20 in (I), 
∴ Velocity of the car, vt = 20 = 8(20) + 3 = 163 m/sec.
 Put t = 20 in (II), 
∴ Acceleration of the car, at = 20 = 8 m/sec2.

Note : In this problem, the acceleration is 
independent of time. Such a motion is said 
to be uniformly accelerated motion.

Ex. 2 : The displacement of a particle at time t 
is given by s = 2t3 − 5t2 + 4t − 3. Find the 
time when the acceleration is 14 ft/ sec2, the 
velocity and the displacement at that time. 

Solution : Displacement of a particle is given by 
 s = 2t3 − 5t2 + 4t − 3  . . . (I)
 Differentiate w. r. t. t.

 Velocity,  v = 
ds
dt

 = 
d
dt

 (2t3 − 5t2 + 4t − 3) 

∴ v = 6t2 − 10t + 4 . . . (II) 

 Acceleration, a = 
dv
dt

 = 
d
dt

 (6t2 − 10t + 4)

∴ a = 12t − 10  . . . (III) 
 Given : Acceleration = 14 ft/ sec2.
∴  12t − 10 = 14 ⇒ 12t = 24 ⇒ t = 2
 So, the particle reaches an acceleration of   

14 ft/ sec2 in 2 seconds. 
 Velocity, when t = 2 is
∴ vt = 2 = 6(2)2 − 10(2) + 4 = 8 ft/ sec.
 Displacement when t = 2 is 
∴ st = 2 = 2(2)3 − 5(2)2 + 4(2) − 3 = 1 foot.
 Hence the velocity is 8 ft/ sec and the 

displacement is 1 foot after 2 seconds.



72

EXERCISE 2.1

(1) Find the equations of tangents and normals 
to the curve at the point on it.

 (i) y = x2 + 2e 
x + 2 at (0, 4) 

 (ii) x3 + y3 − 9xy = 0 at (2, 4)
 (iii) x2 − √ 3xy + 2y2 = 5 at (√ 3, 2)

 (iv) 2xy + π sin y = 2π at 1, 
π
2

 (v) x sin 2y = y cos 2x at 
π
4, 

π
2

 (vi) x = sin θ and y = cos 2θ at θ = 
π
6

 (vii) x = √ t , y = t − 
1
√ t

 at t = 4.

(2) Find the point on the curve y = √ x − 3  where
 the tangent is perpendicular to the line
 6x + 3y − 5 = 0.

(3) Find the points on the curve y = x3 − 2x2 − x 
where the tangents are parallel to 3x − y + 1 = 0. 

(4) Find the equations of the tangents to the  
curve x2 + y2 − 2x − 4y + 1= 0 which are 
parallel to the X-axis. 

(5) Find the equations of the normals to the  
curve 3x2 − y2 = 8, which are parallel to the 
line x + 3y = 4. 

(6) If the line y = 4x − 5 touches the curve 

 y2 = ax3 + b at the point (2, 3) find a and b. 

(7) A particle moves along the curve 6y = x2 + 2. 

 Find the points on the curve at which 
y-coordinate is changing 8 times as fast as 
the X-coordinate. 

(8) A spherical soap bubble is expanding so 
that its radius is increasing at the rate of 
0.02 cm/sec. At what rate is the surface 
area is increasing, when its radius is 5 cm?

(9) The surface area of a spherical balloon is 
increasing at the rate of 2 cm2/ sec. At what 
rate the volume of the balloon is increasing 
when radius of the balloon is 6 cm?

(10) If each side of an equilateral triangle 
increases at the rate of √ 2 cm/ sec, find the 
rate of increase of its area when its side of 
length 3 cm . 

(11) The volume of a sphere increase at the rate 
of 20 cm3/ sec. Find the rate of change of its 
surface area when its radius is 5 cm. 

(12) The edge of a cube is decreasing at the rate of 
0.6 cm/sec. Find the rate at which its volume is 
decreasing when the edge of the cube is 2 cm. 

(13) A man of height 2 meters walks at a uniform 
speed of 6 km/hr away from a lamp post of 6 
meters high. Find the rate at which the length 
of the shadow is increasing. 

(14) A man of height 1.5 meters walks toward a 
lamp post of height 4.5 meters, at the rate 
of 3

4
 meter/sec. Find the rate at which 

 (i) his shadow is shortening. (ii) the tip of the 
shadow is moving.

(15) A ladder 10 meter long is leaning against a 
vertical wall. If the bottom of the ladder is 
pulled horizontally away from the wall at the 
rate of 1.2 meters per second, find how fast the 
top of the ladder is sliding down the wall when 
the bottom is 6 meters away from the wall.

(16) If water is poured into an inverted hollow 
cone whose semi-vertical angel is 30°, so 
that its depth (measured along the axis) 
increases at the rate of 1 cm/ sec. Find the 
rate at which the volume of water increasing 
when the depth is 2 cm.
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2.2.1 Approximations     

 If f (x) is a differentiable function of x, then its derivative at x = a is given by

     f ' (a) = lim
h → 0

 f (a + h) − f (a)
h

Here we use ≑ sign for approximation.
For a sufficiently small h we have, 

      f ' (a) ≑ 
 f (a + h) − f (a)

h

   i.e.  h f ' (a) ≑  f (a + h) − f (a)

   ∴ f (a + h) ≑  f (a) + h f ' (a)

This is the formula to find the approximate value of the function at x = a + h, when f ' (a) exists.    
Let us solve some problems by using this formula. 

SOLVED EXAMPLES 

Ex. 1 : Find the approximate value of √ 64.1.

Solution : 

  Let f (x) = √ x . . . (I)

  Differentiate w. r. t. x. 

  f ' (x) = 
1

2√ x
 . . . (II)

  Let a = 64, h = 0.1
  For x = a = 64, from (I) we get 

  f (a) = f (64) = √ 64 = 8 . . . (III) 

  For x = a = 64, from (II) we get 

  f ' (a) = f ' (64) = 
1

2√ 64
 = 

1
16

 

∴  f ' (a) = 0.0625 . . . (IV) 

  We have, f (a + h) ≑  f (a) + h f ' (a)

  f (64 + 0.1) ≑  f (64) + (0.1)· f ' (64)

   f (64.1) ≑ 8 + (0.1)·(0.0625) . . . 
[From (III) and (IV)]

     ≑ 8 + 0.00625

  ∴ f (64.1) = √ 64.1 ≑ 8.00625

Ex. 2 : Find the approximate value of (3.98)3.

Solution : 

  Let f (x) = x3 . . . (I)

  Differentiate w. r. t. x. 

  f ' (x) = 3x2   . . . (II)

  Let a = 4, h = − 0.02
  For x = a = 4, from (I) we get 

  f (a) = f (4) = (4)3 = 64 . . . (III) 

  For x = a = 4, from (II) we get 

  f ' (a) = f ' (4) = 3(4)2 = 48 . . . (IV) 

  We have, f (a + h) ≑  f (a) + h f ' (a)

  f [4 + (− 0.02)] ≑  f (4) + (− 0.02)· f ' (4) 

   f (3.98) ≑ 64 + (− 0.02).(48) . . . 
[From (III) and (IV)]

   f (3.98) ≑ 64 − 0.96 

  ∴ f (3.98) = (3.98)3 ≑ 63.04
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Ex. 3 : Find the approximate value of 
  sin (30° 30' ). Given that 1° = 0.0175c 

and cos 30° = 0.866.
Solution : Let f (x) = sin x  . . . (I)
  Differentiate w. r. t. x. 
  f ' (x) = cos x

  Now, 30° 30' = 30° + 30' = 30° + 1
2

°

     = π
6

 + 0.1750c

2
   30° 30'  = π

6
 + 0.00875 . . . (II)

  Let a = π
6

, h = 0.00875

  For x = a = π
6

, from (I) we get

  f (a) = f π
6

 = sin π
6

 = 1
2

 = 0.5 . . . (III) 

  For x = a = π
6

, from (II) we get

  f ' (a) = f ' π
6

 = cos π
6

 = 0.866 . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

f π
6

 + 0.00875c  ≑  f π
6

 + (0.00875)· f ' π
6

  f (30° 30' ) ≑ 0.5 + (0.00875)·(0.866) ... 
. . . [From (III) and (IV)]

     ≑ 0.5 + 0.075775

 ∴ f (30° 30' ) = sin (30° 30' ) ≑ 0.575775

Ex. 4 : Find the approximate value of tan−1(0.99), 
Given that π ≑ 3.1416.

Solution : Let f (x) = tan−1 x  . . . (I)
  Differentiate w. r. t. x. 

  f ' (x) = 1
1 + x2

    . . . (II)

  Let a = 1, h = −0.01
  For x = a = 1, from (I) we get 

  f (a) = f (1) = tan−1 (1) = π
4

 . . . (III) 

  For x = a = 1, from (II) we get 

  f ' (a) = f ' (1) = 1
1 + 12

 = 0.5 . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

 f [(1) + (−0.01)]  ≑  f (1) + (−0.01)· f ' (1)

  f (0.99) ≑ π
4

 − (0.01)·(0.5) . . . [From
(III) and (IV)]

    ≑ π
4

 − 0.005

    ≑ 3.1416
4

 − 0.005 

    ≑ 0.7854 − 0.005 = 0.7804

 ∴ f (0.99) = tan−1 (0.99) ≑ 0.7804

Solution : Let f (x) = e x . . . (I)
  Differentiate w. r. t. x. 
  f ' (x) = e x   . . . (II)
  Let a = 1, h = 0.005
  For x = a = 1, from (I) we get 

  f (a) = f (1) = e1 = 2.7183 . . . (III) 

  For x = a = 1, from (II) we get 

  f ' (a) = f ' (1) = e1 = 2.7183 . . . (IV) 

  We have, f (a + h) ≑  f (a) + h f ' (a)

  f (1 + 0.005)  ≑  f (1) + (0.005)· f ' (1) 

  f (1.005) ≑ 2.7183 + (0.005) (2.7183) ... 
. . . [From (III) and (IV)]

  f (1.005)  ≑ 2.7183 + 0.0135915

     ≑ 2.7318915

  f (1.005) = e1.005 ≑ 2.73189

Ex. 5 : Find the approximate value of e1.005. Given that e = 2.7183.
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Ex. 6 : Find the approximate value of 
  log10 (998). Given that log10 e = 0.4343.

Solution : Let f (x) = log10 x = log x
log 10

 

 ∴    f (x) = (log10 e)·log x  . . . (I)
  Differentiate w. r. t. x. 

   f ' (x) = 
log10 e

x  = 
0.4343

x  . . . (II)
  Let a = 1000, h = −2
  For x = a = 1000, from (I) we get
  f (a) = f (1000) = log10 1000 
 ∴ f (a) = 3log1010 = 3 . . . (III) 
  For x = a = 1000, from (II) we get

  f ' (a) = f ' (1000) = 
0.4343
1000

 

 ∴ f ' (a) = 0.0004343 . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

 f [1000 + (−2)] ≑  f (1000) + (−2) f ' (1000)
  f (998) ≑ 3 − (2) (0.0004343) . . . 

[From (III) and (IV)]

    ≑ 3 − 0.0008686

  f (998) = log (998 ) ≑ 2.9991314

Ex. 7 : Find the approximate value of 
  f (x) = x3 + 5x2 − 2x + 3 at x = 1.98.
Solution : Let f (x) = x3 + 5x2 − 2x + 3  . . . (I)
  Differentiate w. r. t. x. 
  f ' (x) = 3x2 + 10x − 2  . . . (II)
  Let a = 2, h = −0.02
  For x = a = 2, from (I) we get 
  f (a) = f (2) = (2)3 + 5(2)2 − 2(2) + 3 

 ∴ f (a) = 27  . . . (III) 

  For x = a = 2, from (II) we get 

  f ' (a) = f ' (2) = 3(2)2 + 10(2) − 2

 ∴ f ' (a) = 30  . . . (IV)

  We have, f (a + h) ≑  f (a) + h f ' (a)

 f [(2) + (−0.02)]  ≑  f (2) + (−0.02)· f ' (2)

  f (1.98) ≑ 27 − (0.02)·(30) . . . [From
(III) and (IV)]

    ≑ 27 − 0.6

  f (1.98) ≑ 26.4

EXERCISE 2.2

(1) Find the approximate value of given 
functions, at required points.

 (i) √ 8.95  (ii) √ 28  (iii) √ 31.98

 (iv) (3.97)4 (v) (4.01)3

(2) Find the approximate value of 
 (i) sin (61°) given that 1° = 0.0174c, 
  √ 3 = 1.732
 (ii) sin (29° 30' ) given that 1° = 0.0175c, 
  √ 3 = 1.732
 (iii) cos (60° 30' ) given that 1° = 0.0175c, 
  √ 3 = 1.732
 (iv) tan (45° 40' ) given that 1° = 0.0175c.

(3) Find the approximate value of
 (i) tan−1 (0.999)  (ii) cot−1 (0.999) 
 (iii) tan−1 (1.001) 
(4) Find the approximate value of 
 (i) e 

0.995  (ii) e 
2.1 given that e2 = 7.389

 (iii) 3 
2.01 given that log 3 = 1.0986

(5) Find the approximate value of 
 (i) loge (101) given that loge 10 = 2.3026 
 (ii) loge (9.01) given that log 3 = 1.0986
 (iii) log10 (1016) given that log10 e = 0.4343
(6) Find the approximate value of 
 (i) f (x) = x3 − 3x + 5 at x = 1.99
 (ii) f (x) = x3 + 5x2 − 7x + 10 at x = 1.12

3 5



76

at each point of (a, b). Now the existence of real number c ∈ (a, b) such that f ' (c) = 0 shows that 
the tangent to the curve at x = c has slope zero, that is, tangent is parallel to X-axis since f (a) = f (b).  

SOLVED EXAMPLES 

Ex. 1 : Check whether conditions of Rolle's theorem are satisfied by the following functions.

  (i) f (x) = 2x3 − 5x2 + 3x + 2, x ∈ 0, 3
2

 (ii) f (x) = x2 − 2x + 3, x ∈ [1, 4]

Solution : 

(i) Given that    f (x) = 2x3 − 5x2 + 3x + 2    . . . (I) 

 f (x) is a polynomial which is continuous on 0, 3
2

 and it is differentiable on 0, 3
2

.

      Let a = 0, and b = 3
2

 , 

      For x = a = 0 from (I) we get, 

      f (a) = f (0) = 2 (0)3 − 5 (0)2 + 3 (0) + 2 = 2

      For x = b = 3
2

 from (I) we get, 

      f (b) = f  3
2

 = 2 3
2

3

 − 5 3
2

2

 + 3 3
2

 + 2  = 54
8

 − 45
4

 + 9
2

 + 2 

      f (b) = f  3
2

 = 54 − 90 + 36
8

 + 2 = 2

      So, here f (a) = f (b) i.e. f (0) = f  3
2

 = 2

      Hence conditions of Rolle's Theorem are satified. 

2.3.1 Rolle's Theorem or Rolle's Lemma :      

If a real-valued function f is continous on [a, b], differentiable on the open interval (a, b) and f (a) 
= f (b), then there exists at least one c in the open interval (a, b) such that f ' (c) = 0. 

Rolle's Theorem essentially states that any real-valued differentiable function that attains equal 
values at two distinct points on it, must have at least one stationary point somewhere in between them, 
that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero. 

Fig. 2.3.1

Geometrical Significance :

Let f (x) be a real valued 
function defined on [a, b] 
and it is continuous on [a, b]. 
This means that we can 
draw the graph f (x) between 
the values x = a and x = b. 
Also f (x) is differentiable 
on (a, b) which means the 
graph of f (x) has a tangent 
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(ii) Given that    f (x) = x2 − 2x + 3     . . . (I) 
 f (x) is a polynomial which is continuous on [1, 4] and it is differentiable on (1, 4).
      Let a = 1, and b = 4
      For x = a = 1 from (I) we get, 
      f (a) = f (1) = (1)2 − 2(1) + 3 = 2
      For x = b = 4 from (I) we get, 
      f (b) = f (4) = (4)2 − 2(4) + 3 = 11
      So, here f (a) ≠ f (b) i.e. f (1) ≠ f  (4)

      Hence conditions of Rolle's theorem are not satisfied. 

Ex. 2 : Verify Rolle's theorem for the function 

  f (x) = x2 − 4x + 10 on [0, 4].

Solution : 

 Given that  f (x) = x2 − 4x + 10   . . . (I)

 f (x) is a polynomial which is continuous on 
[0, 4] and it is differentiable on (0, 4).

 Let a = 0, and b = 4

 For x = a = 0 from (I) we get, 

 f (a) = f (0) = (0)2 − 4(0) + 10 = 10

 For x = b = 4 from (I) we get, 

 f (b) = f (4) = (4)2 − 4(4) + 10 = 10

 So, here f (a) = f (b) i.e. f (0) = f  (4) = 10

 All the conditions of Rolle's theorem are 
satisfied. 

 To get the value of c, we should have 

 f ' (c) = 0 for some c ∈ (0, 4) 

 Differentiate (I) w. r. t. x. 

 f ' (x)  = 2x − 4 = 2 (x − 4) 

 Now, for x = c, 

 f ' (c)  = 0 ⇒ 2 (c − 2) = 0 ⇒ c = 2

 Also c = 2 ∈ (0, 4)

 Thus Rolle's theorem is verified.

Ex. 3 : Given an interval [a, b] that satisfies 
hypothesis of Rolle's theorem for the 
function f (x) = x3 − 2x2 + 3. It is known 
that a = 0. Find the value of b.

Solution : 

 Given that  f (x) = x3 − 2x2 + 3   . . . (I)

 Let g (x) = x3 − 2x2 = x2 (x − 2)

 From (I),  f (x) = g (x) + 3

 We see that g (x) becomes zero for x = 0 and 
x = 2. 

 We observe that for x = 0, 

   f (0) = g (0) + 3 = 3

 and for x = 2, 

   f (2) = g (2) + 3 = 3

∴ We can write that f (0) = f (2) = 3

 It is obvious that the function f (x) is 
everywhere continuous and differentiable as 
a cubic polynomial. Consequently, it satisfies 
all the conditions of Rolle's theorem on the 
interval [0, 2]. 

 So   b = 2.
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Ex. 4 : Verify Rolle's theorem for the function f (x) = ex (sin x − cos x) on π
4

, 5π
4

.

Solution : Given that,    f (x) = ex (sin x − cos x)    . . . (I) 

  We know that ex, sin x and cos x are continuous and differentiable on their domains. Therefore 

f (x) is continuous and differentiable on  π
4

, 5π
4

 and π
4

, 5π
4

 respectively.  

    Let a = π
4

, and b = 5π
4

    For x = a = π
4

 from (I) we get, 

    f (a) = f π
4

 = e
π
4  sin π

4
 − cos π

4
 = e

π
4  

1

√ 
2

 − 
1

√ 
2

 = 0

    For x = b = 5π
4

 from (I) we get, 

    f (a) = f 5π
4

 = e
5π
4  sin 5π

4
 − cos 5π

4
 = e

5π
4  − 

1

√ 
2

 + 
1

√ 
2

 = 0

   ∴ f (a) = f (b) i.e. f  π
4

 = f  5π
4

.

    All the conditions of Rolle's theorem are satisfied. 

    To get the value of c, we should have f ' (c) = 0 for some c ∈ π
4

, 5π
4

.

   Differentiate (I) w. r. t. x.

    f ' (x) = e 
x (cos x + sin x) + (sin x − cos x) e 

x = 2e 
x sin x

   Now, for x = c,  f ' (c)  = 0 ⇒ 2e 
c sin c = 0. As e 

c ≠ 0 for any c ∈ R 

   sin c = 0 ⇒ c = 0, ± π, ± 2π, ± 3π, . . .

    It is clearly seen that  π  ∈ π
4

, 5π
4

 ∴ c = π

    Thus Rolle's theorem is verified.

2.3.2 Lagrange's Mean Value Theorem (LMVT) :       

If a real-valued function f is continous on a closed [a, b] and differentiable on the open interval      
(a, b) then there exists at least one c in the open interval (a, b) such that 

 f ' (c) = 
 f (b) − f (a)

b − a
Lagrange's mean value theorem states, that for any real-valued diffenentiable function which is 

continuous at the two end points, there is at least one point at which the tangent is parallel to the the 
secant through its end points.
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Geometrical Significance :

Draw the curve y = f (x) (see Figure 2.3.2) and take the end 
points A (a, f (a)) and B (b, f (b)) on the curve, then 

 Slope of the chord AB = 
 f (b) − f (a)

b − a
 Since by statement of Lagrange's Mean Value.

 Theorem   f ' (c) = 
 f (b) − f (a)

b − a
    f ' (c) = Slope of the chord AB. 

This shows that the tangent to the curve y = f (x) at the point x = c 
is parallel to the chord AB.

Fig. 2.3.2

SOLVED EXAMPLES 

Ex. 1 : Verify Lagrange's mean value theorem 

for the function f (x) = √ 
x + 4 on the 

interval [0, 5].

Solution : Given that f (x) = √ 
x + 4 . . . (I) 

  The function f (x) is continuous on the 
closed interval [0, 5] and differentiable 
on the open interval (0, 5), so the LMVT 
is applicable to the function. 

  Differentiate (I) w. r. t. x. 

  f ' (x) = 
1

2√ 
x + 4

 . . . (II) 

  Let a = 0 and b = 5

  From (I), f (a) = f (0) = √ 
0 + 4 = 2

     f (b) = f (5) = √ 
5 + 4 = 3

  Let c ∈ (0, 5) such that 

     f ' (c)  = 
 f (b) − f (a)

b − a

     
1

2√ 
c + 4

 = 3 − 2
5 − 0

 = 1
5

 ∴ √ 
c + 4 = 5

2
 ⇒ c + 4 = 25

4
 ∴ c = 9

4
 ∈ (0, 5)

  Thu s Lagrange's Mean Value Theorem 
is verified. 

Ex. 2 : Verify Lagrange's mean value theorem 

for the function f (x) = x + 1
x

 on the 
interval [1, 3].

Solution : Given that f (x) = x + 1
x

  . . . (I) 

  The function f (x) is continuous on the 
closed interval [1, 3] and differentiable 
on the open interval (1, 3), so the LMVT 
is applicable to the function. 

  Differentiate (I) w. r. t. x. 

  f ' (x) = 1 − 1
x2

  . . . (II) 

  Let a = 1 and b = 3

  From (I), f (a) = f (1) = 1 + 1
1

 = 2

     f (b) = f (3) = 3 + 1
3

 = 10
3

  Let c ∈ (1, 3) such that 

     f ' (c)  = 
 f (b) − f (a)

b − a

     1 − 1
c2

  = 
10
3  − 2
3 − 1

     1 − 1
c2

  = 
4
3

2
 = 2

3

 ∴ c
 

2 = 3 ⇒ c = ± √ 
3

 ∴  c = √ 
3 ∈ (1, 3) and c = − √ 

3 ∉ (1, 3)
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(1) Check the validity of the Rolle's theorem for 
the following functions. 

 (i) f (x) = x2 − 4x + 3, x ∈ [1, 3]
 (ii)  f (x) = e 

−x sin x, x ∈ [0, π]
 (iii)  f (x) = 2x2 − 5x + 3, x ∈ [1, 3]
 (iv)  f (x) = sin x − cos x + 3, x ∈ [0, 2π]
 (v)  f (x) = x2 if 0 ≤ x ≤ 2
   = 6 − x if 2 ≤ x ≤ 6

 (vi)  f (x) = x 

2
3 , x ∈ [−1, 1]

(2)  Given an interval [a, b] that satisfies 
hypothesis of Rolle's thorem for the function 
f (x) = x4 + x2 − 2. It is known that a = − 1. 
Find the value of b.

(3) Verify Rolle's theorem for the following 
functions.

 (i) f (x) = sin x + cos x + 7, x ∈ [0, 2π]

 (ii) f (x) = sin x
2

, x ∈ [0, 2π]

 (iii) f (x) = x2 − 5x + 9, x ∈ [1, 4]

EXERCISE 2.3

(4)  If Rolle's theorem holds for the function 
 f (x) = x3 + px2 + qx + 5, x ∈ [1, 3] with 

 c = 2 + 
1

√ 3
 , find the values of p and q. 

(5)  Rolle's theorem holds for the function 
 f (x) = (x − 2) log x, x ∈ [1, 2], show that the 

equation x log x = 2 − x is satisfied by at least 
one value of x in (1, 2). 

(6)  The function f (x) = x (x + 3) e−
 

x
2  satisfies all 

the conditions of Rolle's theorem on [−3, 0]. 
Find the value of c such that f ' (c) = 0.

(7)  Verify Lagrange's mean value theorem for 
the following functions. 

 (i) f (x) = log x, on [1, e]
 (ii)  f (x) = (x − 1) (x − 2) (x − 3) on [0, 4] 

 (iii)  f (x) = x2 − 3x − 1, x ∈ − 
11
7 , 

13
7

 (iv)  f (x) = 2x − x2, x ∈ [0, 1]

 (v)  f (x) =  x − 1
x − 3

 on [4, 5]

2.4.1 Increasing and decreasing functions :  

Increasing functions : 

Definition : A function f is said to be a monotonically (or strictly) increasing function on an interval      
(a, b) if for any x1, x2 ∈ (a, b) with if x1 < x2 , we have f (x1) < (x2). 

Consider an increasing function y = f (x) in (a, b). Let h > 0 be a small increment in x then, 
      x < x + h  [ x = x1 , x + h = x2 ]

      f (x) < f (x + h) [ f (x1) < f (x2)]

∴      f (x + h) > f (x)  

∴      f (x + h) − f (x) > 0 

∴      
f (x + h) − f (x)

h
 > 0  

∴   lim
h → 0

 

f (x + h) − f (x)
h

 ≥ 0

∴      f ' (x) ≥ 0 
Fig. 2.4.1
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If f ' (a) > 0, then in a small δ-neighborhood of a i.e. (a − δ, a + δ), we have f strictly increasing if

       
f (a + h) − f (a)

h
 > 0 for |h| < δ

Hence if 0 < h < δ,  f (a + h) − f (a) > 0 and  f (a − h) − f (a) < 0
Thus for 0 < h < δ,  f (a − h) < f (a) < f (a + h)

Decreasing functions : 

Definition : A function f is said to be a monotonically (strictly) decreasing function on an interval (a, b) 
if for any x1, x2 ∈ (a, b) with x1 < x2 , we have  f (x1) > (x2).

Consider a decreasing function y = f (x) in (a, b). Let h > 0 be a small increment in x then, 
      x + h > x  [ x = x1 , x + h = x2 ]
      f (x) < f (x + h) [ f (x1) < f (x2)]
∴      f (x + h) < f (x)  
∴      f (x + h) − f (x) < 0 

∴      
f (x + h) − f (x)

h
 < 0  

∴   lim
h → 0

 

f (x + h) − f (x)
h

 ≤ 0

∴      f ' (x) ≤ 0 
If f ' (a) < 0, then in a small δ-neighborhood of a i.e. (a − δ, a + δ), we have f strictly decreasing

  because   
f (a + h) − f (a)

h
 < 0 for |h| < δ

  Hence for 0 < h < δ,  f (a − h) > f (a) > f (a + h)

Note : Whenever f ' (x) = 0, at that point the tangent is parallel to X-axis, we cannot deduce that 
whether f (x) is increasing or decreasing at that point.

SOLVED EXAMPLES 

Fig. 2.4.2

Ex. 1 : Show that the function f (x) = x3 + 10x + 7 

for x ∈ R is strictly increasing.

Solution : Given that f (x) = x3 + 10x + 7

   Differentiate w. r. t. x.

   f ' (x) = 3x2 + 10

  Here, 3x2 ≥ 0 for all x ∈ R and 10 > 0. 

  ∴  3x2 + 10 > 0 ⇒ f ' (x) > 0

  Thus f (x) is a strictly increasing function. 

Ex. 2 : Test whether the function 

  f (x) = x3 + 6x2 + 12x − 5 is increasing or 

decreasing for all x ∈ R.

Solution : Given that f (x) = x3 + 6x2 + 12x − 5

   Differentiate w. r. t. x.

   f ' (x) = 3x2 + 12x + 12 = 3(x2 + 4x + 4)

   f ' (x) = 3(x + 2)2

  3(x + 2)2 is always positive for x ≠ −2

  ∴ f ' (x) ≥ 0 for all x ∈ R

Hence f (x) is an increasing function for all x ∈ R.
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Ex. 3 : Find the values of x, for which the funciton f (x) = x3 + 12x2 + 36x + 6 is (i) monotonically 

increasing. (ii) monotonically decreasing.

Solution : Given that f (x) = x3 + 12x2 + 36x + 6

   Differentiate w. r. t. x.

   f ' (x)  = 3x2 + 24x + 36 

    = 3(x2 + 8x + 12)

   f ' (x)  = 3(x + 2) (x + 6)

(i)  f (x) is monotonically increasing if  f ' (x) > 0

 i.e. 3(x + 2) (x + 6) > 0, (x + 2) (x + 6) > 0

 then either (x + 2) < 0 and (x + 6) < 0 or (x + 2) > 0 and (x + 6) > 0

Case (I) : x + 2 < 0 and x + 6 < 0

   x < − 2 and x < − 6

   Thus for every x < − 6, (x + 2) (x + 6) > 0, hence f  is monotonically increasing.

Case (II) : x + 2 > 0 and x + 6 > 0

   x > − 2 and x > − 6

   Thus for every x > − 2, (x + 2) (x + 6) > 0 and f  is monotonically increasing.

 ∴ From Case (I) and Case (II), f (x) is monotonically increasing if and only if x < − 6 or x > − 2.

   Hence, x ∈ (∞,− 6) or x ∈ (− 2, ∞) ⇒ f  is monotonically increasing.

(ii)  f (x) is said to be monotonically decreasing if  f ' (x) = 0

 i.e. 3(x + 2) (x + 6) < 0, (x + 2) (x + 6) < 0

 then either (x + 2) < 0 and (x + 6) > 0 or (x + 2) > 0 and (x + 6) < 0

Case (I) : x + 2 < 0 and x + 6 > 0

   x < − 2 and x > − 6

   Thus for x ∈ (− 6, − 2), f  is monotonically decreasing.

Case (II) : x + 2 > 0 and x + 6 < 0

   x > − 2 and x < − 6 

 ∴ This case does not arise. . . . [check. why ?] 
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2.4.2 Maxima and Minima : 

Maxima of a function f (x) : A function f (x) is said to have a maxima at x = c if the value of the function 
at x = c is greater than any other value of f (x) in a δ-neighborhood of c. That is for a small δ > 0 and for 

x ∈ (c − δ, c + δ)  we have f (c) > f (x). The value f (c) is called a Maxima of f (x). Thus the function f (x) 

will have maxima at x = c if f (x) is increasing in c − δ < x < c and decreasing in c < x < c + δ.

Minima of a function f (x) : A function f (x) is said to have a minima at x = c if the value of the function 
at x = c is less than any other value of f (x) in a δ-neighborhood of c. That is for a small δ > 0 and for x 

∈ (c − δ, c + δ)  we have f (c) < f (x). The value f (c) is called a Minima of f (x). Thus the function f (x) 

will have minima at x = c if f (x) is decreasing in c − δ < x < c and increasing in c < x < c + δ.

If f ' (c) = 0 then at x = c the function is neither increasing nor decrasing, such a point on the curve 
is called turning point or stationary point of the function. Any point at which the tangent to the graph 

is horizontal is a turning point. We can locate the turn points by looking for points at which 
dy
dx

 = 0. 

At these points if the function has Maxima or Minima then these are called extreme values of the 
function.

Note : The maxima and the minima of a function are not necessarily the greatest and the least values 
of the function in the whole domain. Actually these are the greatest and the least values of the 
function in a small interval. Hence the maxima or the minima defined above are known as local 
(or relative) maximum and the local (or relative) minimum of the function f (x). 

  To find the extreme values of the function let us use following tests. 

2.4.3 First derivative test : 

A function f (x) has a maxima at x = c if
(i) f ' (c) = 0 
(ii) f ' (c − h) > 0   [ f (x) is increasing for values of x < c ] 
(iii) f ' (c + h) < 0   [ f (x) is decreasing for values of x > c ]
 where h is a small positive number. 
A function f (x) has a minima at x = c if 
(i)  f ' (c) = 0 
(ii) f ' (c − h) < 0   [ f (x) is decreasing for values of x < c ]
(iii)  f ' (c + h) > 0   [ f (x) is increasing for values of x > c ] 
 where h is a small positive number. 

Note : If f ' (c) = 0 and f ' (c − h) > 0, f ' (c + h) > 0 or f ' (c − h) <0, f ' (c + h) < 0 then f (c) in neither 
maxima nor minima. In such a case x = c is called a point of inflexion. e.g. f (x) = x3 , f (x) = x5 
in [−2, 2].
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SOLVED EXAMPLES 

Ex. 1 : Find the local maxima or local minima of f (x) = x3 − 3x.

Solution : Given that f (x) = x3 − 3x    . . . (I)
   Differentiate (I) w. r. t. x.
   f ' (x)  = 3x2 − 3 = 3 (x2 − 1)    . . . (II)
   For extreme values, f ' (x) = 0
   3x2 − 3 = 0 i.e. 3 (x2 − 1) = 0
   i.e. x2 − 1 = 0 ⇒ 0 ⇒ x2 = 1 ⇒ x = ± 1
   The turning points are x = 1 and x = −1
   Let's consider the turning point, x = 1
   Let x = 1 − h for a small, h > 0, from (II) we get, 
   f ' (1 − h) = 3 [(1 − h)2 − 1] = 3 (1 − 2h + h2 − 1) = 3h (h − 2)
 ∴ f ' (1 − h) < 0 . . . [ since,  h > 0, h − 2 < 0 ]

 ∴ f ' (x) for x = 1 − h ⇒ f (x) is decreasing for, x > 1.
   Now for x = 1 + h for a small, h > 0, from (II) we get, 
   f ' (1 + h) = 3 [(1 + h)2 − 1] = 3 (1 + 2h + h2 − 1) = 3 (h2 + 2h)
 ∴ f ' (1 + h) > 0 . . . [ since,  h > 0, h2 + 2h > 0 ]

 ∴ f ' (x) < 0 for x = 1 + h ⇒ f (x) is increasing for, x < 1.
 ∴ f ' (x) < 0 for 1 − h < x < 1
 ∴ f ' (x) > 0 for 1 < x < 1 + h.
 ∴ x = 1 is the point of local minima.
   Minima of f (x), is f (1) = 13 − 3 (1) = −2 
   Now, let's consider the turning point, x = −1
   Let x = −1 − h for a small, h > 0, from (II) we get, 
 ∴ f ' (−1 − h) = 3 [(−1 − h)2 − 1] = 3 (1 + 2h + h2 − 1) = 3 (h2 + 2h)
 ∴ f ' (−1 − h) > 0 . . . [ since,  h > 0, h2 + 2h > 0 ]

 ∴ f ' (x) > 0 for x = −1 − h ⇒ f (x) is increasing for, x < −1.
   Now for x = −1 + h for a small, h > 0, from (II) we get, 
 ∴ f ' (−1 + h) = 3 [(− 1 + h)2 − 1] = 3 (1 − 2h + h2 − 1) = − 3h (2 − h)
 ∴ f ' (−1 + h) < 0 . . . [ since,  h > 0, 2 − h > 0 ]

 ∴ f ' (x) < 0 for x = − 1 + h ⇒ f (x) is decreasing for, x > −1.
 ∴ f ' (x) > 0 for −1 − h < x < −1
 ∴ f ' (x) > 0 for −1 < x < −1 + h.
 ∴ x = − 1 is the point of local maxima. 
   Maxima of f (x), is f (−1) = (−1)3 − 3(−1) = −1 + 3 = 2

   Hence, Maxima of f (x) = 2 and Minima of f (x) = −2
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Fig. 2.4.4 (a) Fig. 2.4.4 (b)

2.4.4 Second derivative test : 

A function f (x) has a maxima at x = c if f ' (c) = 0 and f '' (c) < 0 

A function f (x) has a minima at x = c if f ' (c) = 0 and f '' (c) < 0

Note : If f '' (c) = 0 then second derivative test fails so, you may try using first derivative test. 

Maxima at A : Consider the slopes of the tangents (See Fig 2.4.4a) Slope of L1 is +ve, slope of L2 = 0 
and slope of L3 is −ve. Thus the slope is seen to be decreasing if there is a maximum at A. 

Minima at A : Consider the slopes of the tangents (See Fig 2.4.4b) slope of L1 is −ve, slope of L2 = 0 
and slope of L3 is +ve. Thus the slope is seen to be increasing if there is a minima at A.

SOLVED EXAMPLES 

Ex. 1 : Find the local maximum and local minimum value of f (x) = x3 − 3x2 − 24x + 5.

Solution : Given that f (x) = x3 − 3x2 − 24x + 5 . . . (I)

  Differentiate (I) w. r. t. x.

  f ' (x) = 3x2 − 6x − 24   . . . (II)

  For extreme values, f ' (x) = 0

  3x2 − 6x − 24 i.e. 3 (x2 − 2x − 8) = 0 

  i.e. x2  − 2x − 8 = 0 i.e. (x + 2) (x − 4) = 0 

  ⇒ x + 2 = 0 or x − 4 = 0 ⇒ x = −2 or x = 4 

  The stationary points are x = −2 and x = 4. 

  Differentiate (II) w. r. t. x.

  f '' (x) = 6x − 6   . . . (III) 

  For x = −2, from (III) we get, 

  f '' (−2) = 6 (−2) − 6 = −18 < 0 

∴   At x = −2, f (x) has a maximum value.

  For maximum of f (x), put x = −2 in (I) 

  f (−2) = (−2)3 − 3(−2)2 − 24 (−2) + 5 = 33. 

  For x = 4, from (III) we get 

  f '' (4) = 6(4) − 6 = 18 > 0 

∴ At x = 4, f (x) has a minimum value. 

 For minima of f (x), put x = 4 in (I) 

 f (4) = (4)3 − 3 (4)2 − 24 (4) + 5 = −75 

∴ Local maximum of f (x) is 33 when x = −2

 and

 Local minimum of f (x) is −75 when x = 4. 

L
1

L
3

L
2 L

1

L
2

L
3
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Ex. 2 : A wire of length 120 cm is bent in the form 
of a rectangle. Find its dimensions if the 
area of the rectangle is maximum.

Solution : Let x cm and y cm be the length and 
the breadth of the rectangle. Perimeter of 
rectangle = 120 cm. 

∴  2 (x + y) = 120  so, x + y = 60 
∴   y = 60 − x   . . . (I) 
  Let A be the area of the rectangle
∴   A = xy = x (60 − x) = 60x − x2. . . [From (I)]
  Differentiate w. r. t. x.

  
dA
dx

 = 60 − 2x . . . (II)

  For maximum area 
dA
dx

 = 0

  i.e. 60 − 2x = 0 ⇒ x = 30
  Differentiate (II) w. r. t. x.

  
d2A
dx2

 = − 2   . . . (III)

  For, x = 30 from (III) we get, 

  
d2A
dx2

 
x = 30 

= − 2 < 0

  When, x = 30, Area of the rectangle is 
maximum. 

  Put x = 30 in (I) we get y = 60 − 30 = 30
∴  Area of the rectangle is maximum if length 

= breadth = 30 cm. 

  After leaving the margins, length of the 
printing space is (x − 1) m and breadth of 
the printing space is ( y − 1.5) m. 

  Let A be the area of the printing space

  A = (x − 1) ( y − 1.5) = (x − 1) 
24
x  − 1.5

   = 24 − 1.5x − 
24
x

 + 1.5 . . . [ From (I)]

  A = 25.5 − 1.5x − 
24
x

 . . . (II)

  Differentiate w. r. t. x.

  
dA
dx

 = − 1.5 + 
24
x2

 . . . (III)

  For maximum printing space 
dA
dx

 = 0

i.e. − 1.5x + 
24
x2

 = 0 ⇒ 1.5x2 = 24 ⇒ x = ± 4, x ≠ −4

∴  x =  4
  Differentiate (III) w. r. t. x.

  
d2A
dx2

 = − 
48
x3

 . . . (IV)

  For, x = 4, from (IV) we get, 

  
d2A
dx2

 
x = 4 

= − 
48
(4)3

 < 0

  When, x = 4 Area of the rectangular 
printing space is maximum. 

  Put x = 4 in (I) we get y = 
24
4

 = 6

∴   Area of the printing space is maximum 
when width printing space = 4 m. and 
length of the printing space = 6 m.

Ex. 3 : A Rectangular sheet of paper has it area 24 
sq. meters. The margin at the top and the 
bottom are 75 cm each and at the sides 50 cm 
each. What are the dimensions of the paper, 
if the area of the printed space is maximum ?

Solution : Let x m and y m be the width and the 
length of the rectangular sheet of paper 
respectively. Area of the paper = 24 sq. m.

∴  xy = 24  ⇒  y = 
24
x

 . . . (I) 

Fig. 2.4.5
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Ex. 4 : An open box is to be cut out of piece of 
square card coard of side 18 cm by cutting 
of equal squares from the corners and 
turning up the sides. Find the maximum 
volume of the box. 

Solution : Let the side of each of the small squares 
cut be x cm, so that each side of the box to 
be made is (18 − 2x) cm. and height x cm.

Ex. 5 : Two sides of a triangle are given, find the 
angle between them such that the area of 
the triangle is maximum.

Solution : Let ABC be a triangle. Let the given 
sides be AB = c and AC = b. 

Fig. 2.4.6

Fig. 2.4.7

  Let V be the volume of the box. 
  V = Area of the base × Height 
   = (18 − 2x)2 x = (324 − 72x + 4x2) x
  V = 4x3 − 72x2 + 324x  . . . (I) 
  Differentiate w. r. t. x

  
dV
dx

 = 12x2 − 144x + 324 . . . (II)

  For maximum volume 
dV
dx

 = 0

i.e.  12x2 − 144x + 324 = 0 ⇒ x2 − 12x + 27 = 0
  (x − 3) (x − 9) = 0 ⇒ x − 3 = 0 or x − 9 = 0
∴  x = 3 or x = 9, but x ≠ 9  ∴  x = 3

  Differentiate (II) w. r. t. x

  
d2V
dx2

 = 24x − 144 . . . (III)

  For, x = 3 from (III) we get,

  
d2V
dx2

 
x = 3 

= 24 (3) − 144 = − 72 < 0

  Volume of the box is maximum when x = 3.
  Maximum volume of the box 
  = (18 − 6)2 (3) = 432 c.c.

  Let ∆ be the area of the triangle. 

  ∆ = 
1
2

 bc sin A . . . (I)

  Differentiate w. r. t. A. 

  
d∆
dA

 = 
bc
2

 cos A . . . (II)

  For maximum area 
d∆
dA

 = 0

i.e.  
bc
2

 cos A = 0 ⇒ cos A = 0 ⇒ A = 
π
2

  Differentiate (II) w. r. t. A. 

  
d2∆
dA2

 = − 
bc
2

 sin A . . . (III)

  For, A = 
π
2

 from (III) we get,

  
d2∆
dA2

 
A = 

π
2

 
= − 

bc
2

 sin 
π
2

 = 
bc
a

 < 0

  When, A = 
π
2

 Area of the triangle is 

maximum. 

  Hence, the area of the triangle is maximum 

when the angle between the given sides 
π
2

. 

Note : sin A is maximum (=1), when A = 
π
2
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Ex. 6 : The slant side of a right circular cone is l. Show that the semi-vertical angle of the cone of 
maximum volume is tan−1 (√ 2 ).

Solution : Let x be the height of the cone and r be the radius of the base.
  So, r2 = l2 − x2 . . . (I) 
  Let V be the volume of the cone. 

  V = 
1
3

 πr2x = 
π
3

 (l2 − x2) x   

∴  V  = 
π
3

 (l2 x − x3)

  Differentiate w. r. t. x

  
dV
dx

 = 
π
3

 (l2 − 3x2)  . . . (II)

  For maximum volume 
dV
dx

 = 0

i.e.   
π
3

 (l2 − 3x2) = 0 ⇒ x2 = 
l2

3
  x = ± 

l
√ 3

 ⇒ x = l
√ 3

  or x = − 
l

√ 3
 is the stataionary point but, x ≠ − l

√ 3
   ∴  x = l

√ 3
 

  Differentiate (II) w. r. t. x

  
d2V
dx2

 = − 2πx . . . (III)

  For, x = l
√ 3

 from (III) we get,

  
d2V
dx2

 
x =

l
√ 3

 
= − 2πl

√ 3
 < 0

  Volume of the cone is maximum when height of the cone is x = l
√ 3

.

  Put x = l
√ 3

 in (I) we get, r = l2 − l
√ 3

2

= l √ 2
√ 3

  Let α be the semi-vertical angle. 

  Then tan α = 
r
x

 = 
l √2
√3
l

√3

 = √ 2

∴  α = tan−1 (√ 2 )

Ex. 7 : Find the height of a covered box of fixed volume so that the total surface area of the box is 
minimum whose base is a rectangle with one side three times as long as the other.

Solution : Given that, box has a rectangular base with one side three times as long as other. 
  Let x and 3x be the sides of the rectangular base.
  Let h be the height of the box and V be its volume.
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  V = (x) (3x) (h) = 3x2h . . . [Observe that V is constant]

  Differentiate w. r. t. x. 

  
dV
dx

 = 3x2  dh
dx

 + h 
d
dx

 (3x2)  

∴  3x2  dh
dx

 + 6xh = 0 ⇒ 
dh
dx

 = − 
2h
x

     . . . (I)

  Let S be the surface area of the box. 
∴  S = (2 × 3x2) + (2 × 3xh) + (2 × xh) = 6x2 + 8xh 
  Differentiate w. r. t. x. 

  
dS
dx

 = 12x + 8 x 
dh
dx

 + h 
d
dx

 (x)   

  
dS
dx

 = 12x + 8 x − 
2h
x

 + h      . . . [ from (I) ]

   = 12x + 8(−2h + h)

∴  
dS
dx

 = 12x − 8h     . . . (II)

  For minimum surface area 

  
dS
dx

 = 0 ⇒ 12x − 8h = 0 ⇒ h = 
3x
2

  Differentiate (II) w. r. t. x. 

  
d2S
dx2

 = 12 − 8 
dh
dx

 = 12 − 8 − 
2h
x

 = 12 + 
16h

x
 . . . (III) . . . [ from (I) ]

  Both x and h are positive, from (III) we get, 

  
d2S
dx2

 = 12 + 
16h

x
 > 0

  Surface area of the box is minimum if height = 
3
2

 × shorter side of base.

(1) Test whether the following functions are 
increasing or decreasing. 

 (i) f (x) = x3 − 6x2 + 12x − 16, x ∈ R
 (ii)  f (x) = 2 − 3x + 3x2 − x3, x ∈ R

 (iii) f (x) = x − 
1
x

, x ∈ R and x ≠ 0  

(2)  Find the values of x for which the following 
functions are strictly increasing - 

 (i) f (x) = 2x3 − 3x2 − 12x + 6

 EXERCISE 2.4

 (ii) f (x) = 3 + 3x − 3x2 + x3

 (iii) f (x) = x3 − 6x2 − 36x + 7 

(3) Find the values of x for which the following 
functions are strictly decreasing -

 (i) f (x) = 2x3 − 3x2 − 12x + 6 

 (ii) f (x) = x + 
25
x

 (iii) f (x) = x3 − 9x2 + 24x + 12 
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(4)  Find the values of x for which the function        
f (x) = x3 − 12x2 − 144x + 13 

 (a) Increasing  (b) Decreasing 

(5) Find the values of x for which 

 f (x) = 2x3 − 15x2 − 144x − 7 is
 (a) strictly increasing  
 (b) strictly decreasing 

(6)  Find the values of x for which f (x) = 
x

x2 + 1 is 

 (a) strictly increasing  
 (b) strictly decreasing 

(7) Show that f (x) = 3x + 
1
3x increasing in 

 
1
3

, 1  and decreasing in 
1
9

, 
1
3

.

(8) Show that f (x) = x − cos x is increasing for 
all x.

(9) Find the maximum and minimum of the 
following functions - 

 (i) y = 5x3 + 2x2 − 3x

 (ii)  f (x) = 2x3 − 21x2 + 36x − 20 

 (iii)  f (x) = x3 − 9x2 + 24x 

 (iv)  f (x) = x2 + 
16
x2

 (v)  f (x) = x log x  (vi)  f (x) = 
log x

x
(10) Divide the number 30 in to two parts such 

that their product is maximum. 

(11) Divide that number 20 in to two parts such 
that sum of their squares is minimum.

(12) A wire of length 36 meters is bent in the form 
of a rectangle. Find its dimensions if the area 
of the rectangle is maximum. 

(13) A ball is thrown in the air. Its height at any 
time t is given by h = 3 + 14t − 5t2. Find the 
maximum height it can reach.

(14) Find the largest size of a rectangle that can be 
inscribed in a semi circle of radius 1 unit, So 
that two vertices lie on the diameter.

(15) An open cylindrical tank whose base is a 
circle is to be constructed of metal sheet so 
as to contain a volume of πa3 cu. cm of water. 
Find the dimensions so that sheet required is 
minimum. 

(16) The perimeter of a triangle is 10 cm. If one of 
the side is 4 cm. What are the other two sides 
of the triangle for its maximum area ? 

(17) A box with a square base is to have an open 
top. The surface area of the box is 192 sq.cm. 
What should be its dimensions in order that 
the volume is largest ?

(18) The profit function P (x) of a firm, selling x 
items per day is given by 

 P (x) = (150 − x)x − 1625. Find the number 
of items the firm should manufacture to get 
maximum profit. Find the maximum profit. 

(19) Find two numbers whose sum is 15 and when 
the square of one multiplied by the cube of 
the other is maximum. 

(20) Show that among rectangles of given area, 
the square has the least perimeter. 

(21) Show that the height of a closed right circular 
cylinder of a given volume and least surface 
area is equal to its diameter. 

(22) Find the volume of the largest cylinder that 
can be inscribed in a sphere of radius 'r' cm. 

(23) Show that y = log (1 + x) − 
2x

2 + x
, x > −1 is

 an increasing function on its domain.

(24) Prove that y = 
4 sin θ

2 + cos θ
 − θ is an increasing 

 function of θ ∈ 0, 
π
2  .



91

Let us Remember 

֍ Equations of tangent and Normal at P (x1, y1) respectively are given by 

 y − y1 = m (x − x1) where m =  
dy
dx

 

(x1, y1)

y − y1 = m' (x − x1) where m'  = − 1
dy
dx

(x1, y1)

 , if 
dy
dx

 

(x1, y1)

 ≠ 0

֍ Approximate value of the function f (x) at x = a + h is given by f (a + h) ≑  f (a) + h f ' (a)

֍ Rolle's theorem : If real-valued function f is continous on a closed [a, b], differentiable on the 
open interval (a, b) and f (a) = f (b), then there exists at least one c in the open interval (a, b) 
such that f ' (c) = 0.

֍ Lagrange's Mean Value Theorem (LMVT) : If a real-valued function f is continous on a 
closed [a, b] and differentiable on the open interval (a, b) then there exists at least one c in the 

open interval (a, b) such that   f ' (c) = 
 f (b) − f (a)

b − a
֍ Increasing and decreasing functions :

 (i) A function f is monotonically increasing if f ' (x) > 0.

 (ii)  A function f is monotonically decreasing if f ' (x) < 0. 

 (iii)  A function f is increasing if f ' (x) ≥ 0.

 (iv)  A function f is decreasing if f ' (x) ≤ 0.

֍ (i) First Derivative test : 
 A function f (x) has a maxima at x = c if
 (i) f ' (c) = 0 
 (ii) f ' (c − h) > 0  [ f (x) is increasing for values of x < c ] 
 (iii) f ' (c + h) < 0   [ f (x) is decreasing for values of x > c ]
  where h is a small positive number. 
 A function f (x) has a minima at x = c if 
 (i)  f ' (c) = 0 
 (ii) f ' (c − h) < 0  [ f (x) is decreasing for values of x < c ]
 (iii)  f ' (c + h) > 0  [ f (x) is increasing for values of x > c ] 
  where h is a small positive number.

 (ii) Second Derivative test :
  A function f (x) has a maxima at x = c if f ' (c) = 0 and f " (c) < 0.

  A function f (x) has a minimum at x = c if f ' (c) = 0 and f " (c) > 0.
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MISCELLANEOUS  EXERCISE 2

(I) Choose the correct option from the given alternatives :

 (1) If the function f (x) = ax3 + bx2 + 11x − 6 satisfies conditions of Rolle's theorem in [1, 3] and 

  f ' 2 + 
1

√ 
3

 = 0, then values of a and b are respectively. 

  (A) 1, −6 (B) −2, 1 (C) −1, −6 (D) −1, 6

 (2) If f (x) = 
x2 − 1
x2 + 1

 , for every real x, then the minimum value of f  is -

  (A) 1 (B) 0  (C) −1 (D) 2

 (3) A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along 
the ground away from the wall at the rate of 1.5 m/ sec. The length of the higher point of 
ladder when the foot of the ladder is 4.0 m away from the wall decreases at the rate of

  (A) 1 (B) 2 (C) 2.5  (D) 3

 (4) Let f (x) and g (x) be differentiable for 0 < x < 1 such f (0) = 0, g (0) = 0, f (1) = 6. Let there 
exist a real number c in (0, 1) such that f ' (c) = 2g' (c), then the value of g (1) must be

  (A) 1 (B) 3 (C) 2.5  (D) −1

 (5) Let f (x) = x3 − 6x2 + 9x + 18, then f (x) is strictly decreasing in -

  (A) (−∞, 1) (B) [3, ∞) (C) (−∞, 1] U [3, ∞) (D) (1, 3)

 (6) If x = − 1 and x = 2 are the extreme points of y = α log x + βx2 + x then

  (A) α = −6, β = 
1
2

  (B) α = −6, β = − 
1
2

  (C) α = 2, β = − 
1
2  (D) α = 2, β = 

1
2

 (7) The normal to the curve x2 + 2xy − 3y2 = 0 at (1, 1) 

  (A) Meets the curve again in second quadrant. (B) Does not meet the curve again.  

  (C) Meets the curve again in third quadrant.   (D) Meets the curve again in  fourth  quadrant.

 (8) The equation of the tangent to the curve y = 1 − e
x
2  at the point of intersection with Y-axis is 

  (A) x + 2y = 0  (B) 2x + y = 0  (C) x − y = 2  (D) x + y = 2

 (9) If the tangent at (1, 1) on y2 = x (2 − x)2 meets the curve again at P then P is

  (A) (4, 4)  (B) (−1, 2)  (C) (3, 6) (D)  
9
4

, 
3
8

 (10) The appoximate value of  tan (44° 30' ) given that 1° = 0.0175.

  (A) 0.8952  (B) 0.9528  (C) 0.9285 (D) 0.9825
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(II) (1) If the curves ax2 + by2 = 1 and a' x2 + b' y2 = 1 intersect orthogonally, then prove that 

  
1
a  − 

1
b  = 

1
a'  − 

1
b' .

 (2) Determine the area of the triangle formed by the tangent to the graph of the function y = 3 − x2 
drawn at the point (1, 2) and the cordinate axes. 

 (3) Find the equation of the tangent and normal drawn to the curve y4 − 4x4 − 6xy = 0 at the 
  point M (1, 2).

 (4) A water tank in the form of an inverted cone is being emptied at the rate of 2 cubic feet per 
second. The height of the cone is 8 feet and the radius is 4 feet. Find the rate of change of the 
water level when the depth is 6 feet. 

 (5) Find all points on the ellipse 9x2 + 16y2 = 400, at which the y-coordinate is decreasing and the 
x-coordinate is increasing at the same rate. 

 (6) Verify Rolle's theorem for the function f (x) = 
2

ex + e− x
 on [−1, 1].

 (7) The position of a particle is given by the function s(t ) = 2t2 + 3t − 4. Find the time t = c in the 
interval 0 ≤ t ≤ 4 when the instantaneous velocity of the particle equals to its average velocity 
in this interval. 

 (8) Find the approximate value of the function f (x) = √ x2 + 3x at x = 1.02. 

 (9)  Find the approximate value of cos −1 (0.51) given π = 3.1416, 
2

√ 3
 = 1.1547.

 (10) Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing. 

 (11) Find the intervals on the which the function f (x) = 
x

log x
 , is increasing and decreasing.

 (12) An open box with a square base is to be made out of a given quantity of sheet of area a2, Show 

the maximum volume of the box is 
a3

6√ 3
. 

 (13) Show that of all rectangles inscribed in a given  circle, the square has the maximum area. 

 (14) Show that a closed right circular cyclinder of given surface area has maximum volume if its 
height equals the diameter of its base. 

 (15) A window is in the form of a rectangle surmounted by a semi-circle. If the perimeter be 30 m, 
find the dimensions so that the greatest possible amount of light may be admitted. 

 (16) Show that the height of a right circular cylinder of greatest volume that can be inscribed in a 
right circular cone is one-third of that of the cone. 

 (17) A wire of length l is cut in to two parts. One part is bent into a circle and the other into a 
square. Show that the sum of the areas of the circle and the square is least, if the radius of the 
circle is half the side of the square. 
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 (18)  A rectangular Sheet of paper of fixed perimeter with the sides having their length in the ratio 
8 : 15 converted in to an open rectangular box by folding after removing the squares of equal 
area from all corners. If the total area of the removed squares is 100, the resulting box has 
maximum valume. Find the lengths of the rectangular sheet of paper. 

 (19)  Show that the altitude of the right circular cone of maximum volume that can be inscribed in 

a shpere of radius r is 
4r
3

. 

 (20)  Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of 

radius R is 
2 R
√ 3

. Also find the maximum volume. 

 (21) Find the maximum and minimum values of the function f (x) = cos2 x + sin x.

v v v
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Let us Study

•	 Definition	and	Properties		

•	 Different	Techniques	:	1.	by	substitution			2.	by	parts			3.	by	partial	fraction

Introduction :

In	differential	calculus,	we	studied	differentiation	or	derivatives	of	some	functions.	We	saw	that	
derivatives	are	used	for	finding	the	slopes	of	tangents,	maximum	or	minimum	values	of	the	function.	

Now	we	will	try	to	find	the	function	whose	derivative	is	known,	or	given	f (x).	We	will	find	g (x) 
such	that	g' (x) = f (x).	Here	the	integration	of	f (x)	with	respect	to	x	is	g (x)	or	g (x)	is	called	the	primitive	

of	f (x).	 For	example,	we	know	that	the	derivative	of		x3 w. r. t. x	is	3x2.	So	
d
dx

 x3 = 3x2 ; and	integral	of	

3x2 w. r. t. x	is	x3.	This	is	shown	with	the	sign	of	integration	namely	'�'.	We	write	�3x2 · dx = x3.
In	 this	 chapter	 we	 restrict	 ourselves	 only	 to	 study	 the	 methods	 of	 integration.	 The	 theory	 of	

integration	is	developed	by	Sir	Isaac	Newton	and	Gottfried	Leibnitz.	

�f (x)·dx = g (x),	read	as	an	integral	of	f (x)	with	respect	to	x,	is	g (x).	Since	the	derivative	of	constant	
function	with	respect	to	x	is	zero	(0),	we	can	also	write

�f (x)·dx = g (x) + c	,	where	c	is	an	arbitarary	constant	and	c	can	take	infinitely	many	values.	

3. INDEFINITE INTEGRATION

Fig. 3.1.1

For example :

f (x) = x2 + c	represents	familly	of	curves	for	
different	values	of	c.	

f ' (x) = 2x	gives	 the	slope	of	 the	 tangent	 to									
f (x) = x2 + c.	

In	the	figure	we	have	shown	the	curves	

y = x2	,		y = x2	+	4,	y = x2 −	5.

Note	 that	 at	 the	 points	 (2,	 4),	 (2,	 8)	 (2,	 −1)	
respectivelly	on	those	curves,	the	slopes	of	tangents	
are	2	(2)	=	4.
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3.1.1 Elementary Integration Formulae

(i)		 	
d
dx

 
x n +	1

n +	1
		 =	

(n +	1)	x n

(n +	1)
	 ,	n ≠ −1	 	

    =	 xn  ⇒	 ∴	 �xn · dx =	
x n +	1

n +	1
 + c

	 	
d
dx
		

(ax + b) n +	1

(n +	1)	· a
	 =	

(n +	1)	(ax + b) n 

(n +	1)
    =	 (ax + b) n     ⇒	 ∴	�(ax + b) n· dx =	

(ax + b) n +	1

n +	1
· 
1
a

 + c

	 	 This	result	can	be	extended	for	n	replaced	by	any	rational	
p
q

 .

(ii)		 	
d
dx

 
a x

log	a
		=	ax,	a >	0	 ⇒	 ∴	 �ax · dx =	

a x

log	a
 + c

       �Aax + b· dx = 
Aax + b

log	A
· 
1
a

 + c , A >	0

(iii)			
d
dx

 ex	=	ex  ⇒	 	 �e x · dx =	e x + c

       �e ax + b· dx =	e ax + b · 
1
a

 + c

(iv)			
d
dx

 sin	x	=	cos	x ⇒	 	 �cos x · dx =	sin	x + c

       �cos	(ax + b)· dx =	sin	(ax + b)· 
1
a

 + c

(v)		 	
d
dx

 cos	x	=	−	sin	x ⇒	 	 �sin x · dx =	−	cos	x + c

       �sin	(ax + b)· dx =	−	cos	(ax + b)· 
1
a

 + c

(vi)			
d
dx

 tan	x	=	sec2 x ⇒	 	 �sec2 x · dx =	tan	x + c

       �sec2 (ax + b)· dx =	tan	(ax + b)· 
1
a

 + c

(vii)		
d
dx

 sec	x	=	sec	x ·	tan	x ⇒	 	 �sec	x ·	tan	x · dx =	sec	x + c

       �sec	(ax + b)· tan	(ax + b)·dx =	sec	(ax + b)· 
1
a

 + c

(viii)		
d
dx

 cosec	x	=	−	cosec	x ·	cot	x      ⇒	 �cosec x ·	cot x · dx =	−	cosec	x + c

       �cosec	(ax + b)·	cot (ax + b) · dx =	−	cosec	(ax + b)· 
1
a

 + c

(ix)			
d
dx

 cot	x	=	−	cosec2 x ⇒	 	 �cosec2 x · dx =	−	cot	x + c

       �cosec2 (ax + b)· dx =	−	cot	(ax + b)· 
1
a

 + c

(x)		 	 	
d
dx

 log x		=	
1
x

 ,	x	>	0	 ⇒  �
1
x

 dx = log x + c, x ≠ 0.

 ∴	 also�
1

(ax + b)
· dx = log (ax + b)· 

1
a

 + c

	 	 We	 assume	 that	 the	 trigonometric	 functions	 and	 logarithmic	 functions	 are	 defined	 on	 the	
respective	domains.



97

3.1.2

 Theorem 1 :	 If	f	and	g	are	real	valued	integrable	functions	of	x,	then

  �[ f (x) + g (x)] · dx = � f (x) · dx + �g (x) · dx

 Theorem 2 :	 If	f	and	g	are	real	valued	integrable	functions	of	x,	then

  �[ f (x)	−	g (x)] · dx = � f (x) · dx	−	�g (x) · dx

 Theorem 3 :	 If	f	and	g	are	real	valued	integrable	functions	of	x,	and	k	is	constant,	then

  � k [ f (x)] · dx = k � f (x) · dx

 Proof : 1.  Let	 � f (x) · dx = g1 (x) + c1	 and	 � g (x) · dx = g2 (x) + c2 then

   
d
dx

 [(g1 (x) + c1)] = f (x)	 and	
d
dx

 [(g2 (x) + c2)] = g (x)

  ∴	
d
dx

 [(g1 (x) + c1) + (g2 (x) + c2)]

   =	
d
dx

 [(g1 (x) + c1)] + 
d
dx

 [(g2 (x) + c2)]

   = f (x) + g (x)

	 	 By	definition	of	integration.	

  � f (x) + g (x)  = (g1 (x) + c1) + (g2 (x) + c2)

    = � f (x) · dx + � g (x) · dx

 Note :	Students	can	construct	the	proofs	of	the	other	two	theorems	(Theorem	2	and	Theorem	3).

SOLVED EXAMPLES 

Ex. :	 Evaluate	the	following	:

1.  �(x 3 + 3 x) · dx 	

Solution :  �(x 3 + 3 x) · dx 	

	 	 	 = �x 3 · dx + �3 x· dx 

   =	
x4

4
 + 

3x

log	3
 + c
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2.  � sin	x + 
1
x  + 

1
�x  · dx 	

Solution : � sin	x + 
1
x  + 

1
�x  · dx  

 = �sin	x · dx + �
1
x · dx + �

1
�x · dx 

 = �sin	x · dx + �
1
x · dx + �x 

−
 

1
3 · dx 

 = −	cos	x +	log	x + x− 

1
3  +	1

− 
1
3
	+	1

 + c

 = −	cos	x +	log	x + x
2
3

2
3

 + c

3

3

3

3.  �(tan x	+	cot	x) 
2
 · dx 

Solution : �(tan x	+	cot	x) 
2
 · dx 

 = �(tan2 x	+	2	tan	x·cot	x + cot2 x) · dx

	 = �(tan2 x	+	2	+	cot2 x) · dx 

	 = �(sec2 x	−	1	+	2	+	cosec2 x −	1) · dx 

	 = �(sec2 x	+	cosec2 x) · dx 

	 = �sec2 x · dx + �cosec2 x · dx

	 = tan x +	(−	cot x) + c

	 = tan x −	cot x + c

4.  �
�x  +	1
x + �x 

 · dx 	

Solution : �
�x  +	1
x + �x 

 · dx 

 = �
�x  +	1

�x (�x  +	1)  · dx 

 = �
1

�x· dx

 = 2 ·�
1

2�x· dx

 = 2 �x + c

5.  �
e4	log	x −	e5	log	x

x5 · dx   

Solution : �
e4	log	x −	e5	log	x

x5 · dx 

 = �
e	log	x 4 −	e	log	x 5

x5 · dx ,		 ⸪	a	log	a f (x) = f (x)

	 = �
x 4 −	x 5

x5 · dx

 = �
1
x  −	1 · dx

	 = log	(x)	−	x + c

6.  �
2x + 3
5x −	1

· dx 
∴	 2x + 3 = 

2
5  (5x −	1)	+	3	+	

2
5

 I = �
2
5

 + 

17
5

5x −	1
 · dx

  = 
2
5

x + 
17
5  log	(5x	−	1)	·	

1
5

 + c

  = 
2
5

x + 
17
25  log	(5x	−	1)	+	c

Solution : 
N
D

 = Q + 
R
D

 

      2
5

   (5x −	1)		 2x + 3

     
−

 2x −	
2
5

     −	 				+

             3 + 
2
5  = 

17
5
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7.  �
1

� 3x +	1	−	� 3x −	5
· dx

Solution : �
1

� 3x +	1	−	� 3x −	5
· dx 

= �
1

� 3x +	1	−	� 3x −	5
· � 3x +	1	+ � 3x −	5

� 3x +	1	+ � 3x −	5
·dx

 = � � 3x +	1	+ � 3x −	5
3x +	1	−	3x + 5

	· dx

 = � � 3x +	1	+ � 3x −	5
6

	· dx 

	 = 
1
6 ·� (3x	+	1)

1
2  + (3x	−	5)

1
2  · dx

	 = 
1
6 ·��(3x	+	1)

1
2 · dx + �(3x	−	5)

1
2  · dx�

	 = 
1
6 ·�

(3x	+	1)
1
2  +	1

1
2
	+	1  · 3

 + 
(3x	−	5)

1
2  +	1

1
2
	+	1  · 3

� + c

	 = 
1
18·�

2
3  (3x	+	1)

3
2  

+ 
2
3  (3x	−	5)

3
2 � 

+ c

	 = 
1
27·�(3x	+	1)

3
2  

+ (3x	−	5)
3
2 � 

+ c

8.  �
2x −	7

� 3x −	2
· dx

Solution : Express	(2x −	7)	in	terms	of	(3x −	2)

  2x −	7	=	
2
3  (3x −	2)	+	

4
3  −	7

    = 
2
3  (3x −	2)	−	

17
3

 I = �

2
3 (3x −	2)	−	

17
3

� 3x −	2
· dx

  = �

2
3 (3x −	2)

� 3x −	2
 −	

17
3

� 3x −	2
· dx

  = 
2
3

�� 3x −	2
  
· dx −	

17
3  �

1
� 3x −	2

 · dx

  = 
2
3

�( 3x −	2)
1
2  

· dx
 
	−	
17
3  �

1
� 3x −	2

 · dx

	 	 = 
2
3 ·

(3x	−	2)
3
2

3
2

·
1
3 	−	

17
3 ·2 · (� 3x −	2)·

1
3   + c

	 	 = 
4
27·(3x	−	2)

3
2  
−	

34
9 ·(3x	−	2)

1
2  + c

9.  �
x3

x −	1
 · dx

Solution :  

   I	 = �
x3 −	1	+	1

x −	1
 · dx

	 = � x3 −	1
x −	1

 + 
1

x −	1
	· dx

	 = � (x −	1)	(x2 + x +	1)
(x −	1)

 + 
1

x −	1
	· dx

	 = � x2 + x +	1	+	
1

x −	1
 	· dx

	 = 
x3

3
 +	

x2

2
 + x +	log	(x	−	1)	+	c 

10.  �
3x	−	4x

5x  · dx

Solution :  

   I	 = �
3x

5x 	−	
4x

5x · dx

	 = �
3
5

	

x

 −	
4
5

	

x

		 · dx

	 = 
3
5

 x

log 3
5

	−	
4
5

 x

log 4
5

 + c
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11.  �cos3 x · dx 

Solution : cos	3A =	4	cos3 A −	3	cos A

   I	 = �
1
4  (cos	3x + 3 cos x) · dx

 = 
1
4  (sin	3x · 

1
3 + 3·sin x) + c

 = 
1
12 sin	3x + 

3
4 	sin x + c

13.  �sin4 x · dx 

Solution : 

   I	 = �(sin2 x)2 · dx 

 = �
1
2  (1	−	cos 2x) 	

2

 · dx

 = 
1
4  ·�(1	−	2	cos 2x +	cos2 2x) · dx

 = 
1
4  ·� 1	−	2	cos 2x + 

1
2  (1	+	cos 4x)  · dx

 = 
1
4  ·� 1	−	2	cos 2x + 

1
2  + 

1
2  cos 4x  · dx

 = 
1
4  ·�

3
2 −	2	cos 2x + 

1
2  cos 4x  · dx

 = 
1
4  ·

3
2x −	2	sin 2x · 

1
2  + 

1
2  sin 4x · 

1
4  + c

   	 = 
1
4  ·

3
2x −	sin 2x + 

1
8  sin 4x  + c

12.  ��1	+	sin	3x · dx 
Solution : 

   I	 = � cos2 
3x
2  +	sin2 

3x
2  +	2	sin	

3x
2 ·	cos	

3x
2 · dx

 = � cos  
3x
2  +	sin	

3x
2 	

2

· dx

 = � cos  
3x
2  +	sin	

3x
2 	· dx

 = sin 
3x
2  · 13

2

		−	cos	
3x
2  · 13

2

 	+ c

 = 
2
3  sin 

3x
2  −	cos	

3x
2  	+ c

14.  �sin	5x	·	cos	7x ·dx 

Solution : We	know	that

  2	sin	A ·	cos	B =	sin	(A + B)	+	sin	(A	−	B)

   I	 = 
1
2  �2	sin	5x ·	cos	7x · dx

 = 
1
2  �[sin	(5x	+	7x)	+	sin	(5x −	7x)] · dx

 = 
1
2  �[sin	(12x)	+	sin	(−2x)] · dx

 = 
1
2  �(sin	12x −	sin	2x) · dx

 = 
1
2  · −	cos 12x · 

1
12 + cos 2x · 

1
2   + c

   I	 = −	
1
24 cos 12x + 

1
4  cos 2x + c

15.  �sin3 x −	cos3 x
sin2 x·cos2 x

	· dx

Solution : I =	�
sin3 x

sin2 x·cos2 x
 −	

cos3 x
sin2 x·cos2 x

	· dx

 = � sin	x
cos2 x

 −	
cos	x
sin2 x

	· dx

 = � 1
cos	x

 · 
sin	x
cos	x

	−	
1

sin	x
 · 
cos	x
sin	x

	· dx

	 = �(sec	x · tan	x −	cosec	x · cot	x) · dx

	 = sec	x −	(−	cosec	x) + c

   I	 = sec	x + cosec	x + c
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16.  � 1
1	−	sin	x

	· dx

Solution : 

   I	 = � 1
1	−	sin	x

	
1	+	sin	x
1	+	sin	x

	· dx

 = � 1	+	sin	x
1	−	sin2 x

	· dx

 = � 1	+	sin	x
cos2 x

	· dx

 = � 1
cos2 x

 + 
sin	x
cos2 x

	· dx

	 = �(sec2 x +	sec	x · tan	x) · dx

   	 = tan	x + sec	x + c

17.  � cos	x
1	−	cos	x

	· dx

Solution : 

   I	 = � cos	x
1	−	cos	x

	
1	+	cos	x
1	+	cos	x

· dx

 = � 	cos	x (1	+	cos	x)
1	−	cos2 x

	· dx

 = � 	cos	x +	cos2 x)
sin2 x

	· dx

 = � cos	x
sin2 x

 + 
cos2 x
sin2 x

	· dx

	 = �(cosec	x · cot	x +	cot2 x) · dx

	 = �(cosec	x · cot	x +	cosec2 x −	1) · dx

	 = (−	cosec	x) +	(−	cot	x) − x + c

   	 = −	cosec	x	−	cot	x − x + c

Activity :

18.  �cos	x −	cos	2x
1	−	cos	x

	· dx

Solution :    �cos	x −	cos	2x
1	−	cos	x

	· dx

     = �cos	x −	(	.	.	.	.	.	.	.	.	.	.	.	.	)
1	−	cos	x

	· dx

     = � cos	x −		.	.	.	.	.	.	.	.	.	.	.	.	
1	−	cos	x

	· dx

     = � cos	x (	1	−	cos	x) +		.	.	.	.	.	.	.	.	.	.	
1	−	cos	x

	· dx

     = � cos	x + 
		.	.	.	.	.	.	.	.	.	.	
1	−	cos	x

· dx

     = �[cos	x + (1	+	cos	x)] · dx

     = �(1	+	2	cos	x) · dx

	 	 	 	 	 = x + 2 sin x + c
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21.  �tan−1
1	−	sin	x
1	+	sin	x

 · dx

Solution : 

   I	 = �tan−1
1	−	cos	 π

2 	−	x
1	+	cos	 π

2 	−	x
 · dx

 = �tan−1
2	sin2 π

4 	−	
x
2

2	cos2 π
4 	−	

x
2

 · dx

 = �tan−1	 tan2 
π
4  −	

x
2 · dx

 = �tan−1	 tan 
π
4  −	

x
2  · dx

 = �
π
4  −	

x
2 	· dx

 = 
π
4  x −	

1
2  · 

x2

2  + c

 = 
π
4  x −	

x2

4  + c

19.  �sin−1 (cos	3x) · dx

Solution : 

   I	 = �sin−1 sin	
π
2  −	3x  · dx

 = �
π
2  −	3x  · dx

 = 
π
2  x −	3 

x2

2  + c

20.  �tan−1 
sin	2x

1	+	cos	2x
 · dx

Solution : 

   I	 = �cot−1 
1	+	cos	2x 
sin	2x

 · dx

 = �cot−1 
2	cos2 x 

2	sin	x ·	cos	x
 · dx

 = �cot−1	(cot	x) · dx

 = �x · dx  =  
x2

2  + c

EXERCISE 3.1

I.	 Integrate	the	following	functions	w. r. t. x :

	 (i)	 x3 + x2 −	x +	1	 (ii)	 x2 1	−	
2
x

 2

	 (iii)	3	sec2 x −	
4
x

 + 
1

x√ x
 −	7

 (iv)	2x3 −	5x + 
3
x

 + 
4
x5	 (v)	

3x3 −	2x + 5
x√ x

II.	 Evaluate	:

 (i)	 �tan2 x · dx (ii)	 � sin	2x
cos	x

· dx

 (iii)	�
sin	x
cos2 x

· dx (iv)	 �cos	2x
sin2 x

· dx

 (v)	 � cos	2x
sin2 x·	cos2 x

· dx (vi)	 � sin	x
1	+	sin	x

· dx

 (vii)	�
tan	x

sec	x	+	tan	x
· dx (viii)	��1	+	sin 2x · dx

 (ix)	��1	−	cos 2x · dx (x)�sin 4x·cos 3x·dx

III.	 Evaluate	:

 (i)	 �
x

x + 2  · dx (ii)	 �
4x + 3
2x +	1 · dx

 (iii)	�
5x + 2
3x − 4 · dx (iv)	 �

x − 2
�x + 5  · dx

 (v)	 �
2x −	7

�4x −	1  · dx (vi)	 � sin	4x
cos	2x

· dx

 (vii)	��1	+	sin 5x · dx (viii)	�cos2 x·dx

 (ix)	�
2

√ x −	√ x + 3
· dx 

 (x)�
3

√ 7x −	2	−	√ 7x −	5
·dx

IV.	 f ' (x) = x − 
3
x3 ,	f	(1)	= 

11
2
	then	find	f (x).
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3.2 Methods of integration : 

We	have	evaluated	the	integrals	which	can	be	reduced	to	standard	forms	by	algebric	or	trigonometric	
simplifications.	This	 year	we	 are	 going	 to	 study	 three	 special	methods	 of	 reducing	 an	 integral	 to	 a	
standard	form,	namely	−

1.	 Integration	by	substitution	

2.	 Integration	by	parts		

3.	 Integration	by	partial	fraction

3.2.1 Integration by substitution :

 Theorem 1 :	 If	x = φ	(t)	is	a	differentiable	function	of	t,	then	�f (x) · dx = �f [φ	(t)]· φ'	(t ) dt.

 Proof :  x = φ	(t)	is	a	differentiable	function	of	t.

	 	 	 ∴ 
dx
dt

 = φ'	(t)

	 	 	 Let	� f (x) dx = g (x) ⇒ 
d
dx

 [ g (x)] = f (x)

	 	 	 	 By	Chain	rule,

    
d
dt

 [ g (x)] = 
d
dx

 [ g (x)] · 
dx
dt

 

        = f (x) · 
dx
dt

  

        = f [ φ (t )] · φ'	(t )

	 	 	 	 	 By	definition	of	integration,	

     g (x) = �f [ φ (t )] · φ'	(t) · dt

	 	 	 ∴		 � f (x) · dx = �f [ φ (t )] · φ'	(t) · dt

For example 1 : �3x2	sin	(x3) · dx

    Let	 x3 = t

    ∴		 3x2 dx = dt

      = �sin	t · dt

      =	−	cos	t + c

      =	−	cos	(x3) + c
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Corollary I : 
 If	�f (x) · dx = g (x) + c 

 then �f (ax + b) · dx = g (ax + b) 
1
a

 + c

Proof : Let	I	=	�f (ax + b) · dx

	 	 put	 ax + b = t 

  Differentiating	both	the	sides

 a · dx =	1	·	dt ⇒ dx = 
1
a

 dt

 I = �f (t) · 
1
a

 · dt

  = 
1
a

 · �f (t) · dt

  = 
1
a

 · g (t) + c

  = 
1
a

 · g (ax + b) + c

∴	 �f (ax + b) · dx = g (ax + b) 
1
a

 + c

For example : �sec2 (5x	−		4)	·	dx

  = 
1
5
	tan	(5x	−		4)	+	c

Corollary II : 

 �[ f (x)]n · f ' (x)·dx = 
[ f (x)]n +	1

n +	1  + c,	n ≠	−1

Proof :	 Let	I	=	�[ f (x)]n +	1 · f ' (x)·dx

	 	 put	 f (x) = t 

  Differentiating	both	the	sides
  f ' (x)·dx = dt

 I = � [t]n · dt

  = 
t n +	1

n +	1
 + c ,		 n ≠	−1

  = 
[ f (x)]n +	1

n +	1  + c

∴	 �[ f (x)]n · f ' (x)·dx = 
[ f (x)]n +	1

n +	1  + c

For example : �(sin	−1	x)3

√ 1	−	 x2
· dx

  = �[(sin	−1	x)3] · 
1

√ 1	−	 x2 · dx

  = 
(sin	−1	x)4

4
 + c

Corollary III : 

 �
f ' (x)
f (x) ·dx =	log	(	f (x) ) + c

For example : �cot x · dx

  = �
cos	x
sin	x  · dx

    
d
dx

 sin	x =	cos	x

  = �
d
dx  sin	x
sin	x

 · dx

	 	 	 	 =	log	(sin	x) + c

Proof :	 Consider	�
f ' (x)
f (x) ·dx

	 	 put	 f (x) = t 

  Differentiating	both	the	sides
  f ' (x)·dx = dt

 I = �
1
t

 · dt

  =	log	(t) + c

  =	log	( f (x)) + c

∴	 �
f ' (x)
f (x) ·dx =	log	( f (x)) + c
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Corollary IV : 

 �
f ' (x)
√	f (x) ·dx = 2 √	f (x) + c

For example : � 1
x√ log	x

· dx

  = �
1
x

√ log	x
 · dx

  = �
d
dx	log	x
√ log	x

 · dx

    = 2 √	log	x + c

Proof :	 Consider	�
f ' (x)
√	f (x) ·dx

	 	 put	 f (x) = t 

  Differentiating	both	the	sides

  f ' (x)·dx = dt

 I = �
1
√	t

 · dt

  = 2 · �
1
2√	t

 · dt

  = 2 √ t + c

  = 2 √	f (x) + c

∴	 �
f ' (x)
√	f (x) ·dx = 2 √	f (x) + c

 Using	corollary	 III,	 	�
f ' (x)
f (x) ·dx =	 log	( f (x)) + c	we	find	 the	 integrals	of	 some	 trigonometric	

functions.

3.2.2 Integrals of trignometric functions :

1.  �tan x · dx 

Solution : 

   I = �tan x · dx 

 = �
sin	x 
cos	x  · dx

 = −	�
−	sin	x 
cos	x  · dx

	 =	 −	log	(cos	x) + c

	 =	 log	(sec	x) + c

Activity : 

2.  �cot	(5x	−		4)	·	dx

Solution : 

   I = �
	.............

sin	(5x	−		4)  · dx

 = 
1
.....  �

5	cos	(5x	−		4)
.............  · dx

  
d
dx

 (.............)	 =	.............

    = 
1
5
	log	[sec	(5x	−		4)]	+	c
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3.  �sec x · dx =	log	(sec	x	+	tan	x) + c

Solution : Let	 I =  �sec x · dx

 = �
(sec	x) (sec	x	+	tan	x)

sec	x	+	tan	x  · dx

	 = �
sec2 x + sec	x	·	tan	x

sec	x	+	tan	x  · dx

	 = �
sec	x	·	tan	x + sec2 x

sec	x	+	tan	x  · dx

⸪ 
d
dx
	(sec	x	+	tan	x)	=	sec	x	·	tan	x + sec2 x

∴	 �sec x · dx =	log	(sec	x	+	tan	x) + c

	 Also,

 �sec x · dx =	log	 tan 
x
2  + 

π
4  + c

Activity :

4. �cosec x · dx =	log	(cosec	x	−	cot	x) + c

Solution : Let	I = �cosec x · dx

 = �
(cosec	x) (	.	.	.	.	.	.	.	.	.	.	)

(	.	.	.	.	.	.	.	.	.	.	)  · dx

	 = �
.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.

.	.	.	.	.	.	.	.  · dx

	 = �
−	cosec	x	·	cot	x + cosec2 x

.	.	.	.	.	.	.	.  · dx

 
d
dx
	(cosec	x	−	cot	x)

	 =		 .	.	.	.	.	.	.	..	.	.	.	.	.	.	.

 =		 log	(cosec	x	−	cot	x) + c

∴	 �cosec x · dx =	log	(cosec	x	−	cot	x) + c

	 Also,

 �cosec x · dx =	log	 tan 
x
2  + c

SOLVED EXAMPLES 

Ex. : Evaluate	the	following	functions :

1.  �
cot	(log	x)

x  · dx

Solution : Let	I =�
cot	(log	x)

x  · dx

  	 put	 log x = t 

   ∴ 
1
x

 · dx =	1	·	dt

  = �cot t · dt 

  =	log	(sin	t ) + c 

  =	log	(sin	log	x) + c

2.  �
cos	√ x
√ x

 · dx

Solution : Let	I = �
cos	√ x
√ x

 · dx

  	 put	 √ x = t 

   ∴ 
1

2√ x
 · dx =	1	·	dt

   ∴ 
1
√ x

 · dx = 2 · dt

  = 2 · �cos t · dt 

  =	2	·	sin	t + c 

  =	2	·	sin	√ x + c 
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3.  �
sec8 x
cosec	x · dx

Solution : I =  �sec7 x ·	sec	x · 
1

cosec	x · dx 

   = �sec7 x · 
1

cos	x  ·	sin	x · dx

   = �sec7 x ·	tan	x · dx

   = �sec6 x ·	sec	x ·	tan	x · dx

  	 put	 sec	x = t 

   ∴	 sec	x ·	tan	x · dx = dt 

   = �t 6 · dt

   = 
t 7

7  + c

   = 
sec7 x
7  + c

4.  �
1

x + √ x
 · dx

Solution : I  =  �
1

x + √ x
 · dx

   = �
1

√ x (√ x +	1)
 · dx

  	 put	 √ x +	1	= t 

   ∴ 
1

2√ x
 · dx =	1	·	dt

   ∴ 
1
√ x

 · dx = 2 · dt

  = �
1
t

 · 2 · dt 

  = 2 · �
1
t

 · dt

  =	2	·	log	(	t ) + c 

  =	2	·	log	(√ x +	1	) + c 

5.  �55 
x
 · 5x · dx

Solution : I = �55 
x
 · 5x · dx

  	 put	 5x = t 
   ∴ 5x ·	log	5 · dx =	1	dt 

    5x · dx = 
1

log	5  · dt

   = �5 t · 
1

log	5  · dt

  I = 
1

log	5  · �5 t · dt

   = 
1

log	5  · 5 t ·
1

log	5  + c

   = 
1

log	5  

2

· 55 
x
 + c

6.  �
1

1	+	e 
−x · dx

Solution :  I =   �
1

1	+	e 
−x · dx

   =  �
1

1	+	 1ex

· dx

   =  �
1

ex +	1
ex

· dx

   = � 
ex

ex +	1  · dx

 ⸪  
d
dx

 ( ex +	1	) · dx = ex

   =	log	[ ex +	1	] + c

7.  �
ex	(1	+	x)
cos	(x · ex) · dx

Solution : put	 x · ex = t
   Differentiating	both	sides
   (x · ex + ex	·	1)	·	dx =	1	dt
   ex	(1	+	x) · dx =	1	dt

 I =  �
1

cos t
 · dt 

  = �sec t · dt

  =	log	(sec	t	+	tan	t ) + c 

  =	log	(sec	(xex)	+	tan	(xex)) + c 
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8.  �
1

3x + 7x−n  · dx

Solution : Consider	�
1

3x + 7x−n  · dx

 = �
1

3x + 
7
xn

· dx = �
1

3xn+1  +	7
xn

· dx

 = �
xn

3xn+1  +	7
· dx

  	 put	 3xn+1  +	7 = t
   Differentiate	w.	r.	t.	x
   3(n +	1)	xn  · dx = dt

  ∴ xn · dx = 
1

3(n +	1)
 dt

 = �
1

3(n +	1)
t

· dt

 = 
1

3(n +	1)
 · log	(	t ) + c

 = 
1

3(n +	1)
 · log	(3xn+1  +	7) + c

9.  � (3x + 2) √ x − 4 · dx

Solution : put	  x − 4 = t
   ∴	 x = 4 + t
   Differentiate
   1· dx = 1· dt

 = � [ 3(4 + t ) + 2 ]·√ t· dt

 = � (14 + 3t ) · t
1
2  · dt

 = � 14t
1
2  + 3t

3
2 	· dt

 =  14	
t

3
2

3
2

 + 3 
t

5
2

5
2

· dx

 = 28
3

 (x − 4)
3
2  

+ 6
5

 (x − 4)
5
2  

+ c

10. �
sin	(x + a)
cos	(x − b)  · dx

Solution :

	 	 = �
sin	[(x − b) + (a + b)]

cos	(x − b)  · dx	

	 	 = �
sin	(x − b)	·	cos	(a + b)	+	cos	(x − b)	·	sin	(a + b) 

cos	(x − b)  · dx

	 	 = �
sin	(x − b)	·	cos	(a + b)

cos	(x − b)  + 
cos	(x − b)	·	sin	(a + b)

cos	(x − b)

  =  �[cos	(a + b)	·	tan	(x − b) + sin	(a + b)] · dx

	 	 =		 cos	(a + b)	·	log	(sec	(x − b)) + x·sin	(a + b) + c
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11.  �
ex	+	1
ex −	1  · dx

Solution : 

 I =  �
ex −	1	+	2

ex −	1  · dx 

  = �
ex −	1
ex −	1  + 

2
ex −	1  · dx

  = � 1	+ 
2

ex −	1  · dx

  = � dx + �
2

e x (1	−	e−x)  · dx 

  = � 1dx + 2 �
 e−x

1	−	e−x  · dx 

  	 put	 (1	−	e−x) = t
   Differentiate	w.	r.	t.	x
   −(e−x) (−1) · dx =	1	dt

   e−x · dx =	1	dt

 I =  � 1dx + 2 �
1
t  · dt 

  = x + 2 · log	(	t ) + c

  = x + 2 log	(1	−	e−x ) + c

∴ �
ex	+	1
ex −	1  · dx = x + 2 log	(1	−	e−x ) + c

12.  �
1

1	−	tan	x · dx

Solution : 

 I = �
1

1	−	
sin	x
cos	x

 · dx 

  = � 
cos	x

cos	x −	sin	x

  = �
cos	x

√ 2 
1
√ 2  cos	x −	

1
√ 2  cos	x

 · dx

  = 
1
√ 2 �

	cos	x

cos	π
4
	cos	x −	sin	π

4
	sin	x

 · dx

  = 
1
√ 2 �

	cos	x

cos	 x + π
4

 · dx

   put	 x + π
4

 = t   ∴	x = t −	π
4

   Differentiating	both	sides
   1·dx =	1·dt

  = 
1
√ 2 �

cos	 t −	π
4

 

cos	t  · dt

  = 
1
√ 2 �

cos	t·cos	π
4

 + sin	t·sin	π
4

 

cos	t  · dt

  = 
1
√ 2  

�
1
√ 2  + 

1
√ 2  tan	t  · dt

  = 
1
√ 2  · 

1
√ 2  [ t + log	(sec	t )] + c

  = 
1
2  x + π

4
	+	log	sec	 x + π

4
 + c

	 To	 evaluate	 the	 integrals	 of	 type	 �
a cos	x + b sin	x
c cos	x + d sin	x  · dx,	 express	 the	 Numerator	 as	

Nr	=	λ	(Dr)	+	µ	(Dr)'	,	find	the	constants	λ	& µ	by	compairing	the	co-efficients	of	like	terms	and	then	
integrate	the	function.
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EXERCISE 3.2 (A)

 23. 
x 2

√ 9	−	x 6
 24. 

1
x (x3 −	1)

 

 25. 
1

x·log	x·log	(log	x)

II. Integrate the following functions w. r. t. x :

 1. 
cos 3x −	cos 4x
sin 3x + sin 4x

 2. 
cos x

sin (x −	a)

 3. 
sin (x −	a)
cos (x + b)

 

 4. 
1

sin x·cos x +	2	cos2x

 5. 
sin x + 2 cos x
3	sin x + 4 cos x

 6. 
1

2	+	3	tan x

 7. 
4 e x − 25
2 e x − 5

 8. 
20	+	12	e x 
3 e x + 4

 9. 
3 e 2x + 5
4 e 2x − 5

 10.	 cos8 x·cot	x

 11.	 tan5 x 12.	 cos7 x

 13.	 tan	3x·tan	2x·tan	x 

 14.	 sin5 x·cos8 x 15. 3cos2 x·sin	2x

 16. 
sin	6x

sin 10x·sin 4x
 17. 

sin	x·cos3 x
1	+	cos2x

I. Integrate the following functions w. r. t. x :

 1. 
(log	x) n

x
 2. 

(sin	−1 x)
3
2

√ 1	−	x2

 3. 
1	+	x

x·sin	(x	+	log	x)
 4. 

x·sec2 (x2)
√ tan3 (x2)

 5. 
e3x

e3x	+	1
 6. 

(x2 + 2)
(x2 +	1)

 · a x +	tan−1 x

 7. 
ex	·	log	(sin	ex)

tan	(ex)
 8. 

e2x +	1
e2x	−	1

 9. sin4 x·cos3 x 10. 
1

4x + 5x−11

 11. x9·sec2 (x10) 12. e3	log	x·(x4 +	1)−1

 13. 
√ tan	x 

sin	x·cos	x
 14. 

(x −	1)2

(x2 +	1)2 

 15. 
2	sin x·cos x

3	cos2 x + 4	sin2 x
 16. 

1
√ x +  x 3

 17. 
10	x9	+	10x·log	10

10x + x10	
 18. 

x n −	1

√ 1	+	4x n

 19. (2x + 1)√ x + 2 20. x5 ·√ a2 + x2

 21.	(5	−	3x)	(2	−	3x)
−
1
2  

22. 7	+	4x + 5x2

(2x + 3)
3
2  

3.2.3  Some Special Integrals 

1. �
1

x2 + a2 · dx = 
1
a 	tan

−1	
x
a  + c 2. �

1
x2 − a2 · dx = 

1
2a	log

 
x −	a
x + a  + c 

3. �
1

a2 − x2 · dx = 
1
2a	log

 
a + x
a −	x  + c 4. �

1
√ a2	−	x2  · dx = sin−1	

x
a  + c

5. �
1

√ x2	−	a2  · dx = log	( x + √ x2	−	a2 ) + c 6. �
1

√ x2 + a2  · dx = log	( x + √ x2 + a2 ) + c

7.	 �
1

x√ x2	−	a2 · dx = 
1
a  sec−1	

x
a  + c 
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While	evaluating	an	integral	there	is	no	unique	substitution,	we	can	use	some	standard	substitutions	and	try.

Let				I = �
1

x2 + a2 · dx

 put	 x = a·tan	θ ⇒	tan	θ	= 
x
a

 i.e.	θ	=	tan−1
x
a

	 ∴	dx =	a·sec2 θ	· d θ

  I = �
1

a2·tan2 θ	+ a2
 · a·sec2 θ	· d θ

	 	 = �
a·sec2 θ

a2(tan2 θ	+	1)
 · d θ

	 	 = �
sec2 θ

a·sec2 θ
 · d θ

  = 
1
a  � d θ  

  = 
1
a  θ	+ c

  = 
1
a 	tan

−1	
x
a  + c

∴	 �
1

x2 + a2 · dx = 
1
a 	tan

−1	
x
a  + c

e.g. 	�
1

x2 + 52 · dx = 
1
5 	tan

−1	
x
5  + c

Alternatively

Cosider,

 
d
dx

 
1
a  · tan−1	

x
a  + c

 = 
d
dx

 
1
a  · tan−1	

x
a

 + 
d
dx

 c

 = 
1
a  ·

1

1	+	
x
a

	2
 ·

d
dx

 
x
a

 +	0

 = 
1
a  ·

1

1	+	
x2

a2

·
1
a

 = 
1
a2 ·

1
a2 + x2

a2

 = 
1

x2 + a2

	 Therefore,	

	 by	definition	of	integration	

∴	 �
1

x2 + a2 · dx = 
1
a 	tan

−1	
x
a  + c

1.  �
1

x2 + a2 · dx = 
1
a 	tan

−1	
x
a  + c

Proof : 

No. Function Substitution
1. √ a2	−	x2  x = a·sin	θ (x = a·cos	θ	can	also	be	used.)

2. √ a2 + x2 x = a·tan	θ

3. √ x2	−	a2 x = a·sec	θ

4. a	−	x
a + x x = a·cos	2θ
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2. �
1

x2 − a2 · dx = 
1
2a	log

 
x −	a
x + a  + c

Proof : 

Let				I = �
1

x2 − a2 · dx

  = �
1

(x + a)(x − a) · dx

  = �
1
2a ·

1
x − a −		

1
x + a

 · dx

  = 
1
2a ·�

1
x − a −		

1
x + a

 · dx

  = 
1
2a ·[	log	(x − a) −	log	(x + a) ] + c

  = 
1
2a ·log 

x −	a
x + a  + c

∴	 	 �
1

x2 − a2 · dx = 
1
2a	log

 
x −	a
x + a  + c

e.g.	 	 �
1

x2 − 9  · dx = 
1

2(3) 	log
 

x −	3
x + 3  + c

Activity : 

3. �
1

a2 − x2 · dx = 
1
2a	log

 
a + x
a −	x  + c

Proof :  Consider,

   I = �
1

a2 − x2 · dx

  = �
1

(. . . .)( . . . .)
 · dx

  = �
1
2a ·

1

. . . .
 −		

1

. . . .
 · dx

  = 
1
2a ·�

. . . .

. . . .
 −		

1
a + x

 · dx

  = 
1
2a ·[	log	(a + x) −	log	(a − x) ] + c

  = 
1
2a ·log . . . .

. . . .
 + c

∴	 	 �
1

a2 − x2 · dx = 
1
2a	log

 
a + x
a −	x  + c

e.g.	 	 �
1

16	− x2  · dx = 
1

2(4) 	log
 

4 + x
4 −	x  + c

4. �
1

√ a2	−	x2  · dx = sin−1	
x
a  + c

Proof : 

Let	 		I		 = �
1

√ a2	−	x2  · dx

put	 x = a sin θ ⇒	 sin θ	=	
x
a

    ∴	 θ	=	sin−1	
x
a

	 	 dx = a ·	cos	θ	d θ

  I  = �
1

√ a2 − a2 sin2 θ
 ·a·cos	θ	d θ

  I  = �
a·cos	θ

a√ 1	− a2 sin2 θ
 · d θ

	 	 	 = �
cos	θ
cos	θ  · d θ

	 	 	 = �1·	dθ

	 	 	 = θ	+	c

∴	 �
1

√ a2 − x2  · dx = sin−1	
x
a  + c

e.g.	 �
1

√ 81	− x2 · dx = sin−1	
x
9  + c
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5. �
1

√ x2	−	a2  · dx = log	( x + √ x2	−	a2 ) + c

Proof : Let	 	 I		=  �
1

√ x2	−	a2  · dx

put	 x = a sec θ ⇒	 θ	=	sec−1	
x
a

∴	 dx = a·sec	θ·tan	θ·d θ

 I  = �
1

√ a2 sec2 θ	− a2  ·a·sec	θ·tan	θ·dθ

   = �
a·sec	θ·tan	θ
√ a2 (sec2 θ	−1)  · d θ

   = �
a·sec	θ·tan	θ
√ a2·	tan2 θ

 · d θ

   = �
a·sec	θ·tan	θ

a·	tan θ
 · d θ

	 	 = �sec	θ· d θ

	 	 =	 log	(sec	θ + tan	θ) + c

	 	 =	 log	(sec	θ + √ sec2 θ	−	1)	+	c

	 	 =	 log	
x
a  + 

x2

a2 −	1  + c1

	 	 =	 log	
x
a  + 

x2

a2 −	1 + c1

	 	 =	 log	
x + √ x2	−	a2

a
  + c1

	 	 =	 log	( x + √ x2	−	a2 ) −	log	a + c1

	 	 =	 log	( x + √ x2	−	a2 ) + c

	 	 	 where	c = c1	−	log	a

∴	 	 �
1

√ x2	−	a2  · dx = log	( x + √ x2	−	a2 ) + c

e.g.	 	 �
1

√ x2	−	16 · dx = log	( x + √ x2	−	16 ) + c

Activity : 

7. �
1

x√ x2	−	a2 · dx = 
1
a  sec−1	

x
a  + c

Proof :  Let	I		=  �
1

x√ x2	−	a2 · dx

put	 x = a sec θ ⇒	 θ	=	sec−1	
x
a

∴	 dx = a·sec	θ·tan	θ·d θ

 I  = �
1

a sec θ	√ . . . . .−	a2  ·  . . . . . . . . .

   = �
tan	θ

√ a2 ( . . . . . . . .)
 · d θ

	 	 = 
1
a  �1·	d θ

	 	 = 
1
a ·θ	+	c

  = 
1
a ·sec−1	

x
a  + c

∴	 	 �
1

x√ x2	−	a2 · dx = 
1
a  sec−1	

x
a  + c

e.g.	 	 �
1

x√ x2	−	64 · dx = 
1
8  sec−1	

x
8  + c

Activity :

6. �
1

√ a2	−	x2  · dx = log	( x + √ a2	−	x2 ) + c

Proof :	 use	substitution	x = a ·	tan θ

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
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3.2.4

   In	order	to	evaluate	the	integrals	of	type	�
1

ax2 + bx + c · dx	and	�
1

√ ax2 + bx + c  · dx 

		 we	can	use	the	following	steps.	

(1)	 Write	ax2 + bx + c	as,	a x2 + 
b
a  x + 

c
a 	,	a >	0	and	take	a	or	√ a	out	of	the	integral	sign.	

(2)  x2 + 
b
a  x 	 or	

b
a  x − x2 	 	 is	 expressed	 by	 the	method	 of	 completing	 square	 by	 adding	 and	

	 subtracting	
1
2 	coefficient	of	x

 2

	.

(3)	 Express	the	quadractic	expression	as	a	sum	or	difference	of	two	squares	

	 i.e.		((x + β)2  ± α2)  or	(α2 −	(x + β)2)
(4)	 We	know	that	 � f (x) dx = g (x) + c ⇒	 � f (x + β) dx = g (x + β) + c

         � f (αx + β) dx = 
1
α

 g (αx + β) + c

(5)	 Use	the	standard	integral	formula	and	express	the	result	in	terms	of	x.

3.2.5

  In	order	to	evaluate	the	integral	of	type	�
1

a sin2 x + b cos2 x + c· dx 

		 we	can	use	the	following	steps.	

(1)	 Divide	the	numerator	and	denominator	by	cos2 x or	sin2 x.

(2)	 In	denominator	replace	sec2 x	by	1	+	tan2 x and	/or	cosec2 x  by	1	+	cot2 x,	if	exists.

(3)	 Put	tan	x = t	or	cot	x = t	so	that	the	integral	reduces	to	the	form	�
1

at2 + bt + c  · dt 

(4)	 Use	the	standard	integral	formula	and	express	the	result	in	terms	of	x.	

3.2.6 

  To	evaluate	the	integral	of	the	form		�
1

a sin	x + b cos	x + c· dx	,	we	use	the	standard	substitution	

	 	 tan	
x
2  = t.	

	 	 If	tan	
x
2  = t	 then		 (i)	 sec2 

x
2 ·

1
2 ·dx =	1·dt

	 	 	 	 	 	 	 i.e.	dx = 
2

sec2 
x
2

·dt = 
2

1	+	tan2 
x
2

·dt = 
2 dt
1	+	t2

	 	 	 	 	 	 (ii)	 sin x = 
2	tan 

x
2

1	+	tan2 
x
2

 = 
2t

1	+	t2
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	 	 	 	 	 	 (iii)	 cos x = 
1	−	tan2 

x
2

1	+	tan2 
x
2

 = 
1	− t2

1	+	t2

	 We	put				tan	x = t				for	the	integral	of	the	type		�
1

a sin	2x + b cos	2x + c· dx 

	 therefore		 	 	 dx = 
1

1	+	t2 ·dt

     sin	2x = 
2t

1	+	t2 ·dt

	 and		 	 	 cos	2x = 
1	− t2

1	+	t2 ·dt 

	 With	this	substitution	the	integral	reduces	to	the	form	�
1

ax2 + bx + c · dx.	Now	use	the	standard	
integral	formula	and	express	the	result	in	terms	of	x.	

SOLVED EXAMPLES 

Ex. : Evaluate :

2.  �
1

a2 − b2 x2  · dx 

Solution :  I  = �
1

b2 
a2

b2  −	x2

 · dx

   = 
1
b2·�

1
a
b

 2

 −	x2

 · dx

⸪	 �
1

a2 − x2 · dx = 
1
2a	log

 
a + x
a −	x  + c

 I  = 
1
b2·

1

2 
a
b

 
·	log	

a
b 	+ x

a
b 	−	x

 + c

  = 
1
b2·

1

2 
a
b

 
·	log	

a
b 	+ x

a
b 	−	x

+ c

  = 
1

2ab·log  a + bx
a −	bx   + c

1.  �
1

4x2	+	11 · dx 

Solution :  I  = �
1

4 x2 + 
11
4

 · dx

   = 
1
4 ·�

1

x2 + 
√ 11

2

 2 · dx

⸪	 �
1

x2 + a2 · dx = 
1
a 	tan

−1	
x
a  + c

  I  = 
1
4 ·

1
√ 11

2

· tan−1	
x

√ 11
2

 + c

   = 
1

2 √ 11
	tan−1	

2x
√ 11

 + c
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3.  �
1

√ 3x2 −	7  · dx 

Solution :  I = � 1

	3 x2 −	
7
3

 · dx

   = � 1

√ 3 · 	x2 −	
√ 7
√ 3

 2
 · dx

   = 
1
√ 3

 · �
1

	x2 −	
√ 7
√ 3

 2
 · dx

⸪	 �
1

√ x2	−	a2  · dx = log	| x + √ x2	−	a2  | + c

  I = 
1
√ 3

·log  x + 	x2 −	
√ 7
√ 3

 2

 	+ c

   = 
1
√ 3

·log  x + 	x2 −	
7
3 	  + c

4.  �
1

x2	+	8x +	12 · dx

Solution :  I = �
1

x2	+	8x +	16	−	4  · dx

   = �
1

(x + 4)2	−	(2)2  · dx 

⸪	 �
1

x2 − a2 · dx = 
1
2a	log

 
x −	a
x + a  + c

  I = 
1

2(2)·log 
(x	+	4)	−	2
(x + 4) + 2  + c

   = 
1
4 ·log 

x + 2
x + 6  + c

∴	 �
1

x2	+	8x +	12 · dx = 
1
4 ·log 

x + 2
x + 6  + c

5.  �
1

√ 3x2 − 4x + 2 · dx 

Solution : = � 1

	3 x2 −	
4
3  x + 

2
3

 · dx

	 ⸪	 �
1
2 	coefficient	of	x

 2  

=  
1
2  −	

4
3

2

= −	
2
3

2

=  
4
9  �

 = � 1

√ 3 · 	x2 −	
4
3  x + 

4
9  −	

4
9  + 

2
3

 · dx

 = 
1
√ 3

 · �
1

	 x2 −	
4
3  x + 

4
9 	+ 

2
3  −	

4
9

 · dx

 = 
1
√ 3

 · �
1

	 x −	
2
3

2

+	
√ 2
3

2
 · dx

⸪	 �
1

√ x2 + a2  · dx = log	| x + √ x2 + a2  | + c

= 
1
√ 3

·log x −	
2
3  + 	 x −	

2
3

 2 

+	
√ 2
3

2

  + c

= 
1
√ 3

·log  x −	
2
3  + 	x2 −	

4
3  x

 

+	
2
3 	 	+ c
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6.  �
1

3 −	10x − 25x2  · dx 

Solution : 

 I = � 1

25 
3
25  −	

10
25  x −	x2

 · dx

  =  � 1

25 
3
25  −	 x2 + 

2
5  x

 · dx

	 ⸪	 �
1
2 	coefficient	of	x

 2  

  
=  

1
2  

2
5

2

= 
1
5

2

= 
1
25  �

 = 
1
25 ·�

1
3
25  −	 x2	−	

2
5  x + 

1
25  − 

1
25 	

 · dx

 = 
1
25 ·�

1
3
25  −	 x2	−	

2
5  x + 

1
25 	+ 

1
25

 · dx

 = 
1
25 ·�

1
4
25  −	 x2	−	

2
5  x + 

1
25  

 · dx

 = 
1
25 ·�

1
2
5

2

−	 x	−	
1
5

2  · dx

⸪	  �
1

a2 − x2 · dx = 
1
2a	log

 
a + x
a −	x  + c

 I = 
1
25 ·

1

2 
2
5

 
·	log	  

2
5 	+ x	−	

1
5

2
5 	−	 x	−	

1
5

 + c

  = 
1
5 ·log 

1	+ 5x
3 −	5x  + c

Activity :

7.  �
1

√ 1	+ x − x2  · dx 

Solution : I  = � 1

	1	− 
.	.	.	.	.	.	.	.	.	.	.

 · dx

	 ⸪	 �
1
2 	coefficient	of	x

 2  

  

=  
1
2 	(−	1)

2

= −	
1
2

2

= 
1
4  �

 = � 1

 	1	−	 x2 −	x + 
1
4  −	

1
4

 · dx

 = � 1

	1	− 
.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.

 · dx

   I   = � 1

	
√ 5
2

2 

−	 x	−	
1
2

2
 · dx

⸪	 �
1

√ a2	−	x2  · dx = sin−1	
x
a  + c

 I = .	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.

  = .	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.
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8.  �
sin	2x

3	sin4 x	−	4 sin2 x +	1  · dx

Solution :  I  = �
sin	2x

3	(sin2 x)2	−	4 (sin2 x) + 1  · dx

put	 sin2 x = t 	 	 ∴	2	sin	x·cos	x·dx =	1·dt 

	 	 	 	 	 ∴		 sin	2x·dx =	1·dt

 = �
1

3t2	−	4t + 1  · dt

 = � 1

3 t2	−	
4
3  t + 

1
3

 · dt

	 	 	 ⸪	 �
1
2 	coefficient	of	t

 2  

 
= 

1
2  −	

4
3

2

= −	
2
3

2

= 
4
9  �

   I  = 
1
3 ·�

1

t2	−	
4
3  t + 

4
9  − 

4
9  + 

1
3

 · dt

 = 
1
3 ·�

1

t2	−	
4
3  t + 

4
9 	− 

1
9

 · dt

 = 
1
3 ·�

1

t	−	
2
3

2 

−	
1
3

2  · dt

 = 
1
3 ·

1

2 
1
3

 
·	log	  

t	−	
2
3

	−	
1
3

t	−	
2
3

	+ 
1
3

  + c

 = 
1
2 ·log 

3t −	3
3t −	1   + c

 = 
1
2 ·log 

3 sin2 x −	3
3 sin2 x −	1   + c

∴ �
sin	2x

3	sin4 x	−	4 sin2 x +	1  · dx

 = 
1
2 ·log  

3 sin2 x −	3
3 sin2 x −	1  	+ c

9.  � e
x
2

√ e−x	−	e x
 · dx

Solution : 

   I  = �
√ e x 

1
e x
	−	e x

 · dx

 = � √ e x 

1	−	(e x)2

e x

 · dx

 = � √ e x 

1	−	(e x)2

√ e x

 · dx

 = � √ e x · √ e x

1	−	(e x)2
 · dx

 = �
e x

1	−	(e x)2
 · dx

put	 	 e x = t 	 	

∴	 	 e x·dx =	1·dt

   I  = �
1

1	−	t 2
 · dt

	 =	 sin−1 (t ) + c

	 =	 sin−1 (e x ) + c

∴	� e
x
2

√ e−x	−	e x
 · dx =	sin−1 (e x ) + c
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10.  �(√ tan	x + √ cot x ) · dx

Solution :    I = � √ tan	x + 
1

√ tan	x
· dx

    = �
tan	x	+	1
√ tan	x

 · dx

put	 	 √ tan	x = t 	 ∴	tan	x = t 
2	∴	x =	tan−1	t 

2

∴	 	 1·dx =  
1

1	+	(t 2)2  ·2t· dt

⸪	 	 sec2 x ·dx = 2t· dt

∴ dx = 
2t

sec2 x ·dx = 
2t

1	+	tan2 x ·dx = 
2t

1	+	t 
4 ·dt

 = �
t 2	+	1

t  · 
2t

1	+	t 4
 · dt = 2�

t 2	+	1
t 4	+	1  · dt

 = 2�
1	+	

1
t 

2

t 
2 + 

1
t 

2

 · dt = 2�
1	+	

1
t 

2

t	−	
1
t

2

	+ 2

 · dt

put	 	 t	−	
1
t

 = u ⸪ 
d
dt

 t	−	
1
t
	=	1	+	

1
t 

2

	 	 	 	 	 ∴ t	−	 −	
1
t 

2
	dt =	1·du

	 	 	 	 	 ∴ 1	+	
1
t 

2
	dt =	1·du

   I = 2�
1

u2 + 2  · du

 = 2�
1

u2 + (√ 2)2  · du

 = 2· 
1
√ 2

 · tan−1 
u
√ 2

	+ c

 = √ 2· tan−1 
t	−	

1
t

√ 2
	+ c

 = √ 2· tan−1 
t 2	−	1
√ 2 t 	+ c

 = √ 2· tan−1 
tan	x	−	1
√ 2·√ tan	x

	+ c

11.  �
1

5	−	4 cos	x  · dx

Solution : put	 tan	
x
2  = t

∴  dx = 
2

1	+	t2 ·dt and		 cos	x = 
1	−	t 2

1	+	t 2

 I = �
1	

2
1	+	t2

5	−	4	
1	−	t 2

1	+	t 2

 · dt

  = �

2
1	+	t2

5	(1	+	t 2)	−	4	(1	−	t 2)
1	+	t 2

 · dt

  = �
2

5	−	5t 2	−	4	−	4t 2
 · dt

  = �
2

9t 2	+	1  · dt

  = � 1

9	 t 2 + 
1
9

 · dt

  = 
2
9 ·�

1

t 2 + 
1
3

2  · dt

  = 
2
9 ·

1
1
3

·tan−1	
t
1
3

 + c

  = 
2
3 ·tan

−1	(2t )+ c

  = 
2
3 ·tan

−1	 2 tan	
x
2 	+ c

∴ �
1

5	−	4 cos	x  · dx = 
2
3 ·tan

−1	 2 tan	
x
2 	+ c
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12.  �
1

2	−	3 sin	2x  · dx

Solution : put	 tan	x = t

∴  dx = 
1

1	+	t2 ·dt and		 sin	2x = 
2

1	+	t2

I = �
1	

1
1	+	t2

2	−	3	
2

1	+	t2

 · dt

 = �

1
1	+	t2

2	(1	+	t 2)	−	3	(2t)
1	+	t 2

 · dt

 = �
1

2 + 2t 2	−	6t  · dt = �
1

2 ( t 2	−	3t +	1) · dt

	 ⸪	 �
1
2 	coefficient	of	t

 2  

  
=  

1
2 	(−3)

2

= −	
3
2

2

= 
9
4  �

 = 
1
2 ·�

1

t2	−	3t + 
9
4  − 

9
4  + 1

 · dt

 = 
1
2 ·�

1

t2	−	3t + 
9
4 	− 

5
4

 · dt

 = 
1
2 ·�

1

t	−	
3
2

2 

−	
√ 5
2

2 · dt

 = 
1
2 ·

1

2 
√ 5
2

·	log	  

t	−	
3
2

	−	
√ 5
2

t	−	
3
2

	+ 
√ 5
2

  + c

 = 
1

2 √ 5
·log 2t −	3 −	√ 5

2t −	3 + √ 5
  + c

 = 
1

2 √ 5
·log  2	tan	x −	3 −	√ 5

2	tan	x −	3 + √ 5
  + c

13.  �
1

3	−	2	sin	x + 5 cos	x  · dx

Solution : put	 tan	
x
2  = t 

  ∴	 dx = 
2

1	+	t2  

∴ sin	x = 
2

1	+	t2 ·dt and		 cos	x = 
1	−	t 2

1	+	t 2

I = �
1	

2
1	+	t2

3	−	2	
2

1	+	t2 	+ 5 
1	−	t 2

1	+	t 2

 · dt

 = �

2
1	+	t2

3	(1	+	t 2)	−	2	(2t)	+	5	(1	−	t 2) 
1	+	t 2

 · dt

 = �
2

3 + 3t 2	−	4t +	5	−	5t 2
 · dt

 = �
2

8	−	4t	−	2t 2
 · dt 

 = �
1

4	−	2t	−	t 2
 · dt 

 = �
1

4	−	(t 2 + 2t)  · dt 

 = �
1

4	−	(t 2 + 2t +	1	−	1)  · dt

 = �
1

5	−	(t 2 + 2t +	1) · dt

 = � 
1

(√ 5) 
2 −	(t 	+	1) 

2 · dt

 = 
1

2 (√ 5)·log
 
√ 5 + (t + 1)
√ 5 − (t + 1)   + c

 = 
1

2 √ 5
·log  

√ 5 +	1	+ tan	
x
2

√ 5 −	1	− tan	
x
2

  + c
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Activity : 14. �
1

sin	x	−	√ 3 cos	x  · dx

Solution : put	 tan	
x
2  = t ∴	dx = .	.	.	.	.	.	.	.	

∴ sin	x = .	.	.	.	.	.	.	.	 and		 cos	x = .	.	.	.	.	.	.	.	

I = �
1	

2
1	+	t2

.	.	.	.	.	.	.	.	+ √ 3  .	.	.	.	.	.	.	.
 · dt

 = �

2
1	+	t2

.	.	.	.
1	+	t 2

 · dt

 = �
2

.	.	.	.	.	.	.	.
 · dt

 = � 2

√ 3 1	−	 t 2 −	
2

√ 3
 t

 · dt

 = 
2

√ 3
·�

1

1	−	 t2	−	
2

√ 3
 t + 

1
3  − 

1
3

 · dt

 = 
2

√ 3
·�

1

1	−	 t2	−	
2

√ 3
 t + 

1
3 	+ 

1
3

 · dt

 = 
2

√ 3
·�

1

.	.	.	. 	−	 t	−	
1

√ 3

2  · dt

 = 
2

√ 3
·�

1

(	.	.	.	)2

 

−	(	.	.	.	)2
 · dt

 = 
2
√ 3

·
1

2 (...)
·log    + c

 = ·log  + c

 = 
1
2 ·log 

1	+ √ 3	tan	
x
2

3 −	√ 3	tan	
x
2

 + c

Alternative method :

14. �
1

sin	x	−	√ 3 cos	x  · dx

Solution : For	any	two	positive	numbers	a	and	b,	
	 	 	 we	can	find	an	angle	θ,	such	that	

∴ sin	θ = 
a

 a 2	−	b 2
  and		 cos	θ = 

b

 a 2	−	b 2

	 Using	this	we	express	sin	x	−	√ 3 cos	x 

 = √ 1	+	3	(cos	θ·sin	x −	sin	θ·cos	x)

 =	2·sin	(x −	θ)

 =	2·sin	 x	−	
π
3

∴	I = �
1

2·sin	 x	−	
π
3

 · dx

 = 
1
2 ·�cosec	 x	−	

π
3  · dx

 = 
1
2 ·log	 cosec	 x	−	

π
3 	− cot	 x	−	

π
3 	  + c

 = 
1
2 ·log	 tan	

x
2 	+ 

π
6 		  + c
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15.  �
1

3	+	2	sin2 x + 5 cos2 x · dx

Solution : Divide	 Numerator	 and	 Denominator	
   by cos2 x

I = �

1
cos2 x

3	+	2	sin2 x + 5 cos2 x
cos2 x

 · dx

 = �
sec2 x

3	sec2 x + 2 tan2 x + 5  · dx

 = �
sec2 x

3	(1	+	tan2 x) + 2 tan2 x + 5  · dx

 = �
sec2 x

5 tan2 x	+	8  · dx

 = 
1
5 ·�

sec2 x

tan2 x + 
8
5

 · dx

	 put	 tan	x = t 	∴ sec2 x·dx =	1·dt

I = 
1
5 ·�

1

t 2 + 
8
5

 · dt

 = 
1
5 ·�

1

t 2 + 
√ 8
√ 5

2 · dt

 = 
1
5 ·

1

√ 8
√ 5

 · tan−1 
t

√ 8
√ 5

	+ c

 = 
1
√ 5

·
1

2 √ 2
· tan−1 

√ 5 t
2 √ 2

	+ c

 = 
1

2 √ 10
· tan−1 

√ 5	tan	x
2 √ 2

	+ c

∴	�
1

3	+	2	sin2 x + 5 cos2 x · dx =

 
1

2 √ 10
· tan−1 

√ 5	tan	x
2 √ 2

	+ c

16.  �
cos	θ
cos	3θ  · d θ

Solution : I = �
cos	θ

4	cos3 θ	−	3	cos	θ  · d θ

	 	 	 = �
1

4	cos2 θ	−	3  · d θ

Divide	Numerator	and	Denominator	by cos2 θ

I = �

1
cos2 θ

4	cos2 θ	−	3
cos2 θ

 · d θ

	 = �
sec2 θ

4 −	3	sec2 θ
 · d θ

	 = �
sec2 θ

4 −	3	(1	+	tan2 θ)
 · d θ

	 = �
sec2 θ

1	−	3	tan2 θ
 · d θ

	 put	 tan	θ = t ∴	sec2 θ	· d θ	=	1·dt

I = �
1

1	− 3t2  ·dt

 = 
1
3 ·�

1
1
3  −	t 2

 · dt

 = 
1
3 ·�

1
1
√ 3

2 

−	t 2

 · dt

 = 
1
3 ·

1

2 
1
√ 3

·	log	  

1
√ 3

	+ t

1
√ 3

	−	t
  + c

 = 
1

2 √ 3
·log  1 + √ 3 t

1 −	√ 3 t   + c

 = 
1

2 √ 3
·log  

1 + √ 3	tan	θ
1 −	√ 3	tan	θ

  + c

∴	�
cos	θ
cos	3θ  · d θ	= 

1
2 √ 3

·log  
1 + √ 3	tan	θ
1 −	√ 3	tan	θ

  + c
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EXERCISE 3.2 (B)

I. Evaluate the following : 

 1. �
1

4x2	−	3·dx 2. �
1

25	−	9x2 ·dx 3. �
1

7	+	2x2 ·dx

 4. � 1
√ 3x2 +	8

 ·dx 5. � 1
√ 11	−	4x2

 ·dx 6. � 1
√ 2x2	− 5

 ·dx

 7. �
9 + x
9	−	x  ·dx 8. �

2 + x
2	−	x  ·dx 9. �

10	+	x
10	−	x ·dx 

 10. �
1

x2	+	8x +	12·dx 11. �
1

1	+	x −	x2 ·dx 12. �
1

4x2 − 20x + 17 ·dx

	 13. �
1

5	−	4x −	3x2 ·dx 14. �
1

√ 3x2 + 5x	+	7 ·dx 15. �
1

√ x2	+	8x	−	20 ·dx

 16. �
1

√ 8	−	3x + 2x2 ·dx 17. �
1

√ (x	−	3)	(x + 2)·dx 18.  �
1

4	+	3	cos2 x·dx

 19.	 �
1

cos	2x	+	3	sin2 x ·dx 20. �
sin	x
sin	3x ·dx

II. Integrate the following functions w. r. t. x :

 1. �
1

3	+	2	sin	x ·dx 2. �
1

4	−	5	cos	x·dx 3. �
1

2	+	cos	x	−	sin	x·dx

 4. �
1

3	+	2	sin	x	−	cos	x ·dx 5. �
1

3	−	2	cos	2x ·dx 6. �
1

2	sin	2x	−	3·dx

 7. �
1

3	+	2	sin	2x	+	4	cos	2x ·dx 8. �
1

cos	x	−	sin	x·dx 9. �
1

cos	x	−	√ 3	sin	x
·dx
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3.2.6 Integral of the form �
px + q

ax2 + bx + c · dx and �
px + q

√ ax2 + bx + c  · dx 

The	integral	of	the	form	�
px + q

ax2 + bx + c · dx 	is	evaluated	by	expressing	the	integral	in	the	form 

� 
A · 

d
dx

 (ax2 + bx + c)

ax2 + bx + c  · dx + � 
B

ax2 + bx + c · dx  for	some	constants	A	and	B.	

The	numerator,	px + q =  A · 
d
dx

 (ax2 + bx + c) + B

	 	 i.e.	 Nr	=	A · 
d
dx
	Dr	+	B

The	first	integral	is	evaluated	by	putting	ax2 + bx + c = t

The	Second	integral	is	evaluated	by	expressing	the	integrand	in	the	form	either	

1
A2 + t2	or	

1
t2 − A2	or	

1
A2 − t2 and	applying	the	methods	discussed	previously.

The	integral	of	the	form	�
px + q

√ ax2 + bx + c
 · dx		is	evaluated	by	expressing	the	integral	in	the	form	

� 
A · 

d
dx

 (ax2 + bx + c)

√ ax2 + bx + c  · dx + �
B

√ ax2 + bx + c  · dx  for	constants	A	and	B.	

The	numerator,	px + q =  A · 
d
dx

 (ax2 + bx + c) + B	

The	first	integral	is	evaluated	by	putting	ax2 + bx + c = t

The	second	integral	is	evaluated	by	expressing	the	integrand	in	the	form	either	

1

√ A2 + t2
	or	

1

√ t2 − A2
	or	

1

√ A2 − t2
 and	applying	the	methods	which	discussed	previously.
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SOLVED EXAMPLES 

1.  �
2x	−	3

3x2 + 4x + 5 ·dx

Solution : 2x	−	3	 =		A · 
d
dx

 (3x2 + 4x + 5) + B

   2x	−	3	 =		A (6x + 4) + B

     =  (6A) x + (4A + B)

compairing	 the	 sides/	 the	 co−efficients	 of	 like	
variables	and	constants
   6A = 2 and	 4A + B =	−	3

  ⇒	 A = 
1
3  and	 B =	−	

13
3

= � 

1
3 ·

d
dx

 (3x2 + 4x + 5) + −	
13
3

3x2 + 4x + 5
 ·dx

= 
1
3 ·� 

d
dx

 (3x2 + 4x + 5)

3x2 + 4x + 5 ·dx −	
13
3

� 1
3x2 + 4x + 5

·dx

= 
1
3 ·� 6x + 4

3x2 + 4x + 5
·dx −	

13
3

� 1
3x2 + 4x + 5

·dx

= I1	−	I2    .	.	.	.	.	(i)

∴	 I1 = 
1
3 ·� 6x + 4

3x2 + 4x + 5
·dx 

put	 3x2 + 4x + 5 = t

∴	 (6x + 4)·dx	=	1·dt

I1 = 
1
3 ·�

1
t ·dt

 = 
1
3 ·log	(t ) + c1

 = 
1
3 ·log	( 3x2 + 4x + 5 ) + c1 .	.	.	.	.	(ii)

∴	 I2 = 
13
3 ·� 1

3x2 + 4x + 5
·dx 

  = 
13
3 ·

1
3 ·�

1

x2 + 
4
3 x + 

5
3

·dx

	 ⸪	 �
1
2 	coefficient	of	t

 2  

    
=  

1
2  

4
3

2

= 
2
3

2

= 
4
9  �

I2 = 
13
9 ·�

1

x2 + 
4
3 x + 

4
9  − 

4
9  + 

5
3

 · dx

 = 
13
9 ·�

1

x2 + 
4
3 x + 

4
9  + 

11
9

 · dx

 = 
13
9 ·�

1

x + 
2
3

2 

+	
√ 11

3

2 · dx

⸪		 � 1
X 2 + A2·dx = 

1
A  tan−1	

X
A

	+ c

 = 
13
9 ·

1

√ 11
3

·tan−1	
x + 

2
3

√ 11
3

  + c1

I2 =  
13

3 √ 11
· tan−1 

3x + 2
√ 11

	+ c2     .	.	.	.	.	(iii)

 thus,	from	(i),	(ii)	and	(iii)

∴ �
2x	−	3

3x2 + 4x + 5 ·dx

= 
1
3 ·log	( 3x2 + 4x + 5 ) −	

13
3 √ 11

· tan−1 
3x + 2
√ 11

+ c

 ( ⸪	c1	+ c2 = c)
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2.  �
x −	5
x −	7 ·dx

Solution : I = �
(x −	5) · (x −	5)
(x −	7) · (x −	5) · dx = �

(x −	5)2

x2 −	12x + 35 · dx

⸪   x	−	5	 =		A · 
d
dx

 (x2 −	12x + 35) + B

   x	−	5	 =		A (2x −	12) + B

     =  (2A) x + (−	12A + B)

compairing,	the	co−efficients	of	like	variables	and	constants

∴	 I2 = �
1

√ x2 −	12x + 35
·dx

  = �
1

√ x2 −	12x +	36	−	1
·dx

  = �
1

√ (x −	6)2 −	(1)2
·dx

⸪		 � 1
√ X 2	−	A2 ·dx = log	(X + √ X 2	−	A2	) + c

I2  = log	((x −	6) + √ (x −	6)2 −	1	) + c2

  = log	((x −	6) + √ x2 −	12x + 35	) + c2

.	.	.	.	.	(iii)

 Thus,	from	(i),	(ii)	and	(iii)

 �
x −	5
x −	7 ·dx

= √ x2 −	12x + 35 + log	((x −	6) + √ x2 −	12x + 35	) + c

 ( c1	+ c2 = c)

   2A =	1 and	 −	12A + B =	−	5

  ⇒	 A = 
1
2  and	 B =	1

I = � 

1
2 ·

d
dx

 (x2 −	12x + 35)	+	(1)

√ x2 −	12x + 35
 ·dx

= 
1
2 ·� 

d
dx

 (x2 −	12x + 35)

√ x2 −	12x + 35
·dx +� 1

√ x2 −	12x + 35
·dx

= I1 + I2    .	.	.	.	.	(i)

∴	 I1 = 
1
2 ·�

2x −	12

√ x2 −	12x + 35
·dx 

put	 x2 −	12x + 35 = t

∴	 (2x −	12)·dx	=	1·dt

I1 = 
1
2 ·�

1

√ t
·dt 

 =  �
1

2√ t
 ·dt

 = √ t  + c1

 = √ x2 −	12x + 35 + c1 .	.	.	.	.	(ii)
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Activity :

3.  �
8 −	x

x ·dx

Solution : = � (8 −	x)
x

 × (       )
(       )

 · dx  = �
(                )2

8x −	x2  · dx  = �
(8 −	x)

√ 8x −	x2 
 · dx

⸪   8	−	x =  A · 
d
dx

 (8x −	x2) + B

   8	−	x =  A (.............)	+	B

     =  (8A + B) −	2Ax

compairing,	the	co−efficients	of	like	variables	and	constants

  8A + B =	..... and	 −	2A	=	−1

  ⇒	 A = 
...
... and	 B =	.....

= �

1
2 ·

d
dx

 (8x −	x2) + (4)

√ 8x −	x2 
 ·dx

= 
1
2 ·�

d
dx

 (8x −	x2)

√ 8x −	x2 
·dx + 4·�

1

√ 8x −	x2 
·dx

= 
1
2 ·�

8 −	2x 

√ 8x −	x2 
·dx + 4·�

1

√ 8x −	x2 
·dx

= I1 + I2    .	.	.	.	.	(i)

∴	 I1 = 
1
2 ·�

8 −	2x 

√ 8x −	x2 
·dx 

put	 ..................... = t

∴	 (.............)·dx	=	1·dt

 = 
1
2 ·�

1

√ t
·dt 

 =  �
1

2√ t
 ·dt

 = √ t  + c1

 = √ 8x −	x2  + c1 .	.	.	.	.	(ii)

∴	 I2 = 4·�
1

√ 8x −	x2 
·dx

  = 4·�
1

√ −	(.....................)
·dx

  = 4·�
1

√ ..........	−	(........)
·dx

  = 4·�
1

√ ..........	−	(x −	4)2
·dx

⸪		 � 1
√ A 2	−	X2 ·dx = sin−1	

X
A

	+ c

 I2 = 4·sin−1	
x −	4

4
 + c2  .	.	.	.	.	(iii)

 thus,	from	(i),	(ii)	and	(iii)

∴ �
8 −	x

x ·dx

 = √ 8x −	x2 + 4·sin−1	
x −	4

4
 + c

 ( ⸪	c1	+ c2 = c)
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EXERCISE 3.2 (C)

I. Evaluate :

 1.	 �
3x + 4

x2 + 6x + 5 ·dx 2.	 �
2x	+	1

x2 + 4x	−	5·dx 3.	 �
2x + 3

2x2 + 3x	−	1 ·dx

 4.	 �
3x + 4

√ 2x2 + 2x	+	1
·dx 5.	 �

7x + 3

√ 3 + 2x	−	x2
·dx 6.	 �

x −	7
x −	9 ·dx

 7.	 �
9 −	x

x ·dx 8.	 �
3	cos	x

4	sin2 x + 4 sin	x −	1 · dx 9.	 �
e3x −	e2x

ex +	1 ·dx

3.3 Integration by parts :

This	 method	 is	 useful	 when	 the	 integrand	 is	 expressed	 as	 a	 product	 of	 two	 different	 types	 of	
functions;	one	of	which	can	be	differentiated	and	the	other	can	be	integrated	conveniently.	

The	following	theorem	gives	the	rule	of	integration	by	parts.

3.3.1 Theorem :  If	u	and	v	are	two	differentiable	functions	of	x	then	

       �u·v·dx = u·�v·dx −	� d
dx

·u 	(�v·dx)·dx

Proof :  Let	 	 �v·dx = w .	.	.	(i)		 ⇒	 v = 
dw
dx

  .	.	.	(ii)

	 	 	 	 	 Consider,		
d
dx

 (u·w) = u·
d
dx

 w + w·
d
dx

 u

        = u·v + w·
du
dx

		 	 	 	 By	definition	of	integration

       u·w = � u·v + w·
du
dx

 ·dx

        = �u·v·dx + �w·
du
dx

·dx

        = �u·v·dx + �
du
dx

·w·dx

      ∴ u·�v·dx = �u·v·dx + �
du
dx

·�v·dx·dx

      ∴ �u·v·dx = u·�v·dx −	�
d
dx

·u 	(�v·dx)·dx

     In	short, �u·v = u·�v	−	�(u' �v)
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�x·e x·dx = x�e x·dx −	�
d(x)
dx

·�e x·dx ·dx

   = x·e x −	�(1)·e x·dx

   = x·e x −	�e x·dx

   = x·e x −	e x + c

now	let	us	reverse	the	choise	of	u	and	v 

∴	 �e x·x·dx = e x·�x 1·dx −	�
d
dx

·e x�x·dx·dx

   = e x ·
x2

2
	−	�e x·

x2

2
·dx

   = 
1
2 ·e x·x2 −	

1
2 ·�e x·x2·dx

We	arrive	at	an	integral	�e x·x2·dx	which	is	more	difficult,	but	it	helps	to	get	�e x·x2·dx

Thus	it	is	essential	to	make	a	proper	choise	of	the	first	function	and	the	second	function.	The	first	
function	to	be	selected	will	be	the	one,	which	comes	first	in	the	order	of		L  I  A  T  E.	

      L  Logarithmic function.

      I Inverse trigonometric function. 

      A  Algebric function. 

      T Trigonometric function. 

      E  Exponential function. 

For example : �sin x·x·dx

    = �x·sin x·dx   .	.	.	.	.	by	LIATE

    = x·�sin x·dx −	�
d
dx

·x·�sin x·dx·dx

    = x·(−	cos x)	−	�(1)	(−	cos x)·dx

    =	−	x·cos x + �cos x·dx

    =	−	x·cos x	+	sin x + c

For example :
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SOLVED EXAMPLES 

1. �x2·5x·dx

Solution : I = x2·�5x·dx −	�
d
dx

·x2·�5x·dx·dx 

    =  x2·5x·
1

log	5
 −	�2x·5x·

1
log	5

·dx

    = 
1

log	5
·x2·5x	−	

2
log	5

 � x·�5x·dx −	�
d
dx

·x·�5x·dx·dx �

    = 
1

log	5
·x2·5x	−	

2
log	5

 � x·5x·
1

log	5
 −	�(1)	 5x·

1
log	5

·dx �

    = 
1

log	5
·x2·5x	−	

2
log	5

 � 
1

log	5
·x·5x· −	�

1
log	5

·5x·dx �

    = 
1

log	5
·x2·5x	−	

2
log	5

 � 
1

log	5
·x·5x· −	

1
log	5

·5x·
1

log	5
 � + c

    = 
1

log	5
·x2·5x	−	

2
(log	5)2  ·x·5x· + 

2
(log	5)3 ·5x + c

∴ �x2·5x·dx = 
5x

log	5
· � x2	−	

2x
log	5

 + 
2

(log	5)2  � + c

2. �x·tan−1	x·dx

Solution : I = �(tan−1	x·)x·dx   .	.	.	.	.	by	LIATE

    = tan−1	x·�x·dx −	�
d
dx

·tan−1	x·�x·dx·dx

    = tan−1	x·
x2

2
 −	�

1
1	+	x2·

x2

2
·dx

    = 
1
2  x2·tan−1	x	−	

1
2  �

x2

1	+	x2·dx

    = 
1
2  x2·tan−1	x	−	

1
2  �

1	+	x2 −	1
1	+	x2 ·dx

    = 
1
2  x2·tan−1	x	−	

1
2  � 1	−	

1
1	+	x2 ·dx

    = 
1
2  x2·tan−1	x	−	

1
2  [x	−	tan−1	x] + c

∴ �x·tan−1	x·dx = 
1
2  x2·tan−1	x	−	

1
2  x + 

1
2  tan−1	x + c
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3. � x
1	−	sin	x

 ·dx

Solution : I  = � x
1	−	sin	x

·
(1	+	sin	x)
(1	+	sin	x)

·dx

  = �x (1	+	sin	x)
1	−	sin2 x

·dx = �
x (1	+	sin	x)

cos2 x
·dx = �x·

1
cos2 x

 + 
sin	x
cos2 x

·dx

  = �x·(sec2 x + sec x·tan x)·dx

  = �x·sec2 x·dx + �x·sec x·tan x·dx

  = x·�sec2 x·dx −	�
d
dx

 x·�sec2 x·dx·dx 	+	 x·�sec x·tan x·dx −� d
dx

·x·�sec x·tan x·dx·dx 	

  = x·tan x −	�(1)·tan x·dx + x·sec x −	�(1)·sec x·dx

  = x·tan x −	log	(sec x) + x·sec x −	log	(sec x + tan x) + c

  = x·(sec x + tan x) −	log	(sec x) −	log	(sec x + tan x) + c

∴ � x
1	−	sin	x

 ·dx = x·(sec x + tan x) −	log	[(sec x) (sec x + tan x)] + c

4. �e2x·	sin	3x·dx

Solution :   I = �e2x·	sin	3x·dx  

	 Here	we	use	repeated	integration	by	parts.

 To	evaluate	�eax·	sin	(bx + c)·dx ; �eax·	cos	(bx + c)·dx  any	function	can	be	taken	as	a	first	function.	

 I = e2x·�sin	3x·dx −	�
d
dx

·e2x·�sin	3x·dx·dx 

  = e2x· −	cos	3x·
1
3  −	�e2x·2 −	cos	3x·

1
3 ·dx 

	 	 =		 −	
1
3 ·e2x·cos	3x + 

2
3  �e2x·cos	3x·dx 

	 	 =	 −	
1
3 ·e2x·cos	3x + 

2
3  e2x·�cos	3x·dx −		�

d
dx

·e2x·�cos	3x·dx·dx

	 	 =	 −	
1
3 ·e2x·cos	3x + 

2
3  e2x· sin	3x·

1
3  −	�e2x·2· sin	3x·

1
3  ·dx

	 	 =	 −	
1
3 ·e2x·cos	3x + 

2
9 ·e2x·sin	3x −	

4
9 ·�e2x·sin	3x·dx

	 I	 =	 −	
1
3 ·e2x·cos	3x + 

2
9 ·e2x·sin	3x −	

4
9 ·I

I + 
4
9 ·I = 

e2x

9 [−	3	cos	3x	+	2	sin	3x] + c

13
9  ·I = 

e2x

9 [2	sin	3x −	3	cos	3x ] + c

  = 
e2x

13 [2	sin	3x −	3	cos	3x ] + c  

∴	�e2x·	sin	3x·dx = 
e2x

13 [2	sin	3x −	3	cos	3x ] + c
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Activity : 

Prove	the	following	results.

(i)	 �eax·	sin	(bx + c)·dx = 
eax

a2 + b2 ·[a	sin	(bx + c) + b	cos	(bx + c)] + c 

(ii)	 �eax·	cos	(bx + c)·dx  = 
eax

a2 + b2 ·[a	sin	(bx + c) −	b	cos	(bx + c)] + c 

5. �  log	(log	x) + 
1

(log	x)2  ·dx

Solution : I = �log	(log	x)·1·dx + �
1

(log	x)2  ·dx

    = log	(log	x)·�1·dx −	�
d
dx

· log	(log	x) �1·dx + �
1

(log	x)2  ·dx

    = log	(log	x)·x −	�
1

log	x
·
1
x

·(x)·dx + �
1

(log	x)2  ·dx

    = log	(log	x)·x −	�
1

log	x
·dx + �

1
(log	x)2  ·dx

    = log	(log	x)·x −	�(log	x)−1·1·dx + �
1

(log	x)2  ·dx

    = log	(log	x)·x −	�(log	x)−1·�1·dx + �
d
dx

· (log	x)−1	·�1·dx·dx � + �
1

(log	x)2 ·dx

    = log	(log	x)·x −	�(log	x)−1·x −	� −	1(log	x)−2·
1
x

·x·dx � + �
1

(log	x)2 ·dx

    = log	(log	x)·x −	(log	x)−1·x −	�(log	x)−2·dx + �
1

(log	x)2 ·dx

    = x·log	(log	x) −	
x

log	x
 −	�

1
(log	x)2 ·dx + �

1
(log	x)2 ·dx

∴	�  log	(log	x) + 
1

(log	x)2  ·dx = x·log	(log	x) −	
x

log	x
 + c

Note that :

To	evaluate	the	integrals	of	type	�sin−1	x·dx; �tan−1	x·dx ; �sec−1	x·dx; �log x·dx, take	the	second	function	
(v)	to	be	1	and	then	apply	integration	by	parts.

�√ a2 − x2 ·dx ; �√ a2 + x2 ·dx ; �√ x2 − a2 ·dx
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6. �√ a2 − x2 ·dx

Solution : Let		I	 =	 �√ a2 − x2	·1·dx

    = √ a2 − x2 ·�1·dx −	�
d
dx

·√ a2 − x2 ·�1·dx·dx

    = √ a2 − x2 ·x	−	�
1

2√ a2 − x2
 (−2x)·(x)·dx

    = √ a2 − x2 ·x + �
x2

√ a2 − x2
 ·dx

    = √ a2 − x2 ·x + �
 a2 − (a2 −	x2)

√ a2 − x2
 ·dx

    = √ a2 − x2 ·x + �
a2

√ a2 − x2
 −	

(a2 −	x2)

√ a2 − x2
 ·dx

    = x·√ a2 − x2 + a2 �
1

√ a2 − x2
 ·dx −	�√ a2 − x2·dx

   I = x·√ a2 − x2 + a2 �
1

√ a2 − x2
 ·dx −	I

∴  I + I = x·√ a2 − x2 + a2·sin−1	
x
a

 + c

∴   I = 
x
2 ·√ a2 − x2 + 

a2

2 ·sin−1	
x
a

 + c

∴ �√ a2 − x2 ·dx = 
x
2 ·√ a2 − x2 + 

a2

2 ·sin−1	
x
a

 + c

e.g.	  �√ 9 − x2 ·dx = 
x
2 ·√ 9 − x2 + 

9
2 ·sin−1	

x
3

 + c

	 	 with	reference	to	the	above	example	solve	these	:

7. �√ a2 + x2 ·dx = 
x
2 ·√ x2 + a2 + 

a2

2 ·log	(x + √ x2 + a2  ) + c

8. �√ x2 − a2 ·dx = 
x
2 ·√ x2 − a2	−		

a2

2 ·log	(x + √ x2 + a2  ) + c
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9. �x·sin−1	x·dx

Solution : I = �sin−1	x·x·dx   .	.	.	.	.	by	LIATE

   = sin−1	x·�x·dx −	�
d
dx

·sin−1	x·�x·dx·dx

   = sin−1	x·
x2

2
	−	�

1

√ 1 − x2
·

x2

2
·dx

   = 
1
2  x2·sin−1	x −	

1
2  �

x2

√ 1 − x2
·dx

   = 
1
2  x2·sin−1	x	−	

1
2  �

1	−	(1 − x2)

√ 1 − x2
·dx

   = 
1
2  x2·sin−1	x	−	

1
2  �

1

√ 1 − x2
	−	

(1 − x2)

√ 1 − x2
·dx

   = 
1
2  x2·sin−1	x	−	

1
2  �

dx

√ 1 − x2
 + 

1
2  �√ 1 − x2·dx

   = 
1
2  x2·sin−1	x	−	

1
2  sin−1	x + 

1
2   

x
2  √ 1 − x2 + 

1
2  sin−1	(x)  + c

   = 
1
2  x2·sin−1	x + 

1
4  x √ 1 − x2	−	

1
4  sin−1	x + c

∴ �x·sin−1	x·dx = 
1
2  x2·sin−1	x + 

1
4  x √ 1 − x2	−	

1
4  sin−1	x + c

Activity :

10. �cos−1	√ x·dx

Solution : put	 √ x = t 

   ∴ x = t2

	 	 	 differentiating	w.r.t. x

	 	 	 ∴	 1·dx = 2t·dt

     I = �cos−1	t·2t·dt

	 	 	 refer	previous	(example	no.	9)	example	and	solve	it.	
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11. �√ 4 + 3x − 2x2 ·dx

Solution : I = �√ 4 − 2x2 + 3x ·dx

 = �  4 − 2 x2	−	
3
2

 x 	· dx

 = �√ 2 ·  2 − x2	−	
3
2

 x 	· dx

	 	 	 	 	 	 ⸪	 �
1
2 	coefficient	of	x

 2  
=  

1
2  −	

3
2

 2

= −	
3
4

2

= 
9
16 �

I = √ 2 ·�  2 − x2	−	
3
2

 x + 
9
16 −	

9
16 	· dx

 = √ 2 ·�  2 − x2	−	
3
2

 x + 
9
16 	+ 

9
16 · dx

 = √ 2 ·�  
√ 41

4

2

 − x	−	
3
4

2 

· dx

	 ⸪ �√ a2 − x2 ·dx = 
x
2 ·√ a2 − x2 + 

a2

2 ·sin−1	
x
a

 + c

 = √ 2 ·
x	−	

3
4

2
 ·  

√ 41
4

2

 − x	−	
3
4

2 

+ 

√ 41
4

2

2
·sin−1	

x	−	
3
4

√ 41
4

  + c

 = √ 2   4x	−	3
8

·  2 + 
3
2

 x − x2

 

+ 
41
32  · sin−1	

4x	−	3

√ 41
  + c

∴	�√ 4 + 3x − 2x2 ·dx = 
4x	−	3
8

· √ 4 + 3x	−	2x2

 

+ 
41

16	√ 2
 · sin−1	

4x	−	3

√ 41
  + c

Note that :

3.3.2 : 

To	evaluate	the	integral	of	type	�( px + q) √ ax2 + bx + c . dx   

we	express	the	term	px + q =  A · 
d
dx

 (ax2 + bx + c) + B	 .	.	.	for	constants	A,	B.	

Then	the	integral	will	be	evaluated	by	the	useual	known	methods.
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3.3.3  Integral of the type �e x [ f (x) + f ' (x)] · dx = e x · f (x) + c

	 	 	 	 	 	 	 	 Let	 e x · f (x) = t

	 	 	 	 	 	 	 	 Differentiating	w. r. t. x 

        e x [ f ' (x) + f (x)]  = 
dt
dx

        e x [ f (x) + f ' (x)] = 
dt
dx

	 	 	 	 	 	 	 	 By	definition	of	integration,	

       ∴ �e x [ f (x) + f ' (x)] · dx = t + c

       ∴ �e x [ f (x) + f ' (x)] · dx = e x · f (x) + c

     e.g.  �e x [ tan x + sec2 x] · dx = e x ·	tan x + c 

       ⸪	
d
dx

 tan x = sec2 x

SOLVED EXAMPLES 

1. �e x 
2	+	sin	2x
1	+	cos	2x ·dx

Solution : 

I = �e x 
2	+	2	sin	x·cos x

2·cos2 x ·dx

 = �e x 
1

cos2 x
 +	

sin	x·cos x
cos2 x

·dx

 = �e x [ sec2 x + tan x ]·dx

 = �e x [ tan x +	sec2 x ]·dx

	 ∴	 f (x) = tan x ⇒	 f ' (x) = sec2 x

	 ∴	�e x [ f (x) + f ' (x)] · dx = e x · f (x) + c

I = e x ·	tan x + c

∴	�e x 
2	+	sin	2x
1	+	cos	2x ·dx = e x ·	tan x + c

2. �e x 
x + 2

(x + 3)2 ·dx

Solution : 

I = �e x 
x	+	3	−	1
(x + 3)2 ·dx

 = �e x 
x + 3

(x + 3)2 + 
−1

(x + 3)2 ·dx

 = �e x 
1

x + 3  + 
−1

(x + 3)2 ·dx

	 ∴	 f (x) = 
1

x + 3  ⇒	 f ' (x) = 
−1

(x + 3)2

	 ∴	�e x [ f (x) + f ' (x)] · dx = e x · f (x) + c

 = e x ·
1

x + 3  + c

 = 
e x

x + 3  + c

∴	 �e x 
x + 2

(x + 3)2 ·dx = 
e x

x + 3  + c
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3. �e tan−1 x ·
1	+	x + x2

1	+	x2 ·dx

Solution : put	 tan−1	x = t 

   ∴ x	=	tan	t

	 	 	 differentiating	w. r. t. x

	 	 	 ∴	
1

1 + x2
·dx	=	1·dt

I = �e t ·[	1	+	tan	t	+	tan2 t ]·dt

 = �e t ·[	tan	t	+	(1	+	tan2 t )]·dt

 = �e t ·[	tan	t	+	sec2 t ]·dt

	 Here	 f (t ) = tan	t   

 ⇒	 	 f ' (t ) = sec2 t

I = e t · f (t ) + c

 = e t ·	tan	t + c

 = e tan−1 x · x + c

∴	�e tan−1 x ·
1	+	x + x2

1	+	x2 ·dx = e tan−1 x · x + c

4. �
(x2	+	1)·e x

(x	+	1)2 ·dx

Solution : 

I = �e x 
x2	+	1

(x	+	1)2 ·dx

 = �e x 
x2	−	1	+	2
(x	+	1)2 ·dx

 = �e x 
x2	−	1

(x	+	1)2 + 
2

(x	+	1)2 ·dx

 = �e x 
x	−	1
x	+	1  + 

2
(x	+	1)2 ·dx

Here			f (x) = 
x	−	1
x	+	1  

⇒	 f ' (x) = 
(x	+	1)	(1)	−	(x	−	1)(1)

(x	+	1)2  = 
2

(x	+	1)2

	 ⸪	 �[ f (x) + f ' (x)] · dx = e x · f (x) + c

I = e x ·
x	−	1
x	+	1  + c

∴		 �
(x2	+	1)·e x

(x	+	1)2 ·dx = e x ·
x	−	1
x	+	1  + c

EXERCISE 3.3

I. Evaluate the following : 

 1. �x2·log	x·dx 2. �x2·sin	3x·dx 3. �x·tan−1 x·dx

 4. �x2·tan−1 x·dx 5. �x3·tan−1 x·dx 6. �(log	x)2 ·dx

 7. � sec3 x·dx 8. �x·sin2 x·dx 9. �x3·log	x·dx

 10. � e2x	·	cos	3x·dx 11. �x·sin−1 x·dx 12. �x2·cos−1 x·dx

 13. �
log	(log	x)

x ·dx 14. �
t·sin−1 t

√ 1	− t2 
·dt 15. �cos	√ x·dx

 16. � sin	θ·log	(cos	θ)·dθ 17. �x·cos3
 x·dx 18. �

sin	(log	x)2

x ·log·x·dx

 19. �
log	x

x ·dx 20. �x·sin	2x·cos	5x·dx 21. �cos	( 3
 x )·dx



138

II. Integrate the following functions w. r. t. x :

 1. e2x·sin	3x 2. e−x·cos	2x 3. sin	(log	x)

 4. √ 5x2 + 3 5. x2·√ a2 −	x6 6. √ (x −	3)(7	−	x)

 7. √ 4x(4x + 4) 8. (x	+	1)√ 2x2 + 3 9. x √ 5	−	4x	−	x2

 10.	 sec2 x·√ tan2 x + tan	x −	7 11. √ x2 + 2x + 5 12. √ 2x2 + 3x + 4

III. Integrate the following functions w. r. t. x :

 1.	 (2	+	cot x	−	cosec2 x)·ex 2. 
1	+	sin	x
1	+	cos	x 	·ex 3. e x ·

1
x
	−	

1
x2

 4. 
x

(x	+	1)2 ·ex 5. 
ex

x
 [x	(log	x)2	+2	(log	x)] 6. e 5x ·

5x	·	log	x +	1
x

 7. e sin−1 x ·
x + √ 1	−	x2

√ 1	−	x2
 8.	 log	(1	+	x)	(1	+	x) 

 9.	 cosec	(log	x) [ 1	−	cot	(log	x)] 

3.4 Integration by partial fraction : 

If		f (x)	and	g (x)	are	two	polynomials	then	
f (x)
g (x)

,	g (x) ≠	0	is	called	a	rational	algebric	function.	

f (x)
g (x)

	is	called	a	proper	rational	function	provided	degree	of	f (x) <	degree	of	g (x)	;	otherwise	it	is	

called	improper rational function.	

If	degree	of	f (x)	≥	degree	of	g (x)	i.e.	
f (x)
g (x)

	is	an	improper	rational	function	then	express	it	as	in

the	form	Quotient	+	
Remainder

g (x)
,	g (x)	≠	0	where	

Remainder
g (x)

	is	proper	rational	function.	

Lets	 see	 the	 three	 different	 types	 of	 the	 proper	 rational	 function	
f (x)
g (x)

,	 g (x)	 ≠	 0	 	 where	 the	

denominator	g (x)	is	expressed	as		

	 	 	 (i)	 a	non-repeated	linear	factors	

	 	 	 (ii)	 repeated	Linear	factors	and	

	 	 	 (iii)	 product	of	Linear	factor	and	non-repeated	quadratic	factor.
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No. Rational form Partial form 
(i)	 px2 + qx + r

(x −	a) (x −	b) (x −	c)
A

(x −	a)
 + 

B
(x −	b)

 + 
C

(x −	c)
(ii)	 px2 + qx + r

(x −	a)2 (x −	b)
A

(x −	a)
 + 

B
(x −	a)2 + 

C
(x −	c)

(iii) px2 + qx + r
(x −	a) (x2 + bx + c)

A
(x −	a)

 + 
Bx + C

x2 + bx + c

Type (i) : � px2 + qx + r
(x −	a) (x −	b) (x −	c)

 · dx		i.e.	denominator	is	expressed	as	non-repeated	Linear	factors.

SOLVED EXAMPLES 

1. �
3x2 + 4x	−	5

(x2	−	1)	(x + 2)·dx

Solution : I  = �
3x2 + 4x	−	5

(x	−	1)	(x	+	1)	(x + 2)·dx

Consider,	
3x2 + 4x	−	5

(x	−	1)	(x	+	1)	(x + 2)  = 
A

(x	−	1)
 + 

B
(x	+	1)

 + 
C

(x + 2)

        = 
A (x	+	1)	(x + 2) + B (x	−	1)	(x + 2) + C (x	−	1)	(x	+	1)

(x	−	1)	(x	+	1)	(x + 2)
∴	 3x2 + 4x	−	5	=	A (x	+	1)	(x + 2) + B (x	−	1)	(x + 2) + C (x	−	1)	(x	+	1)

at	x	=	1,	 	 3	(1)2	+	4	(1)	−	5		 =	A (2) (3) + B (0)	+	C (0)

   2 = 6A ⇒	 A = 
1
3

at	x	=	−1,	 3	(−1)2	+	4	(−1)	−	5		=	A (0)	+	B (−2)(1)	+	C (0)
	 	 	 −6	=	−2B ⇒	 B = 3

at	x	=	−	2,	 3	(−2)2	+	4	(−2)	−	5		=	A (0)	+	B (0)	+	C (−3)	(−1)

	 	 	 −1	=	3C ⇒	 C =	−	
1
3

Thus,	 	
3x2 + 4x	−	5

(x	−	1)	(x	+	1)	(x + 2)  = 

1
3

(x	−	1)
 + 

3
(x	+	1)

 + 
−	
1
3

(x + 2)

∴	I	 = � 

1
3

(x	−	1)
 + 

3
(x	+	1)

 + 
−	
1
3

(x + 2)
 ·dx = 

1
3

 log (x	−	1)	+	3	log	(x	+	1) −	
1
3 	log	(x + 2) + c

 = 
1
3

 log 
(x	−	1)	(x	+	1)9

(x + 2)
  + c    ∴	�

3x2 + 4x	−	5
(x2	−	1)	(x + 2)·dx = 

1
3

 log  
(x	−	1)	(x	+	1)9

(x + 2)
  + c
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2. �
2x2	−	3

(x2	−	5)	(x2 + 4)·dx

Solution : Consider,	
2x2	−	3

(x2	−	5)	(x2 + 4) 

	 	 	 Let	 	 	 x2 = m

   ∴   = 
2m	−	3

(m	−	5)	(m + 4) .	.	.	proper	rational	function.

	 	 	 Now,	
2m	−	3

(m	−	5)	(m + 4)  = 
A

(m	−	5)
 + 

B
(m + 4)

 = 
A (m + 4) + B (m	−	5)

(m	−	5)	(m + 4)

∴	 2m	−	3	 =	A (m + 4) + B (m	−	5)

at	m	=	5,		 2(5)	−	3 = A (9) + B (0)

	 	 	 7	=	9A ⇒	 A = 
7
9

at	m	=	−4,	 2(−4)	−	3 = A (0) + B (−9)

	 	 	 −11	=	−9B ⇒	 B = 
11
9

Thus,	
2m	−	3

(m	−	5)	(m + 4)  = 

7
9

(m	−	5)
 + 

11
9

(m + 4)
	 i.e.	

2x2	−	3
(x2	−	5)	(x2 + 4) = 

7
9

x2	−	5
 + 

11
9

x2 + 4

∴	I	 = � 

7
9

x2	−	5
 + 

11
9

x2 + 4
 ·dx 

	 = 
7
9

 ·�
1

x2	−	(√ 5)2
·dx + 

11
9

 ·�
1

x2 + (2)2
·dx

	 = 
7
9

·
1

2(√ 5)
·log 

x	−	√ 5
x + √ 5

 + 
11
9

·
1
2

·tan−1 
x
2

+ c

∴	I	 = 
7

18(√ 5)
·log 

x	−	√ 5
x + √ 5

 + 
11
18

· tan−1 
x
2

+ c

∴	�
2x2	−	3

(x2	−	5)	(x2 + 4)·dx =	
7

18(√ 5)
·log 

x	−	√ 5
x + √ 5

 + 
11
18

· tan−1 
x
2

+ c
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3. �
1

(sin	θ)	(3	+	2	cos	θ) ·dθ

Solution :  I = �
1

(sin	θ)	(3	+	2	cos	θ) ·dθ		 =	�
sin	θ

(1	−	cos2	θ)	(3	+	2	cos	θ)·dθ		

          = �
sin	θ

(1	−	cos	θ)	(1	+	cos	θ)	(3	+	2	cos	θ) ·dθ		 

  put	 cos	θ	=	t  ∴ −	sin	θ·dθ	=	1·dt

       ∴ sin	θ·dθ	=	−	1·dt

Consider,	
−1

(1	−	t )	(1	+	t ) (3 + 2t )   = 
A

(1	−	t )
 + 

B
(1	+	t )

 + 
C

(3 + 2t )

         = 
A (1	+	t ) (3 + 2t ) + B (1	−	t ) (3 + 2t ) + C (1	−	t )	(1	+	t )

(1	−	t )	(1	+	t ) (3 + 2t )
∴	 −	1	=	A (1	+	t ) (3 + 2t ) + B (1	−	t ) (3 + 2t ) + C (1	−	t )	(1	+	t )

at	t	=	1,	 	 −	1  = A (2) (5) + B (0)	+	C (0)

   −	1	=	10A ⇒	 A = −	
1
10

at	t	=	−1,	 −	1  = A (0)	+	B (2)(1)	+	C (0)

   −	1 = 2B ⇒	 B = −	
1
2

at	t	=	−	
3
2
,	 −	1  = A (0)	+	B (0)	+	C + 

5
2  −	

1
2

	 	 	 −	1	=	−	
5
4  C ⇒	C = 

4
5

Thus,	 	
−1

(1	−	t )	(1	+	t ) (3 + 2t )   = 
−	

1
10

(1	−	t )
 + 

−	
1
2

(1	+	t )
 + 

4
5

(3 + 2t )

∴	I	 = � 
−	

1
10

(1	−	t )
 + 

−	
1
2

(1	+	t )
 + 

4
5

(3 + 2t )
 ·dt 

 =	−	
1
10

 log (1	−	t )·
1

(−1)
	−	

1
2 		log	(1	+	t ) + 

4
5 	log	(3 + 2t )·

1
2  + c

 = 
1
10

 log (1	−	cos	θ )	−	 12 		log	(1	+	cos	θ ) + 
4
10	log	(3	+	2	cos	θ ) + c

 = 
1
10

  log 
(1	−	cos	θ)	(3	+	2	cos	θ)4

(1	+	cos	θ)5  + c  ⸪	log	am = m·log	a



142

4. �
1

2	cos	x	+	sin	2x ·dx

Solution : I	= �
1

2	cos	x	+	sin	2x ·dx  = �
1

2	cos	x	+	2	sin	x·cos	x ·dx = �
1

2	(cos	x)	(1	+	sin	x)·dx

   = 
1
2

·�
cos	x

cos2 x	(1	+	sin	x)·dx = 
1
2

·�
cos	x

(1	−	sin2 x)	(1	+	sin	x)·dx

  put	 sin	x = t  ∴ cos	x·dx	=	1·dt

   = 
1
2

·�
1

(1	−	t 2	)	(1	+	t ) ·dt = 
1
2

·�
1

(1	−	t )	(1	+	t )	(1	+	t ) ·dt = 
1
2

·�
1

(1	−	t )	(1	+	t )2 ·dt

Consider,	
1

(1	−	t )	(1	+	t )2  = 
A

(1	−	t )
 + 

B
(1	+	t )

 + 
C

(1	+	t )2  =  
A (1	+	t )2 + B (1	−	t )	(1	+	t ) + C (1	−	t )

(1	−	t )	(1	+	t )2

	 	 	 	 	 ∴	 1	=	A (1	+	t )2 + B (1	−	t )	(1	+	t ) + C (1	−	t )

at	t	=	1,	 	 	 1  = A (2)2 + B (0)	+	C (0)

   	 1 = 4A   ⇒		 A = 
1
4

at	t	=	−1,	 	 1  = A (0)	+	B (0)	+	C (2)

   	 1 = 2C   ⇒		 C = 
1
2

at	t	=	0,	 	 	 1  = A (1)2 + B (1)	(1)	+	C (1)

    1  = A + B + C

   	 1 = 
1
4

 + B + 
1
2

 ⇒		 B = 
1
4

Thus,	 	
1

(1	−	t )	(1	+	t )2   = 

1
4

(1	−	t )
 + 

1
4

(1	+	t )
 + 

1
2

(1	+	t )2

∴	I	 = � 

1
4

(1	−	t )
 + 

1
4

(1	+	t )
 + 

1
2

(1	+	t )2
 ·dt = 

1
2  

1
4  log (1	−	t )·

1
(−1)

 + 
1
4 		log	(1	+	t ) + 

1
2 ·

(−1)
(1	+	t )  + c

 = 
1
2  

1
4  log (1	−	t )·

1
(−1)

 + 
1
4 		log	(1	+	t ) + 

1
2 ·

−1
1	+	t 

 + c

 = 
1
8   −	log (1	−	sin	x)	+	log	(1	+	sin	x)	− 

2
1	+	sin	x  + c  = 

1
8   log 

1	+	sin	x
1	−	sin	x 	− 

2
1	+	sin	x  + c

∴	 �
1

2	cos	x	+	sin	2x ·dx = 
1
8   log 

1	+	sin	x
1	−	sin	x 	− 

2
1	+	sin	x  + c
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5. �
tan	θ	+	tan3	θ
1	+	tan3	θ ·dθ

Solution :  I	=�
(tan	θ)	(1	+	tan2	θ)

1	+	tan3	θ ·dθ = �
(tan	θ)·(1	+	tan2	θ)

1	+	tan3	θ ·dθ	=	�
tan	θ	·	sec2	θ
1	+	tan3	θ ·dθ	

  put	 tan	θ	=	x  ∴ sec2	θ·dθ	=	1·dx

   = �
x

1	+	x3 ·dx  = �
x

(1	+	x )	(1	−	x + x2 )·dx

Consider,	
x

(1	+	x )	(1	−	x + x2 )  = 
A

1	+	x
 + 

Bx + C
(1	−	x + x2 )  

        = 
A (1	−	x + x2 ) + Bx + C (1	+	x)

(1	+	x )	(1	−	x + x2 )

	 	 	 	 	 ∴ x = A (1	−	x + x2 ) + (Bx + C ) (1	+	x) = A	−	Ax + Ax2 + Bx + Bx2 + C  + Cx

	 	 	 0	x2 +	1·x +	0	=	(A + B) x2	+	(−	A + B + C ) x +(A + C )

	 	 	 compairing	the	co-efficients	of	like	powers	of	variables.

	 	 	 0 = A + B   . . . (I)   

   1	=	−A + B + C  . . . (II) 	 and 

   0 = A + C   . . . (III)

	 	 	 Solving	these	equations,	we	get	A =	−	
1
3

 ; B = 
1
3
	and	C = 

1
3

Thus,	 	
x

(1	+	x )	(1	−	x + x2 ) = 
−	
1
3

1	+	x
 + 

1
3

 x + 
1
3

(1	−	x + x2 )

∴	I	 = � 
−	
1
3

1	+	x
 + 

1
3

 x + 
1
3

(1	−	x + x2 )
  ·dx  =	−	

1
3

·�
1

1	+	x
 ·dx + 

1
3

·�
x + 1

1	−	x + x2 
 ·dx

 =	−	
1
3

·�
1

1	+	x
 ·dx + 

1
3

·
1

(2)
�

2x − 1	+	3
x2 −	x	+	1  ·dx  ⸪		

d
dx

 x2 −	x	+	1	=	2x −	1

	 =	−	
1
3

·�
1

1	+	x
 ·dx + 

1
3

·
1
2

·�
2x − 1	+	3
x2 −	x	+	1  ·dx

	 =	−	
1
3

·�
1

1	+	x
 ·dx + 

1
6

·�
2x − 1

x2 −	x	+	1  ·dx + 
1
6

·�
3

x2 −	x	+	1  ·dx

 = I1 + I2 + I3   . . . (IV)
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∴	 I1	 =	−	
1
3

·�
1

1	+	x
 ·dx  =	−	

1
3  [ log (1	+	x)] 

	 	 	 	 	 	 =	−	
1
3 	log	(	1	+	tan	θ )    . . . (V)

∴	 I2 = 
1
6

·�
2x − 1

x2 −	x	+	1  ·dx = 
1
6  [ log (x2 −	x	+	1)]	

      = 
1
6 	log	(	tan2	θ	−	tan	θ	+	1 )   . . . (VI)

∴	 I3 = 
1
6

·�
3

x2 −	x	+	1  ·dx 

  = 
1
2

·�
1

x2	−	x + 
1
4  − 

1
4  + 1

 · dx  ⸪	 �
1
2 	coefficient	of	x

 2  
=  

1
2 	(−1)

2

= −	
1
2

2

= 
1
4  �

  = 
1
2

·�
1

x	−	
1
2

2 

+ 
√ 3
2

2  · dx

  = 
1
2 ·

1
√ 3
2

· tan−1	
x	−	

1
2

√ 3
2

 + c  

  = 
1
√ 3

	tan−1	
2x −	1
√ 3

 + c

∴	 I3 = 
1
√ 3

	tan−1	
2 tan	θ −	1

√ 3
 + c   . . . (VII)

∴ �
tan	θ	+	tan3	θ
1	+	tan3	θ ·dθ	=	−	

1
3 	log	(	1	+	tan	θ ) + 

1
6 	log	(	tan2	θ	−	tan	θ	+	1 ) + 

1
√ 3

	tan−1	
2 tan	θ −	1

√ 3
 + c

EXERCISE 3.4

I. Integrate the following w. r. t. x : 

 1. 
x2 + 2

(x − 1)	(x + 2) (x + 3)  2. 
x2

(x2 + 1)	(x2 − 2) (x2 + 3)  3. 
12x + 3

6x2 +	13x	−	63
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 4. 
2x

4 −	3x	−	x2 5. 
x2 + x	−	1
x2 + x	−	6  6. 

6x3 + 5x2	−	7
3x2 −	2x	−	1

 7. 
12x2 −	2x	−	9

(4x2 − 1)	(x + 3)  8. 
1

x (x5 + 1)  9.	
2x2	−	1

x4 + 9x2 + 20

 10. 
x2 + 3

(x2 − 1)	(x2 − 2)  11. 
2x

(2 + x2) (3 + x2)  12. 
2 

x

4 
x −	3	·	2 

x − 4

 13. 
3x	−	2

(x + 1)2 (x + 3)  14. 
5x2 +	20x + 6
x3 + 2x2 + x  15. 

1
x (1 + 4x3 + 3x6)

 16. 
1

x3 − 1  17. 
(3	sin	x	−	2)	·	cos	x
5	−	4	sin	x	−	cos2 x  18. 

1
sin	x	+	sin	2x

 19. 
1

2	sin	x	+	sin 2x 20. 
1

sin	2x	+	cos	x 21. 
1

sin	x ·	(3	+	2	cos	x)

 22. 
5 · e x

(e x +	1)	(e 2x + 9) 23. 
2	log	x + 3

x	(3	log	x	+	2)	[(log	x)2	+	1]

3.5 Something Interesting : 

Students/	now	familier	with	the	integration	by	parts.	

The	result	is	 �u·v·dx = u·�v·dx −	�
d
dx

·u 	(�v·dx)·dx		,		

   u and	v	are	differentiable	functions	of	x	and	u·v	follows	L	I	A	T	E	order.

This	result	can	be	extended	to	the	generalisation	as	-	

�u·v·dx = u·v1	−	u'·v2 + u''·v3	−	u'''·v4	+	.	.	.	

(' )	dash	indicates	the	derivative.	

(	1	)	subscript	indicates	the	integration.	

This	result	is	more	useful	where	the	first	function	(u)	is	a	polynomial,	because		
d 

n
 u

dxn 	=	0	for	some	n.	

For example : �x2·cos 3x·dx

    =  x2· sin 3x·
1
3

	−	(2x) −	cos 3x·
1
3

·
1
3

	+ (2) −	sin 3x·
1
3

·
1
9

 −	(0)

    = 
1
3

 x2·sin 3x + 
2
9

 x·cos 3x	−	
2
27

 sin 3x + c

    verify	this	example	with	usual	rule	of	integration	by	parts.
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Let us Remember 

֍	 We	can	always	add	arbitarary	constant	c	to	the	integration	obtained	:	

	 (I)	 i.e.	
d
dx

 · g (x) =  f (x) ⇒	 �f (x) · dx = g (x) + c

  f (x)	is	integrand,	g (x)	is	integral	of	f (x)	with	respect	to	x,	c	is	arbitarary	constant.

 (II) �f (ax + b) · dx = g (ax + b) · 
1
a

 + c

 (III) (1) �[ f (x)]n · f ' (x)·dx = 
[ f (x)]n +	1

n +	1  + c (2) �
f ' (x)
f (x) ·dx =	log	( f (x)) + c

  (3) �
f ' (x)
√	f (x) ·dx = 2 √	f (x) + c

 (IV) (1) �xn · dx =	
x n +	1

n +	1
 + c (2) �

1
√ x

· dx =	2	√ x	+ c

  (3) �constant	(k) · dx =	kx + c (4) �ax · dx =	
a x

log	a
 + c

  (5) �e x · dx =	e x + c (6) �
1
x

· dx =	log	(x)	+ c

  (7) �sin x · dx =	−	cos	x + c (8) �cos x · dx =	sin	x + c

  (9) �tan x · dx =	log	(sec	x) + c (10) �cot x · dx =	log	(sin	x) + c 

  (11) �sec	x · dx =		log	(sec	x	+	tan	x) + c (12) �cosec	x·dx =		log	(cosec	x	−	cot	x) + c

    =		log	 tan	
x
2

 + 
π
4

 + c     =		log	 tan	
x
2

  + c

  (13) �sec2 x · dx =	tan	x + c  (14) �cosec2 x · dx =	−	cot	x + c

  (15) �sec	x ·	tan	x · dx =	sec	x + c  (16) �cosec x ·	cot x · dx =	−	cosec	x + c

  (17) �
1

√ 1	−	x2 · dx =  sin−1 x + c  (18) �
−	1

√ 1	−	x2 · dx =  cos−1 x + c

  (19) �
1

1	+	x2  · dx =  tan−1 x + c  (20) �
−	1
1	+	x2  · dx =  cot−1 x + c

  (21) �
1

x · √ x2 −	1
 · dx =  sec−1 x + c (22) � −	1

x · √ x2 −	1
 · dx =  cosec−1 x + c
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  (23) �
1

x2 + a2 · dx = 
1
a 	tan

−1	
x
a  + c (24) �

1
x2 − a2 · dx = 

1
2a	log

 
x −	a
x + a  + c 

  (25) �
1

a2 − x2 · dx = 
1
2a	log

 
a + x
a −	x  + c (26) �

1
√ a2	−	x2  · dx = sin−1	

x
a  + c

  (27) �
1

√ x2	−	a2  · dx = log	| x + √ x2	−	a2 | + c (28) �
1

√ x2 + a2  · dx = log	| x + √ x2 + a2  | + c

  (29) �
1

x√ x2	−	a2 · dx = 
1
a  sec−1	

x
a  + c 

  (30) �√ a2	−	x2 · dx = 
x
2  √ a2	−	x2 + 

a2

2 	sin
−1	

x
a  + c 

  (31) �√ a2 + x2 · dx = 
x
2  √ a2 + x2 + 

a2

2 	log	( x + √ x2 + a2 ) + c 

  (32) �√ x2	−	a2 · dx = 
x
2  √ x2	−	a2 − 

a2

2 	log	( x + √ x2	−	a2 ) + c

	 (V)	 If	u	and	v	are	differentiable	functions	of	x	then	 �u·v·dx = u·�v·dx −	�
d
dx

·u 	(�v·dx)·dx
	 	 where	u·v	follows	the	L	I	A	T	E	order.

 (VI) �e x [ f (x) + f ' (x)] · dx = e x · f (x) + c

	 (VII)	 For	the	integration	of	type	�
f (x)
g (x)

 · dx,	g (x)	≠	0	where	
f (x)
g (x)

 proper	rational	function.

  (i)	 non-repeated	linear	factors		 	 (ii)	 repeated	Linear	factors	and	
	 	 (iii)	 product	of	Linear	factor	and	non-repeated	quadratic	factor.

 (VIII) �
1

x2 + a2 · dx 

  �
1

x2 − a2 · dx

  �
1

a2 − x2 · dx

 (VIII) �
1

√ x2 + a2  · dx

  �
1

√ x2 − a2  · dx

  �
1

√ a2 − x2  · dx

� 1
ax2 + bx + c

·dx

� 1
√ ax2 + bx + c

·dx

� px + q
√ ax2 + bx + c

·dx

� px + q
ax2 + bx + c

 · dx
� 1

a sin2 x + b cos2 x + c
·dx

� 1
a sin	x + b cos	x + c

·dx

Method	of	completing	
square

put	tan	
x
2 	= t

px + q = A
d
dx

(ax2 + bx + c)	+ B
Divide	Nr	and	Dr	by	cos2 x
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MISCELLANEOUS  EXERCISE 3

(I) Choose the correct option from the given alternatives :

 (1) �1	+	x + √ x + x2

√ x + √ 1	+	x
·dx =

  (A) 
1
2  √ x +	1 + c (B) 

2
3  (x +	1)

3
2  + c (C) √ x +	1 + c (D) 2 (x +	1)

3
2  + c

 (2) � 1
x + x5 ·dx = f (x) + c ,	then	�

x4

x + x5 ·dx =

  (A)	 log x − f (x) + c (B)  f (x)	+	log	x + c (C)  f (x) −	log	x + c (D) 
1
5  x5 f (x) + c

 (3) � log	(3x)
x log	(9x)

·dx =

  (A)	 log	(3x) − log	(9x) + c  (B)	 log	(x) − (log	3)·log	(log	9x) + c

  (C)	 log	9 − (log	x)·log	(log	3x) + c (D)	 log	(x) + (log	3)·log	(log	9x) + c

 (4) � sinm x
cosm + 2 x

·dx = 

  (A) 
tanm	+	1 x
m +	1

 + c     (B) (m + 2) tanm	+	1 x + c  (C) 
tanm x

m
 + c  (D) (m +	1) tanm	+	1 x + c

 (5) � tan	(sin−1	x)·dx =

  (A) (1	−	x2)−	
1
2  + c (B) (1	−	x2) 

1
2  + c (C) 

tanm x
√ 1	−	x2  + c (D)	 −	√ 1	−	x2 + c

 (6) � x −	sin x
1	−	cos x

·dx = 

  (A) x	cot	
x
2 	+ c (B)	 −	x	cot	

x
2 	+ c (C) cot	

x
2 	+ c (D) x	tan	

x
2 	+ c

 (7)	 If	f	(x)	= 
sin−1	x
√ 1	−	x2 ,	g (x) = esin

−1
 x,	then	� f (x)· g (x)·dx =

  (A) esin
−1

 x · (sin−1	x −	1) + c  (B) esin
−1

 x ·	(1	−	sin−1	x) + c 

  (C) esin
−1

 x · (sin−1	x +	1) + c  (D) esin
−1

 x · (sin−1	x −	1) + c

 (8)	 If	�tan3 x·sec3 x·dx = 
1
m 	secm x −	

1
n 	secn x + c ,	then	(m,	n) =

  (A) (5,	3) (B) (3,	5) (C) 
1
5 ,	

1
3  (D) (4,	4)
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 (9) � 1
cos x	−	cos2 x

·dx =

  (A)	 log	(cosec x	− cot	x)	+	tan	
x
2 	+ c (B)	 sin	2x	−	cos	x + c 

  (C)	 log	(sec	x +	tan x)	−	cot 
x
2 	+ c (D)	 cos	2x	−	sin	x + c 

 (10) � √ cot x
sin x	·cos x

·dx =

  (A) 2 √ cot x + c (B)	 −2	√ cot x + c (C) 
1
2  √ cot x + c (D) √ cot x + c

 (11) �e x (x	−	1)
x2 ·dx =

  (A) 
e x

x  + c (B) 
e x

x2  + c (C) x − 
1
x 	e x + c (D) xe −x + c

 (12) � sin	(log x)·dx =

  (A) 
x
2  [sin	(log	x)	− cos	(log	x)] + c (B) 

x
2  [sin	(log	x) + cos	(log	x)] + c

  (C) 
x
2  [cos	(log	x)	− sin	(log	x)] + c (D) 

x
4  [cos	(log	x)	− sin	(log	x)] + c

 (13) � x x	(1	+	log	x)·dx =

  (A) 
1
2  (1	+	log	x)2 + c (B)  x 2x + c (C)  x x	log	x + c (D) x x + c

 (14) � cos−	
3
7  x·sin−	

11
7  

x·dx =

  (A) log	( sin−	
4
7  

x
 ) + c   (B)  

4
7  tan

4
7  

x
 
+ c

  (C)	 −	
7
4  tan−	

4
7  

x
 
+ c   (D) log	( cos

3
7  

x
 ) + c

 (15)  2�cos2 x	−	sin2 x
cos2 x	+	sin2 x

·dx =

  (A)	 sin 2x + c (B)	 cos 2x + c (C)	 tan 2x + c (D)	 2	sin 2x + c

 (16) � dx
cos x √ sin2 x	−	cos2 x

·dx =

  (A)	 log	( tan	x	− √ tan2 x	−	1	) + c (B) sin−1	(tan	x) + c

  (C)	 1	+	sin−1	(cot	x) + c   (D)	 log	( tan	x + √ tan2 x	−	1	) + c
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 (17) � log	x
(log	ex)2·dx =

  (A) 
x

1	+	log x
	+ c (B) x	(1	+	log x) + c (C) 

1
1	+	log x

 + c (D) 
1

1	−	log x
 + c

 (18) � [sin	(log	x)	+	cos	(log	x)]·dx =

  (A) x	cos	(log x)	+ c (B) sin	(log x) + c (C) cos	(log x)	+ c (D) x	sin	(log x)	+ c

 (19) � cos 2x	−	1
cos 2x	+	1

·dx =

  (A)	 tan x −	x + c (B) x	+	tan x + c (C) x −	tan x + c (D) −	x −	cot x + c

 (20) �e 2x + e −2x

e x
·dx =

  (A) e x  −		
1

3e 3x + c (B) e x  +  
1

3e 3x + c (C) e −x  +  
1

3e 3x + c (D) e −x  −		
1

3e 3x + c

(II) Integrate the following with respect to the respective variable :

 (1) (x	−	2)2 √ x (2) 
x7

x +	1  (3) (6x + 5)
3
2

 (4) 
t 3

(t +	1)2  (5) 
3	−	2	sin	x
cos2 x

 (6) 
sin6 θ	+	cos6 θ
sin2 θ	·	cos2 θ

 (7)	 cos	3x ·	cos	2x ·	cos	x (8) 
cos	7x −	cos	8x
1	+	2	cos 5x

 (9)	 cot −1 
1	+	sin	x
cos	x

(III)  Integrate the following :

 (1) 
(1	+	log	x)3

x
 (2)	 cot −1	(1	−	x + x2) (3) 

1
x	·	sin2	(log	x)

 (4) √ x sec	(x
3
2 )·	tan	(x

3
2 ) (5)	 log	(1	+	cos	x)	−	x·	tan	

x
2  (6) 

x2

√ 1	−	x6

 (7) 
1

(1	−	cos	4x)	(3	−	cot	2x)
 (8)	 log	(log	x)	+	(log	x)−2 (9) 

1
2	cos x	+	3	sin x

 (10) 
1

x3 · √ x2	−	1
 (11) 

3x	+	1
√ −	2x2 + x + 3

 (12)	log	(x2 +	1)

 (13) e 2x ·	sin	x	·	cos	x (14) 
x2

(x	−	1)	(3x	−	1)	(3x	−	2)
 (15) 

1
sin	x	+	sin	2x

 (16)	 sec2 x · √ 7	+	2	tan	x	−	tan2 x (17)	
x + 5

x3 + 3x2 −	x	−	3
 (18) 

1
x · (x5	+	1)

 (19) 
√ tan x

sin	x	·	cos	x
 (20)	sec4 x	·cosec2 x

v v v
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Let us Study

•	 Definite	integral	as	limit	of	sum.

•	 Fundamental	theorem	of	integral	calculus.

•	 Methods	of	evaluation	and	properties	of	definite	integral.

4. 1 Definite integral as limit of sum :

In	the	last	chapter,	we	studied	various	methods	of	finding	the	primitives	or	indefinite	integrals	of	

given	function.	We	shall	now	interprete	the	definite	integrals	denoted	by	
b

a
 f (x) dx,	read	as	the	integral	

from	a	to	b	of	the	function	f (x)	with	respect	to	x.	Here	a < b,	are	real	numbers	and	f (x)	is	definited	on	

4. DEFINITE  INTEGRATION

Fig. 4.1

[a,	b].	At	present,	we	assume	that	f (x)	≥	0	on	[a,	b] 

and	f (x)	is	continuous.	 
b

a
 f (x) dx	 is	 defined	 as	 the	 area	 of	 the	 region	

bounded	by	y = f (x),	X-axis	and	the	ordinates	x = a 
and	x = b.	If	g (x)	is	the	primitive	of	f (x)	then	the	area	
is	g (b) −	g (a).	

The	reason	of	the	above	definition	will	be	clear	
from	the	figure	4.1.	and	the	discussion	that	follows	
here.	We	are	using	 the	mean	value	 theorem	learnt	
earlier.	Divide	the	interval	[a,	b]	into	a	equal	parts	
by	

a = x0 < x1 < x2	<	.	.	.	<	xn −1< xn = b.	

Draw	the	curve	y = f (x)	in	[a,	b]	and	divide	the	interval	[a,	b]	into	n	equal	parts	by	

a = x0 < x1 < x2	<	.	.	.	<	xn −1< xn = b.

Divide	the	region	whose	area	is	measured	into	their	strips	as	above.	

Note that, the	area	of	each	strip	can	be	approximated	by	the	area	of	a	rectangle	Mr Mr	+	1	QP	as	
shown	in	the	figure	4.1,	which	is	(xr −1 −	xr) ×	f	(	T	)	where	T	is	a	point	on	the	curve	y = f (x)	between	P	
and	Q.	
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The	mean	value	theorem	states	that	if	g (x)	is	the	primitive	of	f (x),	

g (xr +	1) −	g (xr) =  (xr +	1 −	xr) · f (tr)		 where	 xr < tr < xr +	1.	

Now	we	can	replace	f	(	T	)	by	f (tr)	given	here	and	express	the	approximation	of	the	area	of	the	

shaded	region	as	
n =	1

r =	0
 (xr +	1	−	xr) · f (tr)		where	 xr < tr < xr +	1.

Now	we	can	replace		f	(	T	)	by	f (tr)	given	here	and	express	the	approximation	of	the	area	of	the	
shaed	region	as	

n =	1

r =	0
 (xr +	1 −	xr) · f (tr) = 

n =	1

r =	0
 g (xr +	1) −	g (xr) =  g (b) −	g (a) 

Thus	taking	limit	as	n →	∞  

g (b) −	g (a)  = limn→∞ � (xr +	1 −	xr) · f (tr)

   = limn→∞ Sn

   = 
b

a
 f (x) dx

The	word	'to	integrate'	means	 'to	find	the	sum	of'.	The	technique	of	integration	is	very	useful	in	
finding	plane	areas,	length	of	arcs,	volume	of	solid	revolution	etc...	

SOLVED EXAMPLES 

Ex. 1 : 
2

1
(2x + 5) dx

Solution : Given,	
2

1
(2x + 5) dx = 

b

a
 f (x) dx

   f (x) = 2x + 5 a	=	1	;	b = 2

   ⇒	 f (a + rh) = f (1 + rh) 

	 		 	 	 	 =	 2(1 + rh) + 5  

      = 2 + 2rh + 5  

      = 7 + 2rh  ∴ nh	=	1 

	 We	know	
b

a
 f (x) dx = limn→∞

n

r =	1
 h · f (a + rh)

and	 h = 
b	−	a

n

 h = 
2	−	1

n
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and	 h = 
b	−	a

n

h = 
3	−	2

n

	 ∴ 
2

1
(2x + 5) dx = limn→∞

n

r =	1
 h · (7 + 2rh)

= limn→∞

n

r =	1
 (7h + 2rh2)

= limn→∞ 7h
n

r =	1
	1 + 2h2

n

r =	1
 r

= limn→∞ 7h·(n) + 2h2 
n (n + 1)

2

= limn→∞ 7nh + h2n2 1	+	
1
n

= limn→∞ 7	(1) +	(1)2 1	+	
1
n

=	7	+	1	(1	+	0)	=	8	

Ex. 2 : 
3

2
7x · dx

Solution : Given,	
3

2
7x · dx = 

b

a

f (x) dx

f (x) = 7x a	=	2	;	b = 3
⇒ f (a + rh) = f (1 + rh)

 = 72 + rh   ∴ nh	=	1
 = 72 · 7rh 

We	know	
b

a

f (x) dx = limn→∞

n

r =	1
 h · f (a + rh)

	 ∴ 
3

1
7x · dx = limn→∞  

n

r =	1
h · (72 · 7r·h)

= limn→∞  72 · 
n

r =	1
 h · 7r·h 

= limn→∞  72 · h · [7h  + 72h  + 73h  + 74h  +	.	.	.	+	7nh]

= limn→∞ 72·h·
7h [(7h)n	−	1]

7h −	1
 = limn→∞ 72·

7h (7nh	−	1)
7h	−	1

h

= limn→∞ 72·
7h (7(1)	−	1)

7h	−	1
h

= 
72· 70· (7 −	1)

log	7  = 
(49)(1)(6)
log	7  =

294
log	7
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Ex. 3 : 
4

0
(x − x2) · dx

Solution :  
4

0
(x − x2) · dx = 

b

a
 f (x) dx

    f (x) = x − x2  a	=	0	;	b	=	4
   ⇒	 f (a + rh) = f (0 + rh) 
      = f (rh) 
      = (rh) − (rh)2   
      = rh − r2h2  ∴ nh	=	4	

	 We	know	
b

a
 f (x) dx = limn→∞

n

r =	1
 h · [ f (a + rh)]

	 ∴ 
4

0
(x − x2)·dx = limn→∞  

n

r =	1
 h · (rh − r2h2)

    = limn→∞  
n

r =	1
 (rh2 − r2h3)

    = limn→∞  h2 · 
n

r =	1
 r −	h3· 

n

r =	1
 r2

	 	 	 	 = limn→∞ h2 
n (n + 1)

2 	−	h3
n (n + 1)(2n + 1)

6
 

	 	 	 	 = limn→∞

h2·n·n 1	+	
1
n

2
	−	

h3·n·n 1	+	
1
n n 2 + 

1
n

6

	 	 	 	 = limn→∞

(nh)2 1	+	
1
n

2
	−	

(nh)3 1	+	
1
n  2 + 

1
n

6

	 	 	 	 = limn→∞

(4)2 1	+	
1
n

2
	−	

(4)3 1	+	
1
n  2 + 

1
n

6

    = 
(4)2· (1 + 0)

2  − 
(4)3(1 + 0)	(2 + 0)

6  

	 	 	 	 =	8	−	
(64)(2)

6

    = −	
40
3

and	 h = 
b	−	a

n

 h = 
4	−	0

n
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and	 h = 
b	−	a

n  = 

π
2 	−	0

n

Ex. 4 : 
π⁄2

0
sin	x · dx

Solution : 
π⁄2

0
sin	x · dx = 

π⁄2

0
 f (x) dx

    f (x)	=	sin	x  a	=	0	;	b = 
π
2

   ⇒	 f (a + rh)	 =	 sin (a + rh) 
	 		 	 	 	 =	 sin (0 + rh) 

	 		 	 	 	 =	 sin	rh   ∴ nh = 
π
2  

	 We	know	
b

a
 f (x) dx = limn→∞

n

r =	1
 h · [ f (a + rh)]

	 ∴ 
π⁄2

0
sin	x · dx = limn→∞  

n

r =	1
 h ·	sin	rh

    = limn→∞  h · 
n

r =	1
	sin	rh

    = limn→∞  h · [sin	h +	sin	2h +	sin	3h  +	.	.	.	+	sin	nh]		 .	.	.	(I)
	 Consider,

	  
n

r =	1
	sin	rh =	sin	h +	sin	2h +	sin	3h  +	.	.	.	+	sin	nh

		 	 	 =	2	sin	
h
2 · sin	h +	2	sin	

h
2 · sin	2h +	2	sin	

h
2 · sin	3h  +	.	.	.	+	2	sin	

h
2 · sin	nh

  ⸪	 2	sin	A	· sin	B	=	cos	(A	−	B)	−	cos	(A	+	B)  

	 2	sin	
h
2 ·

n

r =	1
		sin	rh = cos 

h
2  −	cos 

3h
2 	+	 cos 

3h
2  −	cos 

5h
2 	+	 cos 

5h
2  −	cos 

7h
2 	+	.	.	.

	 	 	 	 			+	.	.	.	+	 cos	
2n	−	1

2 	h −	 cos	
2n + 1

2 	h 

	 	 	 = cos 
h
2  −	cos	

2n + 1
2 	h 	 	

	 	 	 = cos 
h
2  −	cos	

2nh
2 	+ 

h
2

	 	 	 = cos 
h
2  −	cos	

π
2 	+ 

h
2   ⸪	 nh = 

π
2

	 	 	 = cos 
h
2  + sin 

h
2
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∴	
n

r =	1
	sin	rh =	

cos 
h
2  + sin 

h
2

2 sin 
h
2

	   

	 Now	from	I,

 
π⁄2

0
sin	x · dx = limn→∞  

n

r =	1
 h ·	sin	rh 

   = limn→∞  h · 
cos 

h
2  + sin 

h
2

2 sin 
h
2

 

 ⸪	 nh = 
π
4   as	n→∞	⇒	h→0	

1
n  →	0

   = 
lim
n→∞
h→0

 
cos 

h
2  + sin 

h
2

2·sin 
h
2

h

 

   =	
cos 0	+ sin 0

1
2

	   

   =	
1	+ 0

2 · 
1
2

	  =	1

∴	
π⁄2

0
sin	x · dx =	1

EXERCISE 4.1

I. Evaluate the following integrals as limit of sum. 

	 (1)	
3

1
(3x − 4)·dx (2) 

4

0
x2·dx   (3) 

2

0
e x·dx

	 (4)	
2

0
(3x2 − 1)·dx (5) 

3

1
x3·dx  
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4.2 Fundamental theorem of integral calculus :

	 Let	f		be	the	continuous	function	defined	on	[a,	b]	and	if	  f (x) dx = g (x) + c

	 then	
b

a
 f (x) dx = g (x) + c  b

a

    = [( g (b) + c ) −	( g (a) + c )]

    = g (b) + c −	g (a)	−	c

    = g (b)	−	g (a)

	 Thus	
b

a
 f (x) dx = g (b)	−	g (a)

Ex. : 
5

2
(x2 −	x) dx = 

x3

3 	−	
x2

2
 
5

2

     = 
53

3 	−	
52

2 	−	
23

3 	−	
22

2

     = 
125
3 	−	

25
2 	−	

8
3  + 

4
2

     = 
117
3 	−	

21
2  = 

234	−	83
6

∴ 
5

2
(x2 −	x) dx = 

151
3  

 In		
b

a
 f (x) dx     a	is	called	as	a	lower	limit	and	b	is	called	as	an	upper	limit.

 Now	let	us	discuss	some	fundamental	properties	of	definite	integration.	

	 These	properties	are	very	useful	in	evaluation	of	the	definite	integral.	

4.2.1 

Property I : 
a

a
 f (x) dx	=	0

	 Let	  f (x) dx = g (x) + c

	 ∴	
a

a
 f (x) dx = g (x) + c  a

a

    = [( g (a) + c ) −	( g (a) + c )]

    = 0

Property II : 
b

a
 f (x) dx	=	−	

a

b
 f (x) dx

	 Let	  f (x) dx = g (x) + c

	 ∴	
b

a
 f (x) dx = g (x) + c  b

a

    = [( g (b) + c ) −	( g (a) + c )]

    = g (b) −	g (a)

    = −	[ g (a)	−	g (b) ]

    = −	
a

b
 f (x) dx 

	 Thus	
b

a
 f (x) dx = −	

a

b
 f (x) dx 

Ex.   
1

3
x dx =  

x2

2
 
1

3

 

    = 
12

2 	−	
32

2  =  
1
2 	−	

9
2 	=	−	4

Ex.   
3

1
x dx =  

x2

2
 
3

1

 

    = 
32

2 	−	
12

2  = 
9
2 	−	

1
2 	=	4
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Property III : 
b

a
 f (x) dx =  

b

a
 f (t ) dt

	 Let	  f (x) dx = g (x) + c

L.H.S.	:	
b

a
 f (x) dx = g (x) + c  b

a

      = [( g (b) + c ) −	( g (a) + c )]

      = g (b) −	g (a)	 .	.	.	.	.	(i)

R.H.S.	:	
b

a
 f (t ) dt  = g (t ) + c  b

a

      = [( g (b) + c ) −	( g (a) + c )]

      = g (b) −	g (a)	 .	.	.	.	.	(ii)

from	(i)	and	(ii)	

 
b

a
 f (x) dx =  

b

a
 f (t ) dt

i.e.	 definite	 integration	 is	 independent	 of	 the	
variable.

Ex.  
π⁄3

π⁄6

cos	x · dx = sin	x  

π⁄3

π⁄6

	 	 	 	 	 =	 sin	
π
3 	−	sin	

π
6

     = 
√	3

2 	−	
1
2

     = 
√	3 −	1

2  

Ex.  
π⁄3

π⁄6

cos	t · dt = sin	t  

π⁄3

π⁄6

	 	 	 	 	 =	 sin	
π
3 	−	sin	

π
6

     = 
√	3

2 	−	
1
2

     = 
√	3 −	1

2  

Property IV : 
b

a
 f (x) dx =  

c

a
 f (x) dx +  

b

c
 f (x) dx where	a < c < b		 i.e.	c ∈	[a,	b]

	 Let	  f (x) dx = g (x) + c

Consider	 R.H.S.	:	  
c

a
 f (x) dx +  

b

c
 f (x) dx

      = g (x) + c  c

a
+ g (x) + c  b

c

      = [( g (c) + c ) −	( g (a) + c )] + [( g (b) + c ) −	( g (c) + c )]

      = g (c) + c −	g (a)	−	c + g (b) + c −	g (c)	−	c

      = g (b) −	g (a) 

      = g (x) + c  b

a

      =  
b

a
 f (x) dx		:	L.H.S.

Thus	  
b

a
 f (x) dx =  

c

a
 f (x) dx +  

b

c
 f (x) dx where	a < c < b
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Ex. : 
5

−1
(2x + 3)·dx = 

3

−1
(2x + 3)·dx + 

5

3
(2x + 3)·dx

L.H.S.	:	  
5

−1
(2x + 3)·dx

  = 2
x2

2  + 3x  
5

−1

 

  = x2 + 3x  
5

−1

  = [(5)2	+	3	(5)]	−	[(−1)2	+	3	(−1)]

	 	 =	 (25	+	15)	−	(1	−	3)

	 	 =	 40	+	2	=	42

R.H.S.	:	  
3

−1
(2x + 3)·dx + 

5

3
(2x + 3)·dx

  = x2 + 3x  
3

−1

 + x2 + 3x  
5

3

  = [((3)2 + 3 (3))	−	((−1)2	+	3	(−1))] + 

   [((5)2 + 3 (5))	−	((3)2 + 3 (3))]
	 	 =	 [(9	+	9)	−	(1	−	3)]	+	[(25	+	15)	−	(9	−	9)]

	 	 =	 18	+	2	+	40	−18	

	 	 =	 42

Property V : 
b

a
 f (x) dx = 

b

a
 f (a + b −	x) dx 

	 Let	  f (x) dx = g (x) + c

Consider	 R.H.S.	:	  
b

a
 f (a + b −	x) dx 

put	 a + b −	x = t  i.e.			 x = a + b −	t

∴	 −	dx = dt ⇒	dx = −	dt

As		 x →	a ⇒	t →	b  and			 x →	b ⇒	t →	a

therefore	 =  
a

b
 f (t )	(−dt ) 

   = − 
a

b
 f (t ) dt 

   = 
b

a
 f (t ) dt ... ⸪	

b

a
 f (x) dx =	−	

a

b

f (x) dx

   = 
b

a
 f (x ) dx .	.	.		 as	definite	

	 	 	 	 	 	 	 	 integration	is	
	 	 	 	 	 	 	 	 independent	of	
	 	 	 	 	 	 	 	 the	variable.
	 	 	 =		 L.	H.	S.	

Thus	
b

a
 f (x) dx = 

b

a
 f (a + b −	x) dx

Ex. :

 
π⁄3

π⁄6

sin2 x · dx 

 I = 
π⁄3

π⁄6

sin2 x · dx .	.	.	(i)

  = 
π⁄3

π⁄6

sin2 
π
6  + 

π
3 	−	x  

  = 
π⁄3

π⁄6

sin2 
π
2 	−	x  

 I = 
π⁄3

π⁄6

cos2 x · dx .	.	.	(ii)	

	 adding	(i)	and	(ii)

 2I = 
π⁄3

π⁄6

sin2 x · dx + 
π⁄3

π⁄6

cos2 x · dx

 2I = 
π⁄3

π⁄6

(sin2 x + cos2 x) · dx

 2I = 
π⁄3

π⁄6

1· dx =  x  

π⁄3

π⁄6

 2I = 
π
3 	−	

π
6  = 

π
6   ∴ I  =  

π
12

 
π⁄3

π⁄6

sin2 x · dx = 
π
12
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Property VI : 
a

0
 f (x) dx = 

a

0
 f (a	−	x) dx 

	 Let	  f (x) dx = g (x) + c

Consider	 R.H.S.	:	  
a

0
 f (a	−	x) dx 

put	 a	−	x = t  i.e.		 	 x = a	−	t

∴	 −	dx = dt ⇒	dx = −	dt

As	x	varies	from	0	to	a,	t	varies	from	a	to	0	

therefore		I	 =  
0

a
 f (t )	(−dt ) 

   = − 
0

a
 f (t ) dt 

   = 
a

0
 f (t ) dt  ...

b

a
 f (x) dx =	−	

a

b
 f (x) dx

   = 
a

0
 f (x ) dx .	.	.		 as	definite	

	 	 	 	 	 	 	 	 integration	is	
	 	 	 	 	 	 	 	 independent	of	
	 	 	 	 	 	 	 	 the	variable.
	 	 	 =		 L.	H.	S.	

Thus	

 
a

0
 f (x) dx = 

a

0
 f (a	−	x) dx 

Ex. : 
π⁄4

0
log	(1	+	tan x) · dx

Let	
π⁄4

0
log	(1	+	tan x) · dx  .	.	.	(i)

 I = 
π⁄4

0
log	 1	+	tan	

π
4 	−	x  

  = 
π⁄4

0
log	 1	+	

tan 
π
4  −	tan x

1	+	tan 
π
4 ·tan x

 · dx

  = 
π⁄4

0
log	 1	+	

1	−	tan	x 
1	+	tan	x 

 · dx

  = 
π⁄4

0
log	

1	+	tan	x +	1	−	tan	x 
1	+	tan	x 

 · dx

  = 
π⁄4

0
log	

2
1	+	tan	x 

 · dx

  = 
π⁄4

0
[log	2	−	log	(1	+	tan	x)] · dx

  = 
π⁄4

0
(log	2)	· dx −	

π⁄4

0
log	(1	+	tan	x) · dx

	 I	 =	(log	2)	
π⁄4

0
1	· dx −	I		 .	.	.by		eq.	(i)

		I	+	I	 =	(log	2)	  x  

π⁄4

0

	 2I	=	(log	2)	
π
4 	−	0  

∴ I  =  
π
8 	(log	2)

Thus	

 
π⁄4

0
log	(1	+	tan x) · dx =  

π
8 	(log	2)
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Property VII : 
2a

0
 f (x) dx = 

a

0
 f (x) dx + 

a

0
 f (2a	−	x) dx 

R.H.S.	:	
a

0
 f (x) dx + 

a

0
 f (2a	−	x) dx

   =  I1 + I2	 	 	 	 	 .	.	.	(i)

Consider	 I2 = 
a

0
 f (2a	−	x) dx

put	 2a	−	x = t  i.e.		 	 x = 2a	−	t

∴	 −1	dx = 1 dt ⇒	dx = −	dt

As	x	varies	from	0	to	2a,	t	varies	from	2a	to	0	

 I = 
a

2a
 f (t )	(−	dt) 

  = − 
a

2a
 f (t ) dt 

  = 
2a

0
 f (t ) dt ...

b

a
 f (x) dx =	−	

a

b
 f (x) dx

  = 
2a

0
 f (x) dx ...

b

a
 f (x) dx = 

b

a
 f (t ) dt

∴		
a

0
 f (x) dx = 

2a

0
 f (x) dx

	 from	eq.	(i)
a

0
 f (x) dx + 

a

0
 f (2a	−	x) dx = 

a

0
 f (x) dx + 

2a

0
 f (x) dx

       = 
2a

0
 f (x) dx :	L.H.S

Thus,

 
2a

0
 f (x) dx = 

a

0
 f (x) dx + 

a

0
 f (2a	−	x) dx

Property VIII : 
a

−a
 f (x) dx = 2 · 

a

0
 f (x) dx 	,	if	f (x)	even	function	

	 	 =	0	 	 	 ,	if	f (x)	is	odd	function

 f (x)	even	function	if	f (−	x) = f (x) 

and	 f (x)	odd	function	if	f (−	x)	=	−	f (x) 

a

−a
 f (x) dx = 

0

−a
 f (x) dx + 

a

0
 f (x) dx	 	 .	.	.	(i)

Consider	
0

−a
 f (x) dx

put	 x	=	−	t ∴	 dx = −dt
As	x	varies	from	−	a	to	0,	t	varies	from	a	to	0	

 I = 
0

a
 f (−t )	(−dt ) = − 

0

a
 f (−t ) dt  

  = 
a

0
 f (−t ) dt ...

b

a
 f (x) dx =	−	

a

b
 f (x) dx

  = 
a

0
 f (−x) dx ...

b

a
 f (x) dx = 

b

a
 f (t ) dt

Equation	(i)	becomes
a

−a
 f (x) dx  = 

a

0
 f (−x) dx + 

a

0
 f (x) dx 

   = 
a

0
 [ f (−x) + f (x)] dx

If	f (x)	is	odd	function	then	f (−x)	=	−	f (x),	hence

a

−a
 f (x) dx		=	0

If	f (x)	is	even	function	then	f (−x) =  f (x),	hence	
a

−a
 f (x) dx  = 2 · 

a

0
 f (x) dx 

Hence	:
a

−a
 f (x) dx  = 2 · 

a

0
 f (x) dx 	,	if	f (x)	even	function	

	 	 =	0	 	 	 ,	if	f (x)	is	odd	function
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Ex. :

1. 
π⁄4

−π⁄4

x3 ·	sin4 x · dx 

 Let	 f (x) = x3 ·	sin4 x

   f (−x)	=	(−x)3 ·	[sin	(−x)]4		=		−x3 · [−	sin	x]4		=		−x3 ·	sin4 x
    =	−f (x)
 f (x)	is	odd	function.

∴ 
π⁄4

−π⁄4

x3 ·	sin4 x · dx =	0

2. 
1

−1
 

x2

1	+	x2
 · dx

 Let	 f (x) = 
x2

1	+	x2

   f (−x) = 
(−x)2

1	+	(−x)2
  

    =  
x2

1	+	x2  

    = f (x)

 f (x)	is	even	function.

1

−1

 
x2

1	+	x2
 · dx  = 2

1

0
 x2

1	+	x2
 · dx

    = 2
1

0
 1	+	x

2	−	1
1	+	x2

 · dx

    = 2
1

0
 1	−	 1

1	+	x2
 · dx

    = 2 x −	tan−1x  
1

0

    = 2 �(1 −	tan−1x)	−	(0 −	tan−1x)�

    = 2 �1 −	
π
4 	−	0�

    = 2 1 −	
π
4 	=	

4	−	π
2

∴	
1

−1

 
x2

1	+	x2
 · dx = 

4	−	π
2

SOLVED EXAMPLES 

Ex. 1 : 
3

1

1
√	2 + x	+ √	x

·dx

Solution : = 
3

1

1
√	2 + x	+ √	x

√	2 + x	−	√	x
√	2 + x	−	√	x

·dx 

 = 
3

1

√	2 + x	−	√	x
2 + x	−	x

·dx

  = 
1
2  ·

3

1
 (√	2 + x	−	√	x )·dx 

  =  
1
2  ·

(2 + x)
3
2  

3
2

 −	
x

3
2

3
2

  

3

1

 =  
1
3  · (2 + x)

3
2 	−	(x)

3
2  

3

1

 =  
1
3  � (2 + 3)

3
2  
−	(3)

3
2  −	 (2	+	1)

3
2  
−	(1)

3
2   �

 =  
1
3  �5

3
2  
−	3

3
2  −	3

3
2  
+	1

3
2 �

 =  
1
3  �5

3
2  
−	2(3)

3
2  +	1�

∴ 
3

1

1
√	2 + x	+ √	x

 dx = 
1
3  5

3
2  
−	2(3)

3
2  +	1
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Ex. 2 : 
π⁄2

0
√	1	−	cos	4x · dx

Solution : Let	I	=	
π⁄2

0
√	1	−	cos	4x · dx

  I = 
π⁄2

0
√	2	sin2 2x · dx

	 		 	 ⸪	1	−	cos	A = 2	sin2 
A
2

	 		 = √	2 · 
π⁄2

0
sin	2x · dx

	 		 = √	2 · 
−	cos	2x

2
 

π⁄2

0

   = 
√	2
2

 ·  cos	2	
π
2 	−	cos	0

 

   = −	
√	2
2

 · [cos	π	−	cos	0]

   = −	
√	2
2

 · (−	1	−	1) = √	2

∴		
π⁄2

0
√	1	−	cos	4x · dx = √	2

Ex. 3 : 
π⁄2

0
cos3 x · dx

Solution : Let	I	=	
π⁄2

0
cos3 x · dx

   = 
π⁄2

0

1
4  [	cos	3x +	3	cos	x ] · dx

	 		 = 
1
4  sin	3x·

1
3 	+	3	sin	x

 

π⁄2

0

   = 
1
4  

1
3

 sin	3	
π
2 	+	3	sin	

π
2  −	

1
3

 sin	3	(0)	+	3	sin	(0)  

   = 
1
4  

1
3

 sin	
3π
2 	+	3	sin	

π
2  −	

    
1
3

 sin	0	+	3	sin	0

   = 
1
4  

1
3  (−	1)	+	3	(1)	 −	0

   = 
1
4  −	

1
3  + 3   = 

1
4  

8
3

  = 
2
3

∴		
π⁄2

0
cos3 x · dx = 

2
3

put	 tan	x = t ∴  sec2 x ·dx = 1·dt

As			x varies	from	0	to	
π
4

 t varies	from	0	to	1

 =  
1

0

 
1

2t2 + 4t	+	1
	· dt

 = 
1
2

 · 
1

0

 
1

t2 + 2t	+ 
1
2

	· dt

 = 
1
2

 · 
1

0

 1

t2 + 2t	+	1	−	1	+	
1
2

	· dt

 = 
1
2

 · 
1

0

 1

(t	+	1)2	−	
1
√	2

 
2	· dt

= 
1
2

· 1

2 
1
√	2

 log	
(t	+	1)	−	

1
√	2

(t	+	1)	+	
1
√	2

 

1

0

= 
√	2
4

 log	
√	2 t	+ √	2 −	1
√	2 t	+ √	2 +	1

 

1

0

= 
√	2
4

 log	
√	2	(1)	+ √	2 −	1
√	2	(1)	+ √	2 +	1

	−	log 
√	2	(0)	+ √	2 −	1
√	2	(0)	+ √	2 +	1

 

= 
√	2
4

 log	
2 √	2	−	1
2 √	2	+	1

	−	log	
√	2	−	1
√	2	+	1

= 
√	2
4

 log	
2 √	2	−	1
2 √	2	+	1

	÷ 
√	2	−	1
√	2	+	1

= 
√	2
4

 log	
3 + √	2
3	−	√	2

Ex. 4 : 
π⁄4

0

sec2 x
2	tan2 x +	5	tan	x +	1

 · dx

Solution :  Let	I	=	
π⁄4

0

sec2 x
2	tan2 x +	5	tan	x +	1

 · dx
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Ex. 5 : 
2

1

 
log	x

x2
	· dx

Solution :  Let				I	 =	
2

1
(log	x) 

1
x2

·dx

    = (log	x)·
1
x2

·dx  

2

1
 −	

2

1

d
dx

 log	x ·
1
x2

·dx·dx

    = (log	x)· −	
1
x

 

2

1
 −	

2

1

1
x

· −	
1
x

·dx

    = −	
1
x

 log	x  

2

1
 + 

2

1

1
x2

·dx

    = −	
1
x

 log	x  

2

1
 + −	

1
x

 

2

1

    = −	
1
2

 log	2 	−	 −	
1
1

 log	1  + −	
1
2

	−	 −	
1
1

    = −	
1
2

 log	2	−	0	−	
1
2

 +	1	= 
1
2

 −	
1
2

 log	2	 	 	 ⸪	log	1	=	0   

∴ 
2

1

 
log	x

x2
	· dx = 

1
2

 1	− log	2

Ex. 6 : 
π⁄2

0

cos	x
1	+	cos	x +	sin	x

 · dx

Solution : Let			I	 =	
π⁄2

0

cos	x
1	+	cos	x +	sin	x

 · dx 

     =	
π⁄2

0
	

cos2 
x
2  − sin2 

x
2

2	cos2 
x
2  + 2 sin 

x
2 ·cos 

x
2

 · dx

     =	
π⁄2

0
	
cos 

x
2  − sin 

x
2

 cos 
x
2  + sin 

x
2

2 cos 
x
2  cos 

x
2  + sin 

x
2

 · dx  

     =	
π⁄2

0
	
cos 

x
2  − sin 

x
2

cos 
x
2

 · dx =	
π⁄2

0
	 1	− tan 

x
2

 · dx 
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 = 
1
2  · x −	log	 sec 

x
2  · 

1

1
2

	  

π⁄2

0

 = 
1
2  · 

π
2  −	2·log	 sec 

π
4 	−	(0	−	2	log	sec	0)

 = 
1
2  · 

π
2  −	2 log	√	2	−	0	+	2(0)    = 

1
2  · 

π
2  −	2 log	√	2   = 

π
4  −	log	√	2

∴ 
π⁄2

0

sec2 x
1	+	cos	x +	sin	x

 · dx = 
π
4  −	log	√	2

Ex. 7 : 
1⁄2

0

1
(1	−	2x2) √	1	−	x2

·dx

Solution : Let			I	 =	 
1⁄2

0

1
(1	−	2x2) √	1	−	x2

·dx

     put	 x	=	sin	θ  ∴    1·dx = cos	θ·d θ

	 	 	 	 As	 x	varies	from	0	to	
1
2 ,	θ	varies	from	0	to	

π
6

 = 
π⁄6

0

cos	θ
(1	−	2sin2 θ) √	1	−	sin2 θ

 · d θ  =  
π⁄6

0

cos	θ
(cos	2θ) √	cos2 θ

·d θ		

 =  
π⁄6

0

1
cos	2θ

·d θ		 	 	 	 	 	 	

	 =  
π⁄6

0
sec	2θ·d θ

 = log	(sec	2θ	+	tan	2θ) · 
1
2

 

π⁄6

0

 = 
1
2  · log	 sec	2 

π
6  + tan	2 

π
6 	−	log	(sec	0	+	tan	0)

 = 
1
2  · log	 sec	

π
3  + tan	

π
3 	−	log	(1	+	0)     ⸪	log	1	=	0

 = 
1
2  · [log	(2 + √	3 )	−	0]

 = 
1
2  log	(2 + √	3 )

∴ 
1⁄2

0

1
(1	−	2x2) √	1	−	x2

·dx = 
1
2  log	(2 + √	3 )
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Ex. 8 : 
2

0

 
2x

2x (1 +	4x )
 · dx

Solution :  Let			I	=	
2

0

 
2x

2x (1 +	4x )
 · dx

put	 2x = t  ∴   2x · log	2 ·dx = 1·dt
As	 x	varies	from	0	to	2,	t	varies	from	1	to	4

 =  
4

1
 

1
log	2

t	(1	+	t 2 )
	· dt

 = 
1

log	2
 · 

4

1
 

1
t	(1	+	t 2 )

	· dt

 = 
1

log	2
 · 

4

1
 
1	+	t 2	−	t 2

t	(1	+	t 2 )
	· dt

 may	be	solved	by	method	of	partial	fraction

 = 
1

log	2
 · 

4

1
 

1	+	t 2

t	(1	+	t 2 )
	−	

t 2

t	(1	+	t 2 )
· dt

 = 
1

log	2
 · 

4

1
 
1
t
	−	

t
1	+	t 2

· dt

 = 
1

log	2
 ·  

4

1

1
t
	· dt −	

1
2

 
4

1

2t
1	+	t 2

 · dt 

 = 
1

log	2
 ·  log	(t ) −	

1
2
	log	(1	+	t 2

 )  

4

1

 = 
1

log	2
 ·  log	4 −	

1
2
	log	17  −	

log	1 −	
1
2
	log	2  

 = 
1

log	2
 ·  log	4 −	

1
2
	log	17	+ 

1
2
	log	2  

	 ⸪	 log	1	=	0

	 = 
1

log	2
 · log	

4	√	2
√	17

∴ 
2

0

 
2x

2x (1 +	4x )
 · dx = 

1
(log	2)

 · log	
4	√	2
√	17

     = log2 
4	√	2
√	17

Ex. 9 : 
1

−1

 | 5x −	3	|· dx  

Solution :  Let			I	=	
1

−1

 | 5x −	3	|· dx  

| 5x −	3	| =  −	(5x −	3)	for	(5x −	3)	<	0	i.e.	x < 
3
5

   =  (5x −	3)	for	(5x −	3)	>	0	i.e.	x >	
3
5

 = 
3⁄5

−1
| 5x −	3	|· dx + 

1

3⁄5

| 5x −	3	|· dx     = 
3⁄5

−1
−	(5x −	3)· dx + 

1

3⁄5

(5x −	3)· dx

 = −	 5 
x2

2
 −	3x  

3⁄5

−1
+ 5 

x2

2
 −	3x  

1	

3⁄5

    = 3x −	
5
2

 x2  

3⁄5

−1
+ 

5
2

 x2 −	3x  

1	

3⁄5

 = 3 
3
5

	− 
5
2

 
3
5

	

2 

	−	 3 (−1)	− 
5
2

 (−1)2
 

  + 
5
2
	(1)2 − 3 (1)

 

	−	
5
2

 3
5

	

2 

−	3
3
5
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 = 
9
5
	− 

9
10

	−	 −	3	− 
5
2

   + 
5
2
	− 3 	−	

9
10
	−	

9
5

 = 
9
5
	− 

9
10
	+ 3	+ 

5
2

 + 
5
2
	− 3 −	

9
10

 

+ 
9
5

  =  2 
9
5
	− 

9
10
	+ 

5
2

  =  2 
18	−	9	+25

5
		 	= 

34
5

∴ 
1

−1

 | 5x −	3	|· dx = 
34
5

Ex. 10 : 
π⁄2

0

1
1	+	 3

	tan	x
 · dx

Solution : Let		I	 =	
π⁄2

0

1
1	+	 3

	tan	x
 · dx

 =	
π⁄2

0
	

1

1	+	
3
	sin	x

3
	cos	x

 · dx 

 = 
π⁄2

0

3
	cos	x

3
	cos	x + 3

	sin	x
 · dx   .	.	.	(i)

	 By	property	
a

0
 f (x) dx = 

a

0
 f (a −	x) dx

   I =	
π⁄2

0
	

3 cos 
π
2 	− x

3 cos 
π
2 	− x  + 

3 sin 
π
2 	− x

 · dx

 = 
π⁄2

0

3
	sin	x

3
	sin	x + 3

	cos	x
 · dx    .	.	.	(ii)

adding	(i)	and	(ii)

 I + I = 
π⁄2

0

3
	cos	x

3
	cos	x + 3

	sin	x
 · dx  +  

π⁄2

0

3
	sin	x

3
	sin	x + 3

	cos	x
 · dx

  2I = 
π⁄2

0

3
	cos	x + 3

	sin	x
3
	cos	x + 3

	sin	x
 · dx

  2I = 
π⁄2

0
1	· dx

   I = 
1
2

  x  

π⁄2

0
 = 

1
2

 
π
4 	−	0

 =  
π
4

 ∴   
π⁄2

0

1
1	+	 3

	tan	x
 · dx  =  

π
4   

   with	the	help	of	the	above	solved/	illustrative	example	verify	whether	the	following	examples	

evaluates	their	definite	integrate	to	be	equal	to	/	as	
π
4

   
π⁄2

0

1
1	+	cot3 x

 · dx ;	 	 	 	 	 	
π⁄2

0

sin	x
sin	x	+	cos	x

 · dx ;	 	 	 	
π⁄2

0

sec	x
sec	x	+	cosec	x

 · dx ;

   
π⁄2

0

sin4 x
sin4 x	+	cos4 x

 · dx ;	 	 	 	
π⁄2

0

cosec
5
2  x

cosec
5
2  x	+	sec

5
2  x

 · dx  
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Ex. 11 : 
8

3

 
(11	−	x)2

x2 + (1 −	x)2  · dx

Solution : Let		I		=	
8

3

 
(11	−	x)2

x2 + (1 −	x)2  · dx   .	.	.	(i)

By	property	
b

a
 f (x) dx = 

b

a
 f (a + b −	x) dx 

 I = 
8

3

 
[11−	(8	+	3	−	x)] 2

[8	+	3	−	x] 2  + [11	−	(8	+	3	−	x)] 2
 · dx  = 

8

3

 
[11−	(11	−	x)] 2

(11	−	x) 2  + [11	−	(11	−	x)] 2
 · dx

                         = 
8

3

 
x2

(11	−	x)2  + x 2
 · dx       .	.	.	(ii)

	 adding	(i)	and	(ii)	

 I + I = 
8

3
 

(11	−	x)2

x2 + (1 + x)2  · dx  +  
8

3
 

x2

(11	−	x)2  + x 2
 · dx

  2I = 
8

3
 
(11	−	x)2  + x 2

x 2 + (11	−	x)2
 · dx

   I = 
1
2

 
8

3
1	· dx

   I = 
1
2

  x  

8

3
 = 

1
2

 [8	−	3] =  
5
2

 ∴   
8

3

 
(11	−	x)2

x2 + (1 + x)2  · dx = 
5
2

Note that :	In	general		
b

a

 
f (x)

f (x) + f (a + b −	x)
 · dx = 

1
2

 (b −	a)

 verify	the	generalisation	for	the	following	examples	:

   
2

1

√	x
√	3	−	x + √	x · dx ;	 	 	 	 	 	 		 	 	 	

7

2

x3

(9	−	x)3 + x3
 · dx ;	 	 	

   
9

4

x
1
4

(13	−	x)
1
4  + x

1
4

 · dx          
π⁄3

π⁄6

1

1	+	√	cot	x
 · dx

   
π⁄3

π⁄6

1

1	+	√	cosec	x
 · dx     
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Ex. 12 : 
π

0

 x ·	sin2 x · dx

Solution : 

Consider,	 		I	 	=	
π

0

 x ·	sin2 x · dx .	.	.	(i)

 I =  
π

0

 (π	−	x) ·	[sin (π	−	x)]2 x · dx

 I =  
π

0

 (π	−	x) ·	sin2 x · dx

 I =  
π

0

 π ·	sin2 x · dx −	
π

0

x ·	sin2 x · dx

 I =  π · 
π

0

 
1
2

 (1 −	cos 2x) · dx −	I		.	.	.	by	(i)

  I + I = 
π
2

 
π

0

 (1 −	cos 2x) · dx

 2I = 
π
2

  x −	sin 2x · 
1
2

 

π

0
 

 I = 
π
4

 π	−	
1
2

 sin 2π  − 0	−	
1
2

 sin 0

  = 
π
4

 [π]      	⸪	sin	0	=	0;	sin	2π	=	0

  = 
π2

4

 ∴	
π

0

 x2 ·	sin2 x · dx = 
π2

4

Ex. 13 : Evaluate	the	integral		
π

0

 cos2 x · dx   using

	 	 	 the	result/	property.

Solution : 

   
2a

0
 f (x) dx = 

a

0
 f (x) dx + 

a

0
 f (2a	−	x) dx 

Let,	I	 =			
π

0

 cos2 x · dx

  =  
2

π
2

0

cos2 x · dx

  =  
π⁄2

0
 cos2 x · dx + 

π⁄2

0
 cos 2

π
2
	−	x  

2

· dx

  =  
π⁄2

0
 cos2 x · dx + 

π⁄2

0
 cos2 x · dx

 	 ⸪			 cos	(π	−	x) = −	cos	x

  =  2 · 
π⁄2

0
cos2 x · dx

  =  
π⁄2

0
(1 + cos 2x) · dx

  =  x + sin 2x · 
1
2

 

π⁄2

0
 

  = 
π
2
	+ 

1
2

 sin 2
π
2

 − 0	+ 
1
2

 sin	2(0)

  = 
π
2
	+	0	 	 		 	 	 	⸪	sin	0	=	0;	sin	π	=	0

  = 
π
2

 ∴	
π

0

 cos2 x · dx = 
π
2
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Ex. 14 : 
π

−π
 
x (1	+	sin	x)
1	+	cos2 x

 · dx

Solution : Let		I		 =	
π

−π
 
x (1	+	sin	x)
1	+	cos2 x

 · dx 

        = 
π

−π
 

x
1	+	cos2 x

 · dx  + 
π

−π
 

x · sin	x
1	+	cos2 x

 · dx

	 	 The	function	
x

1	+	cos2 x
	is	odd	function	and	the	function	

x · sin	x
1	+	cos2 x

	is	even	function.

  
a

−a
 f (x) dx = 2 · 

a

0
 f (x) dx 	 ,	if	f (x)	even	function	

	 	 	 		 	 	 	 =	0	 	 	,	if	f (x)	is	odd	function

        ∴	 I	 	=	0	+	2	·
π

0

 
x · sin	x
1	+	cos2 x

 · dx

        ∴	 I  = 2 ·
π

0

 
x · sin	x
1	+	cos2 x

 · dx       .	.	.	(i)

        	  = 2 ·
π

0

 
(π	−	x) · sin	(π	−	x)
1	+	[cos	(π	−	x)]2  · dx

        	  = 2 ·
π

0

 
(π	−	x) · sin	x
1	+	(−	cos	x)2  · dx

        	  = 2π ·
π

0

 
π	· sin	x	−	x · sin	x 

1	+	cos2 x
 · dx

        	  = 2π ·
π

0

 
sin	x 

1	+	cos2 x
 −	2 ·

π

0

x · sin	x 
1	+	cos2 x

 · dx

        	I  = 2π ·
π

0

 
sin	x 

1	+	cos2 x
 −	I  .	.	.	by	eq.(i)

          I + I = 2π ·
π

0

 
sin	x 

1	+	cos2 x
     .	.	.	(ii)

   put	 cos	x = t  ∴  −	sin	x ·dx = + dt

	 	 	 As	varies	from	0	to	π,	t	varies	from	1	to	−	1

      2I  = 2π ·
1

−1
 
−1

1	+	t 2	· dt

    I  = π · 2 
1

0

 
1

1	+	t 2	· dt  where	
1

1	+	t 2	is	even	function.
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        I  = 2π · 	tan−1 t  

1

0
 · 

            = 2π [tan−1	(1)	− tan−1	(0)]

            = 2π 
π
4
	−	0 	= 

π2

2

	 	 	 		 	 	 	 		 	 ∴			
π

−π
 
x (1	+	sin	x)
1	+	cos2 x

 · dx  =  
π2

2

Ex. 15 : 
3

0
 x [ x ] · dx	,	where	[	x ]	denote	greatest	integrate	function	not	greater	than	x.

Solution :  Let	I		=	 
3

0
 x [ x ] · dx 

        I  = 
1

0
 x [ x ] · dx + 

2

1
 x [ x ] · dx + 

3

2
 x [ x ] · dx

         = 
1

0
 x (0) · dx + 

2

1
 x (1) · dx + 

3

2
 x (2) · dx

	 	 	 	 		 	 	 	 =	 0	+		  
x2

2
  

2

1
+   x2  

3

2

	 	 	 	 		 	 	 	 =	 0	+	
4
2

 −	
1
2

 + (9	−	4)

         = 
3
2

 + 5  = 
13
2

∴		
3

0
 x [ x ] · dx =	

13
2

EXERCISE 4.2

I. Evaluate : 

	 (8)	
π⁄4

0
√	1	+	sin	2x·dx (9)	

π⁄4

0
sin4	x·dx

 (10)	
2

−4
 

1
x2	+	4x	+	13

·dx (11)	
4

0

1
√	4x	−	x2

·dx

 (12)	
1

0
 

1
√	3 + 2x	−	x2

·dx (13) 
π⁄2

0
x·sin x·dx

	 (14) 
1

0
x·tan−1	x·dx (15) 

∞

0
x·e−x·dx

	 (1)	
9

1

x +	1
√	x

·dx (2) 
3

2
 

1
x2 + 5x	+	6

·dx

 (3) 
π⁄4

0
cot 2 ·dx	 (4)	

π⁄4

−π⁄4

1
1	−	sin	x

·dx

 (5) 
5

3

1
√	2x	+	3	−	√	2x	−	3

·dx  

	 (6)	
1

0

x2 −	2
x2 +	1

·dx (7) 
π⁄4

0
sin	4x	sin	3x·dx
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II. Evaluate : 

 (1)  

1
√2

0

sin−1 x

(1	−	x2)
3
2

·dx

 (2) 
π⁄4

0

 
sec2x

3	tan2x +	4	tan x	+	1
·dx

 (3) 
4π

0

 
sin	2x

sin4x +	cos4	x
·dx

 (4) 
2π

0

 √	cos x · sin3 x · dx

 (5) 
π⁄2

0

 
1

5	+	4	cos x
·dx

 (6) 
π⁄4

0

cos	x
4	−	sin2 x

·dx

 (7) 
π⁄2

0

cos	x
(1	+	sin	x)	(2	+	sin	x)

·dx

 (8) 
1

−1

 
1

a2 e x + b2 e − x
·dx

 (9) 
π

0

 
1

3	+	2	sin x +	cos x
·dx

 (10)	
π⁄4

0

 sec4x · dx

 (11) 
1

0
 
1	−	x
1	+	x

·dx

 (12) 
π

0

 sin3x (1	+	2	cos x) (1	+	cos x)2 · dx

 (13) 
π⁄2

0

 sin	2x · tan	−1	(sin x) · dx

 (14) 
1

1
√2

 
(ecos−1 x)(sin−1	x)

√	1	−	x2
·dx

 (15) 
3

2

 
cos (log x)

x
·dx

III. Evaluate : 

 (1) 
a

0

 
1

x + √	a2	−	x2
·dx

 (2) 
π⁄2

0

	log	tan	x·dx

 (3) 
1

0

	log	
1
x
	−	1 ·dx

 (4) 
π⁄2

0

sin	x −	cos	x
1	+	sin	x·cos	x

·dx

 (5) 
3

0

 x2 (3	−	x)
5
2 ·dx

 (6) 
3

−3

 
x3

9 −	x2
·dx

 (7) 
π⁄2

−π⁄2

log	
2	+	sin	x
2	−	sin	x

·dx

 (8) 
π⁄4

−π⁄4

x + 
π
4

2	−	cos	2x ·dx

 (9) 
π⁄4

−π⁄4

x3 · sin4x · dx

 (10)	
1

0

log	(x	+	1)
x2 +	1

·dx

 (11) 
1

−1

 
x3 + 2
√	x2	+	4

·dx

 (12) 
a

−a

 
x + x3

16	−	x2
·dx

 (13) 
1

0

 t 2 √	1	− t · dx

 (14) 
π

0

x · sin x ·	cos2 x · dx

 (15) 
1

0

 
log	x
√	1	−	x2

·dx
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Note that :

	 To	evaluate	the	integrals	of	the	type	
π⁄2

0
sinn x	· dx	and	

π⁄2

0
cosn x	· dx,	the	results	used	are	known	as	

 'reduction formulae'	which	are	stated	as	follows	:

 
π⁄2

0
sinn x	· dx = 

(n	−	1)
n

·
(n	−	3)
(n	−	2)

·
(n	−	5)
(n	−	4)

 · · · 
4
5

 
2
3
,		 	 if	n	is	odd.

   = 
(n	−	1)

n
·
(n	−	3)
(n	−	2)

·
(n	−	5)
(n	−	4)

 · · · 
3
4

 
1
2

 · 
π
2
,		 if	n	is	even.

 
π⁄2

0
cosn x	· dx = 

π⁄2

0
 cos	

π
2
	−	x  

n

· dx   .	.	.	by	property

   = 
π⁄2

0
 [ sin	x ] 

n
· dx 

   = 
π⁄2

0
 sinn	x · dx

 
π⁄2

0
sin7 x	· dx = 

(7	−	1)
7

·
(7	−	3)
(7	−	2)

·
(7	−	5)
(7	−	4)

  

   =  
(7	−	1)·(7	−	3)·(7	−	5)

7·(7	−	2)·(7	−	4)
 

   = 
6	· 4	· 2
7 · 5 · 3

 = 
16
35

 
π⁄2

0
cos8 x	· dx = 

(8	−	1)
8

·
(8	−	3)
(8	−	2)

·
(8	−	5)
(8	−	4)

·
(8	−	7)
(8	−	6)

·
π
2

 

   = 
(8	−	1)·(8	−	3)·(8	−	5)	·(8	−	7)

8·(8	−	2)·(8	−	4)·(8	−	6)
·
π
2

   = 
7 · 5 ·	3	·	1
8	· 6	·	4	·	2

·
π
2

 

   = 
35π
256
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Let us Remember 

֍ 
n =	1

r =	0
 (xr +	1 −	xr) · f (tr) = 

n =	1

r =	0
 g (xr +	1) −	g (xr) =  g (b) −	g (a) 

Thus	taking	limit	as	n →	∞  

g (b) −	g (a)  = limn→∞ � (xr +	1 −	xr) · f (tr) = limn→∞ Sn  = 
b

a
 f (x) dx

֍ Fundamental theorem of integral calculus : 
b

a
 f (x) dx = g (b)	−	g (a)

 Property I : 
a

a
 f (x) dx	=	0	 	 	 	

 Property II : 
b

a
 f (x) dx	=	−	

a

b
 f (x) dx

 Property III : 
b

a
 f (x) dx =  

b

a
 f (t ) dt 

 Property IV : 
b

a
 f (x) dx =  

c

a
 f (x) dx +  

b

c
 f (x) dx where	a < c < b		 i.e.	c ∈	[a,	b] 

 Property V : 
b

a
 f (x) dx = 

b

a
 f (a + b −	x) dx 

 Property VI : 
a

0
 f (x) dx = 

a

0
 f (a	−	x) dx 

 Property VII : 
2a

0
 f (x) dx = 

a

0
 f (x) dx + 

a

0
 f (2a	−	x) dx 

 Property VIII : 
a

−a
 f (x) dx = 2 · 

a

0
 f (x) dx 	 ,	if	f (x)	even	function	

	 	 	 	 	 	 =	0	 	 	 ,	if	f (x)	is	odd	function

 f (x)	even	function	if	f (−	x) = f (x)	and	f (x)	odd	function	if	f (−	x)	=	−	f (x)

֍ 'Reduction formulae'	which	are	stated	as	follows	:

 
π⁄2

0
sinn x	· dx = 

(n	−	1)
n

·
(n	−	3)
(n	−	2)

·
(n	−	5)
(n	−	4)

 · · · 
4
5

 
2
3
,		 	 if	n	is	odd.

   = 
(n	−	1)

n
·
(n	−	3)
(n	−	2)

·
(n	−	5)
(n	−	4)

 · · · 
3
4

 
1
2

 · 
π
2
,		 if	n	is	even.

 
π⁄2

0
cosn x	· dx = 

π⁄2

0
 cos	

π
2
	−	0  

n

· dx = 
π⁄2

0
 [ sin	x ] 

n
· dx  =  

π⁄2

0
 sinn	x · dx
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MISCELLANEOUS  EXERCISE 4

(I) Choose the correct option from the given alternatives :

 (1) 
3

2

dx
x (x3 −	1)

 =

  (A)	
1
3 	log	

208
189  (B)	

1
3 	log	

189
208  (C)	 log	

208
189  (D)	 log	

189
208

 (2) 
π⁄2

0

sin2 x·dx
(1	+	cos	x)2

 =

  (A)	
4	−	π

2
  (B)	

π	−	4
2

 (C) 4	−	
π
2  (D) 

4	+	π
2

 (3) 
log	5

0

ex √ ex −	1
ex + 3

·dx =

  (A)	 3 + 2π (B)	 4	−	π (C) 2 + π (D) 4	+	π

 (4) 
π⁄2

0
sin6	x cos2 x·dx =

  (A)	
7π
256

  (B)	
3π
256

 (C) 
5π
256

 (D) 
−5π
256

 (5)	 If	
1

0

dx
√ 1	+	x − √ x

 = 
k
3 ,	then	k	is	equal	to

  (A)	 √ 2 (2√ 2 −	2)  (B)	
√ 2
3  (2 −	2√ 2 ) (C) 

2√ 2 −	2
3

 (D) 4√ 2 

 (6) 
2

1

1
x2

e
1
x ·dx =

  (A)	 √ e	+	1  (B)	 √ e −	1 (C) √ e (√ e −	1) (D) 
√ e −	1

e

 (7)	 If	
e

2

1
log	x

 −	
1

(log	x)2  ·dx = a + 
b

log	2
,	then

  (A)	 a = e,	b = −2  (B)	 a = e,	b = 2 (C) a = −e,	b = 2 (D) a = −e,	b = −2

 (8)	 Let	I1 = 
e2

e
 

dx
log	x

 and	I2 = 
2

1

ex

x
 ·dx,	then

  (A)	 I1 = 
1
3  I2  (B)	 I1 + I2	=	0 (C) I1 = 2I2 (D) I1 = I2
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 (9) 
9

0

√ x
√ x + √ 9	− x

· dx =

  (A)	 9	 (B)	
9
2  (C)	 0 (D)	 1

 (10) The	value	of	
π⁄4

−π⁄4

log	
2 +	sin	θ
2 −	sin	θ

· d θ is	

  (A)	 0	 (B)	 1 (C) 2 (D) π

(II) Evaluate the following :

 (1) 
π⁄2

0

cos x
3·cos	x	+	sin	x

·dx (2) 
π⁄2

π⁄4

cos θ

cos	
θ
2
	+	sin	

θ
2

 
3 ·d θ (3) 

1

0

1
1	+	√ x

·dx

 (4) 
π⁄4

0

tan3 x
1	+	cos	2x

·dx (5) 
1

0
 t 5·√ 1	−	t 2·dt (6) 

1

0
(cos	−1 x)2·dx

 (7) 
1

−1
 
1	+	x3

9	− x2
·dx (8) 

π

0
 x·sin	x·cos4 x·dx (9) 

π

0

x
1	+	sin2 x

·dx

 (10) 
∞

1

1
√ x (1	+	x)

·dx

(III) Evaluate :

 (1) 
1

0

1
1	+ x2

	sin−1 
2x

1	+ x2
· dx   (2) 

π⁄2

0

1
6	−	cos	x

·dx

 (3) 
a

0

1
a2 + ax − x2

· dx   (4) 
3π⁄10

π⁄5

sin	x
sin	x	+	cos	x

·dx

 (5) 
1

0
sin−1 

2x
1	+ x2

· dx   (6) 
π⁄4

0

cos	2x
1	+	cos	2x +	sin	2x

·dx

 (7) 
π⁄2

0
(2·log	sin	x −	log	sin	2x) · dx  (8) 

π

0
(sin−1	x + cos−1	x)3·sin3 x·dx

 (9) 
4

0
[√ x2 + 2x + 3 ]−1·dx   (10) 

3

−2
 | x −	2 |·dx



177

(IV) Evaluate the following :

 (1)	 If	
a

0
√ x·dx = 2a·

π⁄2

0
sin3 x·dx then	find	the	value	of	

a	+	1

a
x·dx.

 (2)	 If	
k

0

1
2 + 8x2

·dx = 
π
16
.	Find	k.

 (3)	 If	f (x) = a + bx + cx2	,	show	that	
1

0
 f (x) = 

1
6

  f	(0)	+	4	f  
1
2

 + f	(1) .

v v v
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Let us Study

• Area under the curve 

 • Area bounded by the curve, axis and given lines

 • Area between two curves. 

5. APPLICATION OF DEFINITE INTEGRATION 

Fig. 5.1

Fig. 5.2

This is also known as fundamental theorem of integral calculus. 
We shall find the area under the curve by using definite integral. 

5.1 Area under the curve : 

 For evaluation of area bounded by certain curves, we need to know the nature of the curves and 
their graphs. We should also be able to draw sketch of the curves.

5.1.1 Area under a curve : 

Let us Recall

• In previous chapter, we have studied definition of 

definite integral as limit of a sum. Geometrically 

 �
b

a   f (x)·dx gives the area A under the curve y = f (x) with 

f (x) > 0 and bounded by the X−axis and the lines x = a, 

x = b ; and is given by 

 �
b

a   f (x) dx = φ (b) − φ (a)

 where � f (x) dx = φ (x)

 The curve y = f (x) is continuous in [a, b] and

 f (x) ≥ 0 in [a, b].

1. The area shaded in figure 5.2 is bounded by the curve       

y = f (x), X−axis and the lines x = a, x = b and is given by 

the definite integral �
x = b

x = a
( y)·dx 

 A = area of the shaded region. 

 A = �
b

a   f (x)·dx
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Fig. 5.3

Fig. 5.4

Fig. 5.5

2. The area A, bounded by the curve x = g (y), Y axis 
and the lines y = c and y = d is given by

 A  = �
 d 

y = c
  x·dy 

  = �
y = d 

y = c   g ( y)·dx

Ex. 1 : Find the area bounded by the curve y = x2, the  
Y axis the X axis and x = 3. 

Solution : The required area A = �
3 

x = 0
  y·dx 

  A = �
3

0
 x

2·dx

    = 
x3

3
 
3

0

 

  A = 9 − 0 
   = 9 sq.units

Let y = f (x) and y = g (x) be the equations of the two 
curves as shown in fig 5.5.

Let A be the area bounded by the curves y = f (x) 
and y = g (x) 

   A  =  | A1 − A2 |  where 

A1 = Area bounded by the curve y = f (x), X-axis and 
x = a, x = b. 

A2 = Area bounded by the curve y = g (x), X-axis and 
x = a, x = b.

5.1.2 Area between two curves : 

SOLVED EXAMPLE 
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The point of intersection of the curves y = f (x) and y = g (x) can be obtained by solving their 
equations simultaneously. 

∴ The required area   A = | �
b

a
  f (x) dx  − �

b

a
  g (x) dx  | 

SOLVED EXAMPLES 

Ex. 1 : Find the area of the region bounded by the curves y2 = 9x and x2 = 9y. 

Solution : The equations of the curves are 

    y2 = 9x . . . . . (I)  

   and x2 = 9y . . . . . (II) 

   Squaring equation (II)

    x4 = 81y2

    x4 = 81 (9x) . . . by (1)

    x4 = 729 x

   ∴ x (x3 − 93) = 0

   i.e. x (x3 − 93) = 0

   ⇒ x = 0  or x = 9

From equation (II),  y = 0  or y = 9 

∴ The points of intersection of the curves are (0, 0), (9, 9).

∴ Required area A = �
9

0
√9x dx − �

9

0

x2

9
 dx

     = 3 · 
2
3

 · x
3
2  

9

0

 −  
1
9

 · 
x3

3
 
9

0

     = 2 · 9
3
2  − 27

    A = 54 − 27 

     = 27 sq.units

Now, we will see how to find the area bounded by the curve y = f (x), X-axis and lines x = a, x = b 

if f (x) is negative i.e. f (x) ≤ 0 in [ a, b ]. 

Fig. 5.6
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Ex. 2 : Find the area bounded by the curve y = − x2 , X−axis and lines x = 1 and x = 4. 

Solution : Let A be the area bounded by the curve y = − x2 , X−axis and 1 ≤ x ≤ 4.

The required area A = �
4

1
  y dx

     = �
4

1
 − x2  dx

     = − 
x3

3
 
4

1

     = − 
64
3

 + 
1
3

    A = − 21, 
But we consider the area to be positive. 

∴ A  = | −21 |sq.units = 21 square units. 
Fig. 5.7

Fig. 5.8

Fig. 5.9

 Thus, if f (x) ≤ 0 or f (x) ≥ 0 in [ a, b ] then the area enclosed between y = f (x) , X−axis and 

 x = a, x = b  is | �
b

a   f (x)·dx |.
If the area A is divided into two parts A1 and A2 such that 

A1 is the part of a ≤ x ≤ t where f (x) ≤ 0 and 

A2 is the part of a ≤ x ≤ t where f (x) ≥ 0

then in A1, the required area is below the X−axis 

and in A2, the required area is above the X-axis. 

Now the total area  A =  A1 + A2

     = | �
t

a   f (x) dx | + | �
b

t   f (x) dx |

Ex. 3 : Find the area bounded by the line y = x, X axis and the lines x = −1 and x = 4. 

Solution : Consider the area A, bounded by straight line y = x , X axis and x = −1, x = 4.

From figure 5.9, A is divided into A1 and A2

The required area A1 = �
0

−1
 y dx = �

0

−1
 x  dx

     = 
x2

2
 
0

−1

     = 0 − 
1
2

    A1 = − 
1
2

 square units. 
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But area is always positive. 

∴ A1 = | − 
1
2

 |sq.units = 
1
2

 square units. 

 A2 = �
4

0
 y dx = �

4

0
 x dx = 

x2

2
 
4

0

=  
42

2
  =  8 square units. 

∴ Required area  A =  A1 + A2 = 
1
2

 +  8  = 
17
2

 sq.units 

Ex. 4 : Find the area enclosed between the X-axis and the curve y = sin x for values of x between             
0 to 2π. 

Fig. 5.10

Solution : The area enclosed between the curve and the X-axis 
consists of equal area lying alternatively above and 
below X-axis which are respectively positive and 
negative.

1) Area A1 =  area lying above the X-axis

    = �
π

0
 sin x · dx = −  cos x  π

0

    = − [cos π −  cos 0]  = − (−1 − 1)

   A1 = 2

2) Area A2 =  area lying below the X-axis = �
2π

π
 sin x dx = −  cos x  2π

π
  = [−  cos 2π −  cos π]  

    = − [−1 − (− 1)]
   A2 = −2

∴ Total area =  A1 + | A2 | = 2 + | (− 2) | = 4 sq.units.

Activity : 

Ex. 5 : Find the area enclosed between y = sin x and X-axis between 0 and 4π. 

Ex. 6 : Find the area enclosed between y = cos x and X-axis between the limits :

  (i) 0 ≤ x ≤ 
π
2

  

  (ii) 
π
2

 ≤ x ≤ π 

  (iii) 0 ≤ x ≤ π 
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SOLVED EXAMPLES 

Ex. 1 : Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the 
lines x = 2 and x = 4. 

Solution : The required region is bounded by the lines 2y + x = 8, and x = 2, x = 4 and X−axis.

∴  y = 
1
2

 (8 − x) and the limits are x = 2, x = 4.

     Required area = Area of the shaded region

     = �
4 

x = 2
  y dx 

     = �
4

2

 
1
2

 (8 − x) dx

     = 
1
2

 8x − 
x2

2
 
4

2

     = 
1
2

 8·(4) − 
42

2
 − 8·(2) − 

22

2
 

     = 5 sq. units.

Fig. 5.11

Fig. 5.12

Ex. 2 : Find the area of the regions bounded by the following curve, the X−axis and the given lines :

  (i) y = x2 , x = 1, x = 2    (ii) y2 = 4x , x = 1, x = 4, y ≥ 0

  (iii) y = sin x, x = − 
π
2

, x = 
π
2

Solution : Let A be the required area

(i) A = �
3

1
  y dx 

  = �
3

1
  x2 dx

  = 
1
3

  x3  
3

1

  = 
1
3

 [27 − 1] 

 A = 
26
3

 sq. units.
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Fig. 5.13

Fig. 5.14

Fig. 5.15

(ii) A = �
4

1
  y dx 

  = �
4

1
 2√ x  dx

  = 2 �
4

1
  x

1
2  dx

  = 2 · 
2
3

  x
3
2   

4

1

   = 
4
3

  4
3
2  − 1

 A = 
28
3

 sq. units.

(iii) A = 
π⁄2

−π⁄2

  y  dx 

  = 
π⁄2

−π⁄2

  sin x dx

  = | 0

−π⁄2

  sin x · dx |+ | π⁄2

0
 sin x · dx|

  = | −  cos x  
0

− π
2
|+| −  cos x

π
2

0
|  

  = | −  cos 0 −  cos 
π
2

 | + |   −  cos 
π
2

 + cos 0  |
  = | [−1 − 0] + [ 0 + 1 ]  =  1 + 1

 A = 2 sq. units.

Ex. 3 : Find the area of the region bounded by the parabola y2 = 16x and the line x = 4 .

Solution : y2 = 16x  ⇒ y = ± 4 √ x

 A = Area POCP + Area QOCQ 

  = 2 (Area POCP)

  = 2 �
4

0
  y · dx

  = 2 �
4

0
  4 √ x· dx

 A = 8·
2
3

  x
3
2   

4

0

    = 
16
3

 × 8

 A = 
128
3

 sq. units.
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Ex. 4 : Find the area of the region bounded by the curves x2 = 16y, y = 1, y = 4 and the Y-axis, lying in 
the first quadrant. 

Solution :    Required area  =  �
4

1
  x  dy

 A = �
4

1
  √16 y  dy

  = 4 �
4

1
 √ y · dy

  = 4· 
2
3

· y
3
2   

4

1

    

  = 
8
3

 × [ 8 − 1 ]

 A = 
56
3

 sq. units.Fig. 5.16

Fig. 5.17

Ex. 5 : Find the area of the ellipse 
x2

a2  + 
y2

b2  = 1.

Solution : By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region 
OPQO. For this region the limit of integration are x = 0 
and x = a.

From the equation of ellipse 
x2

a2  + 
y2

b2  = 1

y2

b2   = 1 − 
x2

a2  

y2   = b2 · 
a2 − x2

a2

y = 
b
a

 · √ a2 − x2 , In first quadrant, y > 0 

    A = 4 �
a 

x = 0
  y dx

     = �
a

0

 
b
a

 · √ a2 − x2  dx 

     = 
4b
a

 · 
x
a

 √ a2 − x2 + 
a2

2
 sin−1 

x
a

 
a

0

  

     = 
4b
a

 · 
a2

2
 · 

π
2

 −  0  
a

0

 

    A = πab sq. units
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Ex. 6 : Find the area of the region lying between the parabolas y2 = 4ax and  x2 = 4ay where a > 0.

Solution : The equations of the parabolas are  
  y2 = 4ax    . . . (I)  

and  x2 = 4ay    . . . (II) 

  From (ii)  y = 
x2

4a
 substitute in (I) 

  
x2

4a

 2 

 = 4ax  

 ⇒ x4 = 64a3x

∴  x (x3 − 64a3) = 0

∴  x [x3 − (4a3)] = 0

∴  x = 0 and x = 4a ∴ y = 0 and y = 4a Fig. 5.18

Fig. 5.19

The point of intersection of curves are O (0, 0), P (4a, 4a)

∴ The required area is in the first quadrant and it is 

 A = area under the parabola ( y2 = 4ax)  − area under the parabola (x2 = 4ay)

 A = �
4a

0
  √4ax dx − �

4a

0

 
x2

4a
 dx   = √4a  �

4a

0
 x

1
2  dx − �

4a

0

 
x2

4a
 dx

  = 2√a· 
2
3

· x
3
2   

4a

0

 − 
1
4a

 · 
x3

3
 
4a

0

  = 
4
3 √a· 4a √4a − 

1
4a

 · 64a3  = 
32
3

 a2 − 
16
3

 a2 ∴ A = 
16
3

 a2 sq. units.

Ex. 7 : Find the area of the region bounded by the curve y = x2 and the line y = 4.

Solution : Required area A = 2 × area of OPQO

∴ A =  �
4

0
  x · dy

 A = 2·�
4

0
  √ y · dy

  = 2· 
2
3

· y
3
2   

4

0

   = 
4
3

 × 4
3
2

  = 
4
3

 × 8

 A = 
32
3

 sq. units.
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Ex. 8 : Find the area of sector bounded by the circle x2 + y2 = 16 and the line y = x in the first quadrant. 

Solution :  Required area A = A (∆OCB) + A (region ABC)

To find, 

The point of intersection of x2 + y2 = 16 . . . (I) 

and line      y = x  . . . (II)
Substitute (II) in (I) 
    x2 + x2 = 16 
     2x2 = 16
       x2 = 8
       x  = ± 2√ 2  ,  y  =  ± 2√ 2
The point of intersection is B (2√ 2, 2√ 2)  Fig. 5.20

 A = �
2√2

0
x · dx + �

0

2√2
 √16 − x2 · dx  = 

1
2

  x2  
2√2

0

 + 
x
2

 √ 16 − x2 + 
16
2

 sin−1 
x
4

 
4

2√2

 

  = 
1
2  · (2√ 2)2 + 8 sin−1 1 − 

2√ 2
2

 √ 8 + 8 sin−1 
1
2

 

  = 4 + 8 · 
π
2

 − 4 −  8 · 
π
4

 ∴ A = 2π sq. units.

 Note that, the required area is 
1
8

 times the area of the circle given.

EXERCISE 5.1

(1) Find the area of the region bounded by the 
following curves, X- axis and the given lines:

 (i) y = 2x, x = 0, x = 5

 (ii) x = 2y, y = 0, y = 4

 (iii) x = 0,  x = 5, y = 0, y = 4

 (iv) y = sin x,  x = 0, x = 
π
2

 (v) xy = 2,  x = 1, x = 4

 (vi) y2 = x, x = 0, x = 4

 (vii) y2 = 16x and x = 0, x = 4

(2) Find the area of the region bounded by the 
parabola  :

 (i) y2 = 16x and its latus rectum. 

 (ii) y = 4 − x2 and the X-axis 

(3) Find the area of the region included between:

 (i) y2 = 2x, line y = 2x

 (ii) y2 = 4x, line y = x

 (iii) y = x2 and the line y = 4x

 (iv) y2 = 4ax and the line y = x

 (v) y = x2 + 3 and the line y = x + 3
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Let us Remember 

֍ The area A, bounded by the curve y = f (x), X-axis and the lines x = a and x = b is given by

 A = �
b

a
  f (x)·dx = �

x = b

x = a   f ( x)·dx

 If the area A lies below the X-axis, then A is negative and in this case we take | A |.

֍ The area A of the region bounded by the curve x = g ( y), the Y axis, and the lines y = c and        

y = d is given by 

 A = �
d

y = c
  f (x)·dx = �

y = d

y = c  g ( y)·dx

֍ Tracing of curve :

 (i) X-axis is an axis of symmetry for a curve C, if (x, y) ∈ C ⇔ (x, −y) ∈ C.

 (ii) Y-axis is an axis of symmetry for a curve C, if (x, y) ∈ C ⇔ (−x, y) ∈ C. 

 (iii) If replacing x and y by −x and −y respectively, the equation of the curve is unchanged 

then the curve is symmetric about  X-axis and Y-axis.

MISCELLANEOUS  EXERCISE 5

(I) Choose the correct option from the given alternatives :

 (1) The area bounded by the region 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by 

  (A) 12 sq. units (B) 8 sq. units (C) 25 sq. units (D) 32 sq. units

 (2) The area of the region enclosed by the curve y = 
1
x  , and the lines x = e, x = e2 is given by 

  (A) 1 sq. unit (B) 
1
2  sq. unit (C) 

3
2  sq. units (D) 

5
2  sq. units

 (3) The area bounded by the curve y = x3 , the X-axis and the lines x = − 2 and x = 1 is

  (A) − 9 sq. units (B) − 
15
4  sq. units (C) 

15
4  sq. units (D) 

17
4  sq. units

 (4) The area enclosed between the parabola y2 = 4x and line y = 2x is

  (A) 
2
3  sq. units (B) 

1
3  sq. units (C) 

1
4  sq. units (D) 

3
4  sq. units

 (5) The area of the region bounded between the line x = 4 and the parabola y2 = 16x is

  (A) 
128
3  sq. units (B) 

108
3  sq. units (C) 

118
3  sq. units (D) 

218
3  sq. units
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 (6) The area of the region bounded by y = cosx,Y-axis and the lines x = 0, x = 2π is 

  (A) 1 sq. unit (B) 2 sq. units (C) 3 sq. units (D) 4 sq. units

 (7) The area bounded by the parabola y2 = 8x the X-axis and the latus rectum is 

  (A) 
31
3  sq. units (B) 

32
3  sq. units (C) 

32√2
3  sq. units (D) 

16
3  sq. units

 (8) The area under the curve y = 2√x , enclosed between the lines x = 0 and x = 1 is 

  (A) 4 sq. units  (B) 
3
4  sq. units (C) 

2
3  sq. units  (D) 

4
3  sq. units 

 (9) The area of the circle x2 + y2 = 25 in first quadrant is 

  (A) 
25π

3  sq. units  (B) 5π sq. units  (C) 5 sq. units  (D) 3 sq. units

 (10) The area of the region bounded by the ellipse 
x2

a2  + 
y2

b2  = 1 is 

  (A) ab sq. units  (B) πab sq. units  (C) 
π
ab  sq. units  (D) πa2 sq. units 

 (11) The area bounded by the parabola y2 = x and the line 2y = x is 

  (A) 
4
3  sq. units  (B) 1 sq. units  (C) 

2
3  sq. units  (D) 

1
3  sq. units 

 (12) The area enclosed between the curve y = cos 3x , 0 ≤ x ≤ 
π
6  and the X-axis is 

  (A) 
1
2  sq. units  (B) 1 sq. units  (C) 

2
3  sq. units  (D) 

1
3  sq. units 

 (13) The area bounded by y = √ x  and line x = 2y + 3, X-axis in first quadrant is 

  (A) 2√ 3 sq. units  (B) 9 sq. units  (C) 
34
3  sq. units  (D) 18 sq. units 

 (14) The area bounded by the ellipse 
x2

a2  + 
y2

b2  = 1 and the line  
x
a

 + 
y
b

 = 1 is 

  (A) π ab − 2 ab (B) 
πab

4  − 
ab
2  (C) π ab − ab (D) πab 

 (15) The area bounded by the parabola y = x2 and the line y = x is 

  (A) 
1
2   (B) 

1
3   (C) 

1
6   (D) 

1
12  

 (16) The area enclosed between the two parabolas y2 = 4x and y = x is 

  (A) 
8
3   (B) 

32
3   (C) 

16
3   (D) 

4
3
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 (17) The area bounded by the curve y = tan x, X-axis and the line x = 
π
4  is 

  (A) 
1
3  log 2 (B) log 2 (C) 2 log 2           (D) 3·log 2

 (18) The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is 

  (A) 
7
3   (B) 

8
3   (C) 

64
3   (D) 

56
3

 (19) The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by 

  (A) 
16 a2

3  (B) 
8 a2

3  (C) 
4 a2

3  (D) 
32 a2

3

 (20) The area of the region included between the line x + y = 1  and the circle x2 + y2 = 1 is 

  (A) 
π
2  − 1 (B) π − 2 (C) 

π
4  − 

1
2  (D) π − 

1
2

(II) Solve the following :

 (1) Find the area of the region bounded by the following curve, the X-axis and the given lines 

  (i) 0 ≤ x ≤ 5, 0 ≤ y ≤ 2  (ii) y = sin x , x = 0, x = π  (iii) y = sin x , x = 0, x = 
π
3

 (2) Find the area of the circle x2 + y2 = 9, using integration. 

 (3) Find the area of the ellipse   
x2

25
 + 

y2

16
 = 1 using integration.

 (4) Find the area of the region lying between the parabolas. 

  (i) y2 = 4x and  x2 = 4y  (ii) 4y2 = 9x and 3x2 = 16y   (iii) y2 = x and x2 = y

 (5) Find the area of the region in first quadrant bounded by the circle x2 + y2 = 4 and the x axis 
and the line x = y√ 3 .

 (6) Find the area of the region bounded by the parabola y2 = x and the line y = x in the first 
quadrant.

 (7) Find the area enclosed between the circle x2 + y2 = 1 and the line x + y = 1, lying in the first 
quadrant. 

 (8) Find the area of the region bounded by the curve ( y − 1)2  = 4 (x + 1) and the line y = (x − 1).

 (9) Find the area of the region bounded by the straight line 2y = 5x + 7, X−axis and x = 2, x = 5. 

 (10) Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4. 

v v v
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Let us Study

• Differential	Equation • Order	and	degree	of	differential	equation

• Formation	of	differential	equation • Solution	of	differential	equation

• Types	of	differential	equation. • Application	of	differential	equation.

Let us Recall

• The	differentiation	and	integration	of	functions	and	the	properties	of	differentiation	and	integration.

Let us Learn

6.1.1 Introduction :

In	physics,	chemistry	and	other	sciences	we	often	have	to	build	mathematical	models	which	involves	
differential	equations.	We	need	to	find	functions	which	satisfy	those	differential	equations.	

6.1.2 Differential Equation : 

Equation	which	contains	the	derivative	of	a	function	is	called	a	differential euqation.	The	following	
are	differential	equations.

(i) 
dy
dx
	=	cos	x  (ii) 

d2 y
dx2

 + k2y = 0  (iii) 
d2 w
dx2

 −	x2 
dw
dx

 + w = 0

(iv)	
d2 y
dt2

 + 
d2 x
dt2

 = x,		here	x	and	y	are	functions	of	't '.	

(v)	
d3 y
dx3

+ x
dy
dx

− 4xy	=	0,	here	x	is	a	function	of	y. (vi) r
dr
dθ

+ cos	θ = 5

6.2 Order and degree of the differential equation : 

The	order	of	a	differential	equation	is	the	highest	order	of	the	derivative	appearing	in	the	equation.	
The	degree	of	differential	equation	 is	 the	power	of	 the	highest	ordered	derivative	present	 in	 the	

equation.	To	find	the	degree	of	the	differential	equation,	we	need	to	have	a	positive	integer	as	the	index	
of	each	derivative.

6. DIFFERENTIAL  EQUATIONS
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SOLVED EXAMPLES 

Ex. 1 : Find	order	and	degree	of	the	following	differential	equations.	

(i)  x2 
d2 y
dx2

 + 3x 
dy
dx

 + 4y = 0

Solution : It's	order	is	2	and	degree	is	1.	

(iii)  r 
dr
d θ +	cos	θ = 5

Solution : It's	order	is	1	and	degree	is	1.

(v)  
dy
dx  + 

3xy
dy
dx

 =	cos	x

Solution : This	equation	expressed	as	

   
dy
dx

2

 + 3xy =	cos	x 
dy
dx

	 	 	 It's	order	is	1	and	degree	is	2.

(ii)  
d3 y
dx3

2

 + xy 
dy
dx

 − 2x + 3y + 7 = 0

Solution :  It's	order	is	3	and	degree	is	2.	

(iv)  
d2 y
dx2

2

 + 
dy
dx

2

 = e x

Solution : It's	order	is	2	and	degree	is	2.

(vi)  1	+ 
1

dy
dx

2
 = 

d2 y
dx2

3
2

Solution : This	equation	can	be	expressed	as	

   1	+ 
1

dy
dx

2
 = 

d2 y
dx2

3

 
∴  

dy
dx

2 

+ 1	=	
d2 y
dx2

3 dy
dx

2

	 	 	 It's	order	is	2	and	degree	is	3.

(vii)  
d4 y
dx4

 = 1	+	
dy
dx

2
 

3

Solution : It's	order	is	4	and	degree	is	1.

(viii) e
dy
dx + 

dy
dx  = x 

Solution : It's	order	is	1,	but	equation	can	not	be	
expressed	as	a	polynomial	differential	equation.	
 ∴ The	degree	is	not	defined.	

(ix)   x3 y3 3

   2x2 3y 
dy
dx  0 =  0

   5x 2 y 
d2 y
dx2  + 

dy
dx

2
  0

Solution : ∴ x3 [0	−	0]	−	y2 [0	−	0]	+	3 �4x2 y 
d2 y
dx2  + 

dy
dx

2

−	15xy 
dy
dx  � = 0

   ∴ 4x2 y 
d2 y
dx2  + 

dy
dx

2

−	15xy 
dy
dx  = 0 ∴	Its	order	is	2	and	degree	is	1.

Notes :	 (1)	
dy
dx 	is	also	denoted	by	y',	

d2 y
dx2 	is	also	denoted	by	y'',	

d3 y
dx3 	is	also	by	y'''	and	so-on.	

	 	 (2)	 The	order	and	degree	of	a	differential	equation	are	always	positive	integers.	
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EXERCISE 6.1

(1) Determine	the	order	and	degree	of	each	of	the	following	differential	equations.

 (i) 
d2 y
dx2

 + x
dy
dx + y	=	2	sin	x (ii) 3 1	+ 

dy
dx

2

= 
d2 y
dx2

 (iii) 
dy
dx  =

2	sin	x + 3
dy
dx

(iv) 
d2 y
dx2  + 

dy
dx  + x = 1	+

d3 y
dx3

(v)	
d2 y
dt2

 + 
dy
dt

2

+ 7x + 5 =	0 (vi) (y''')2 + 3y''	+	3xy'	+	5y = 0

(vii)	
d2 y
dx2

2

+ cos
dy
dx  =	0	 (viii)	 1	+	

dy
dx

2 
3
2  

= 8 
d2 y
dx2

(ix) 
d3 y
dx3

1
2 −	

dy
dx

1
3  =	20	 (x) x +

d2 y
dx2  = 1	+ 

d2 y
dx2

2

6.3 Formation of Differential Equation : 

From	the	given	information,	we	can	form	the	differential	equation.	Sometimes	we	need	to	eliminate	
the	arbitrary	constants	from	a	given	relation.	It	may	be	done	by	differentiation.

SOLVED EXAMPLES 

Ex. 1 : Obtain	the	differential	euqation	by	eliminating	the	arbitrary	constants	from	the	following	:

(i) y2 = 4ax (ii) y = Ae 3x + Be −3x (iii) y = (c1 + c2 x) ex

(iv) y = c2 +
c
x (v) y = c1e

 3x + c2e
 2x

Solution : 

(i) y2 = 4ax .	.	.	(1)

Here	 a	 is	 the	 arbitraty	 constant,	 we
differentiate	w.	r.	t.	x,

∴ 
dy
dx = 4a

then	eq.	(1)	gives

y2 = 
dy
dx  x	is	required	differential	equation.

(ii) y = Ae 3x + Be −3x  .	.	.	(1)

Here	A	and	B	are	arbitrary	constants.
Differentiate	w.	r.	t.	x,	we	get

∴ 
dy
dx = 3Ae 3x −	3Be −3x 

again	Differentiate	w.	r.	t.	x,	we	get
d2 y
dx2  = 3 × 3Ae 3x −	3 × 3Be −3x 

= 9 (Ae 3x + Be −3x)  = 9y  .	.	.	from	eq.(1)

∴ 
d2 y
dx2  = 9y
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(iii) y = (c1 + c2 x) ex .	.	.	(1)
	 Here	c1	and	c2	are	arbitrary	constants.
 Differentiate	w.	r.	t.	x,	we	get	

∴ 
dy
dx

 

= (c1 + c2 x) ex + c2 e
x

∴ 
dy
dx

 

= y + c2 e
x  .	.	.	(2) .	.	.	from	eq.(1)

 Again	differentiate	w.	r.	t.	x,	we	get	

 
d2 y
dx2  = 

dy
dx  + c2 e

x 

∴ c2 e
x = 

d2 y
dx2  − 

dy
dx   

	 put	in	eq.(2)

 
dy
dx  = y + 

d2 y
dx2  − 

dy
dx

∴ 
d2 y
dx2  −	2 

dy
dx  + y = 0

(iv)		y = c2 + 
c
x 	 .	.	.	(1)

 Differentiate	w.	r.	t.	x,	we	get	

∴ 
dy
dx

 

= −	
c
x2

∴ c	=	−	x2 
dy
dx

	 then	eq.(1)	gives

 y = −	x2 
dy
dx

2
 

2

−	x2 
dy
dx  × 

1
x

∴ y = x4 
dy
dx

2
 −	x 

dy
dx

∴ x4 
dy
dx

2
 −	x 

dy
dx  −	y = 0

(v)	 y = c1e
 3x + c2e

 2x 		 .	.	.	(I)

 Differentiate	w.	r.	t.	x,	we	get	

∴ 
dy
dx

 

= 3c1e
 3x + 2c2e

 2x 	.	.	.	(II)

 Again	differentiate	w.	r.	t.	x,	we	get

 
d2 y
dx2  = 9c1e

 3x + 4c2e
 2x 	.	.	.	(III)

	 As	equations	(I),	(II)	and	(III)	in	c1e
 3x	and	c2e

 2x	are	consistent

   y 1	 1

∴   
dy
dx  3 2 =  0

   
d2 y
dx2   9 4

∴  y (12	−	18)	−	1 4 
dy
dx  −	2 

d2 y
dx2

 

+	1 9 
dy
dx  −	3 

d2 y
dx2

 
 = 0

∴  −	6y −	4 
dy
dx  + 2 

d2 y
dx2  + 9 

dy
dx  −	3 

d2 y
dx2

 
 = 0

∴  −	
d2 y
dx2

 

+ 5 
dy
dx  −	6y  = 0    ∴ 

d2 y
dx2

 

−	5	
dy
dx  +	6y  = 0
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Ex. 2 : The	rate	of	decay	of	the	mass	of	a	radioactive	substance	any	time	is	k	times	its	mass	at	that	time,	
form	the	differential	equation	satisafied	by	the	mass	of	the	substance.	

Solution : Let	m	be	the	mass	of	a	radioactive	substance	time	't '	

    ∴  The	rate	of	of	decay	of	mass	is	
dm
dt

     Here	
dm
dt  ∝ m

    ∴  
dm
dt  = mk 	,	where	k < 0 

	 	 	 	 	 is	the	required	differential	equation.

Ex. 3 : Form	the	differential	equation	of	family	of	circles	above	the	X-axis	and	touching	the	X-axis	at	
the	origin.

Fig. 6.1

Solution : Let	c (a,	b)	be	the	centre	of	the	circle	
touching	X-axis	at	the	origin	(b <	0).	

	 	 The	radius	of	the	circle	of	b.	

	 	 The	equation	of	the	circle	is	

  (x −	0)2 + (y −	b)2 = b2 

 ∴ x2 + y2	−	2by + b2 = b2 

 ∴ x2 + y2	−	2by	=	0	 	 .	.	.	(I)	

 Differentiate	w.	r.	t.	x,	we	get

  2x + 2y 
dy
dx 	−	2b 

dy
dx  = 0 

 ∴ x2	−	y2 = 
2xy
dy
dx

 ∴ (x2	−	y2) 
dy
dx  = 2xy 

	 	 is	the	required	differential	equation.	

 ∴ x + ( y −	b) 
dy
dx  = 0

 ∴ 
x

dy
dx

 + ( y −	b) = 0   ∴ b = y + 
x

dy
dx

		.	.	.	(II)

	 	 From	eq.	(I)	and	eq.	(II)	

 ∴ x2 + y2	−	2	  y + 
x

dy
dx

 y = 0 

  ∴ x2 + y2	−	2y2	−	
2xy
dy
dx

 = 0 

Activity : Form	the	differential	equation	of	family	of	circles	touching	Y-axis	at	the	origin	and	having	
their	centres	on	the	X-axis.



196

Ex. 4 : A	particle	is	moving	along	the	X-axis.	Its	acceleration	at	time	t	is	proportional	to	its	velocity	at	
that	time.	Find	the	differential	equation	of	the	motion	of	the	particle.

Solution : Let s	be	the	displacement	of	the	particle	at	time	't'.	

	 	 Its	velocity	and	acceleration	are	
ds
dt  and	

d2 s
dt2  respectively.      

     Here	
d2 s
dt2  ∝ 

ds
dt

    ∴  
d2 s
dt2  = k 

ds
dt  	,			 	 (where	k	is	constant	≠	0)

	 	 	 	 	 is	the	required	differential	equation.

EXERCISE 6.2

(1)	 Obtain	the	differential	equations	by	elliminating	arbitrary	constants	c1	and	c2.

 (i) x3 + y3 = 4ax  (ii) Ax2 + By2	=	1	

 (iii) y = A cos	(log	x) + B	sin	(log	x)		 (iv)	 y2 = (x + c)3

	 (v)	 y = Ae5x + Be−5x		 (vi)	 (	y	−	a)2 = 4 (x	−	b)

	 (vii)	 y = a + 
a
x 	 (viii)	 y = c1	e

 2x + c2 e
 5x 

	 (ix)	 c1	x
 3 + c2 y

 2 =	5		 (x)	 y = e−2x (A	cos	x + B	sin	x)

(2)	 Form	the	differential	equation	of	family	of	lines	having	intercepts	a	and	b	on	the	co-ordicate	ares	
respectively.

(3)	 Find	the	differential	equation	of	all	parabolas	having	length	of	latus	rectum	4a	and	axis	is	parallel	
to	the	X-axis.	

(4)	 Find	the	differential	euqation	of	an	ellipse	whose	major	axis	is	twise	its	minor	axis.	

(5)	 Form	the	differential	equation	of	family	of	lines	parallel	to	the	line	2x + 3y + 4 = 0 

(6)	 Find	the	differential	equations	of	all	circles	having	radius	9	and	centre	at	point	A (h,	k).	

(7)	 Form	the	differential	equation	of	all	parabolas	whose	axis	is	the	X-axis.
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Verify	that	

y = a	sin	x	and	y = b	cos	x 

are	solutions	of	the	differential	equation,	where	a	and	b are	any	constants.	

Also	y = a	sin	x + b	cos	x is	a	solution	of	the	equation.	

Here	sin	x and	cos	x	are	particular	solutions	where	as	a	sin	x + b	cos	x	is	the		general	solution	which	
describes	all	possible	solutions.

A	 solution	 which	 can	 be	 otained	 from	 the	 general	 solution	 by	 giving	 particular	 values	 to	 the	
arbitarary	constants	is	called	a	particular solution.		

Therefore	the	differential	equation	has	infinitely	many	solutions.

Ex. 1 : Verify	that	:		y	sec	x	=	tan	x + c 

	 	 is	a	solution	of	the	differential	equation	

  
dy
dx  + y	tan	x	=	sec	x.

Solution :  Here	 	 y	sec	x	=	tan	x + c 

  Differentiate	w.	r.	t.	x,	we	get

  y	sec	x	tan	x	+	sec	x 
dy
dx 	=	sec

2 x 

 ∴ 
dy
dx  + y	tan	x	=	sec	x

	 	 Hence	y	sec	x	=	tan	x + c 

	 	 is	a	solution	of	the	differential	equation	

  
dy
dx  + y	tan	x	=	sec	x

Ex. 2 : Verify	that	:		y	=	log	x + c 

	 	 is	a	solution	of	the	differential	equation	

  x 
d2 y
dx2   + 

dy
dx 	=	0.

Solution :  Here	 	 y	=	log	x + c 

  Differentiate	w.	r.	t.	x,	we	get

  
dy
dx  = 

1
x

 ∴ x 
dy
dx 	=	1

  Differentiate	w.	r.	t.	x,	we	get

  x 
d2 y
dx2   + 

dy
dx  × 1	=	0

 ∴ x 
d2 y
dx2   + 

dy
dx  = 0

  y	=	log	x + c	is	the	solution	of	

  x 
d2 y
dx2   + 

dy
dx 	=	0.	

6.4 Solution of differential equation :

SOLVED EXAMPLES 
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Consider the example : 

             
dy
dx  = x2y + y 

           ∴  
1
y  · 

dy
dx  = x2	+	1

		 We	can	consider	x	and	y	both	as	variables	and	write	this	as	

             
dy
y  = (x2	+	1)·dx

Now	we	can	integrate	L.H.S.	w.	r.	t.	y	and	R.H.S.	w.	r.	t.	x,	then	we	get

          ∴  log	y = 
x3

3  + x + c 

This	integration	is	obtained	by	separating	the	variables.

It	helps	to	examine	the	equation	and	find	out	if	such	a	separation	is	possible.

The	above	method	is	known	as	the	method	of	separation	of	variables.	

In	general,	if	the	given	differential	equation	can	be	written	as	

f (x) dx = g ( y) dy

then	this	method	is	applicable.

SOLVED EXAMPLES 

Ex. 1 : Find	the	general	solution	of	the	following	differential	equations	:

 (i) 
dy
dx  = x √ 25	−	 x2    (ii) 

dx
dt  = 

x log x
t    

Solution : 

(i) 
dy
dx  = x √ 25	−	 x2

∴ dy = x √ 25	−	 x2 · dx

	 Integrating	both	sides,	we	get	

	 �dy = �√ 25	−	 x2 · x·dx	 .	.	.	(I)	

	 Put	25	−	 x2 = t 

∴ − 2x·dx = dt 

∴ x·dx = − 
dt
2  

	 Eq.	(I)	becomes,	�dy = �√ t  −	
dt
2

∴ 2�dy = −�√ t ·dt

∴ 2�dy + �t
1
2 ·dt = 0

∴ 2y + 
t

3
2

3
2

 = c1

∴ 2y + 
2
3  t

3
2  

= c1

∴ 6y + 2t
3
2  = 3c1

∴ 6y + 2 (25 − x2)
3
2  = c		 .	.	.	[c = 3c1]	
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(ii) 
dx
dt  = 

x log x
t  

∴ 
dx

x log x  = 
dt
t

	 Integrating	both	sides,	we	get

 �
dx

x log x  = �
dt
t

∴ log	(	log	x ) =	log	( t ) +	log	c

Ex. 2 : Find	the	particular	solution	with	given	initial	conditions	:

 (i) 
dy
dx  = e 

2ycos	x	when	x = 
π
6 ,	y = 0    (ii) 

y −	1
y + 1  + 

x −	1
x + 1  · 

dy
dx 	=	0,	when	x = y = 2 

Solution : 

∴ log	(	log	x ) =	log	( tc )
∴ log	x = ct

∴ e ct = x  

(i) 
dy
dx  = e 

2ycos	x

∴ 
dy
e 

2y	=	cos	x·dx

∴ e 

−2y·dy	=	cos	x·dx

	 Integrating	both	sides,	we	get	

∴ �e 

−2y·dy = �cos	x·dx

∴ 
e 

−2y

−2 	=	sin	x + c	 	 .	.	.	(I)

	 When	x = 
π
6 ,	y	=	0.	So	eq.	(1),	becomes

∴ 
e 

0

−2 	=	sin	
π
6  + c ∴ −	

1
2  = 

1
2  + c

∴ −	
1
2 	−	

1
2  = c  ∴ c =	−1	

	 (Given	initial	condition	determines	the	value	
of	c)

	 Put	in	eq.	(1),	we	get

∴ 
e 

−2y

−2 	=	sin	x	−	1

∴	 −	e 

−2y =	2sin	x	−	2

∴ e 

2y (2sin	x	−	2)	+	1	=	0	is	the	required	particular	
solution.

(ii) 
y −	1
y + 1  + 

x −	1
x + 1  · 

dy
dx  = 0

∴  
x + 1
x −	1 ·dx + 

y + 1
y −	1  ·dy = 0

∴  
(x −	1)	+	2

x −	1 ·dx + 
( y −	1)	+	2

y −	1  ·dy = 0

∴ 1	+	
2

x −	1 ·dx + 1	+	
2

y −	1 ·dy = 0

	 Integrating	,	we	get	

 �dx + 2 �
dx

x −	1  + �dy + 2 �
dy

y −	1  = 0

∴ x	+	2	log	( x −	1 ) + y	+	2	log	( y −	1 ) = c

∴ x + y	+	2	log	[(x −	1)	( y −	1)]	= c     .	.	.	(I)

	 When	x	=	2,	y	=	2.	So	eq.	(I),	becomes

∴ 2	+	2	+	2	log	[(2 −	1)	(2 −	1)]	= c

∴ 4	+	2	log	(1 × 1) = c

∴ 4	+	2	log	1	= c

∴ 4 + 2 (0) = c

∴ c = 4	 Put	in	eq.	(I),	we	get

∴ x + y	+	2	log	[ (x −	1)	( y −	1)]	=	4	is	required	
particular	solution.
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Ex. 3 : Reduce	each	of	the	following	differential	equations	to	the	separted	variable	form	and	hence	find	
the	general	solution.

	 (i)	 1	+	
dy
dx 	=	cosec	(x + y)     (ii) 

dy
dx  = (4x + y	+	1)2

Solution : 

(i)	 1	+	
dy
dx 	=	cosec	(x + y)    .	.	.	(I)

	 Put x + y = u

∴ 1	+	
dy
dx  = 

du
dx

	 Given	differential	equation	becomes	

 
du
dx 	=	cosec	u

∴ 
du

cosec	u  = dx

∴ sin	u·du = dx

	 Integrating	both	sides,	we	get	

∴ �sin	u·du = �dx

∴ −	cos	u = x + c

∴ x +	cos	u + c = 0 

∴ x +	cos	(x + y) + c = 0   .	.	.	(⸪	x + y = u)

(ii) 
dy
dx  = (4x + y	+	1)2    .	.	.	(I)

	 Put 4x + y	+	1	= u

∴ 4 + 
dy
dx  = 

du
dx

∴ 
dy
dx  = 

du
dx 	−	4

	 Given	differential	equation	becomes	

 
du
dx 	−	4	=	u

2

∴ 
du
dx  = u2 + 4

∴ 
du

u2 + 4 = dx

	 Integrating	both	sides,	we	get	

∴ �
du

u2 + 4  = �dx

∴ 
1
2 	tan

−1 
u
2  = x + c1

∴ tan−1 
u
2  = 2x + 2c1

∴ tan−1 
4x + y	+	1

2
 = 2x + c  .	.	.	[2c1	= c]

EXERCISE 6.3

(1)	 In	each	of	the	following	examples	verity	that	the	given	expression	is	a	solution	of	the	corresponding	
differential	equation.

 (i) xy =	log	y + c ; 
dy
dx  = 

y2

1	−	xy (ii) y	=	(sin−1 x)2 + c ;	(1	−	x2) 
d2 y
dx2  −	x 

dy
dx  =  2

 (iii) y = e−x + Ax + B ; ex 
d2 y
dx2  =	1	 (iv)	 y = xm  ; x2 

d2 y
dx2  −	mx 

dy
dx  + my = 0 

	 (v)	 y = a + 
b
x  ; x 

d2 y
dx2  + 2 

dy
dx 	=	0	 (vi)	 y = eax ; x 

dy
dx  = y	log	y 
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(2)	 Solve	the	following	differential	equations.	

 (i) 
dy
dx  = 

1	+	y2

1	+	x2 (ii)	 log 
dy
dx  = 2x + 3y

 (iii) y	−	x 
dy
dx 	=	0		 (iv)	 sec2x·tan	y·dx	+	sec2y·tan	x·dy = 0 

	 (v)	 cos	x·cosy·dy	−	sin	x·sin	y·dx	=	0		 (vi)	
dy
dx  = −k	,		where	k	=	constant.

	 (vii)	
cos2 y·dy

x  + 
cos2 x·dx

y 	=	0		 (viii)	 y3	−	
dy
dx  = x2 

dy
dx

	 (ix)	 2e x + 2y ·dx	−	3dy	=	0	 (x)	
dy
dx  = e x + y + x2 e y 

(3)	 For	 each	of	 the	 following	differential	 equations	find	 the	particular	 solution	 satisfying	 the	given	
condition.	

  (i) 3e x	tan	y·dx	+	(1	+	e x )	sec2 y·dy	=	0,	when	x	=	0,	y = π.

 (ii) (x	−	y2 x)·dx	−	(y + x2y)·dy	=	0,	when	x	=	2,	y	=	0.

 (iii) y	(1	+	log	x) 
dx
dy 	−	x	log	x	=	0	,	y = e2,	when	x = e.	

	 (iv)	 (e y	+	1)	cos	x + e y	sin	x 
dy
dx 	=	0,	when	x = 

π
6 ,	y	=	0.

	 (v)	 (x	+	1)	
dy
dx  −	1	=	2e	−y	,	y	=	0,	x	=	1		 (vi)	 cos	

dy
dx  = a,	a∈12,		y (0) = 2  

(4)	 Reduce	each	of	the	following	differential	to	the	variable	separable	form	and	hence	solve.

 (i) 
dy
dx  =	cos	(x + y) (ii) (x	−	y)2 

dy
dx  = a2 

 (iii) x + y 
dy
dx 	=	sec	(x

2 + y2)		 (iv)	 cos2 (x	−	2y)	=	1	−	2	
dy
dx

	 (v)	 (2x	−	2y + 3) dx	−	(x −	y +	1)	dy	=	0,	when	x	=	0,	y	=	1.

6.4.1 Homogeneous differential  : 

Recall	that	the	degree	of	a	term	is	the	sum	of	the	degrees	in	all	variables	in	the	equation,	eg.	:	degree	of	
3x2y2z	is	5.	If	all	terms	have	the	same	degree,	the	equation	is	called	homogeneous differential equation.

For example : (i) x + y 
dy
dx 	=	0	is	a	homogeneous	differential	equation	of	degree	1.

   (ii) x3y + xy3 + x2y2 
dy
dx 	=	0	is	a	homogeneous	differential	equation	of	degree	4.	

   (iii) x 
dy
dx  + x2y	=	0	 (iv)	 xy 

dy
dx  + y2 + 2x = 0 

	 	 	 (iii)	and	(iv)	are	not	homogeneous	differential	equations.	

To	solve	the	homogeneous	differential	equation,	we	use	the	substitution	y = vx	or	u = vy.
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SOLVED EXAMPLES 

Ex. 1 : Solve	the	following	differential	equations	:

  (i) x2y·dx	−	(x3 + y3)·dy = 0  (ii) x 
dy
dx  = x	tan	

y
x  + y (iii) 

dy
dx  = 

y + √ x2 + y2
 

x
Solution : 

(i) x2y·dx	−	(x3 + y3)·dy = 0

∴ x2y −	(x3 + y3) 
dy
dx 	=	0	 	 .	.	.	(I)

 This	is	homogeneous	Differential	equation.	

	 Put	y = vx	 	 	 .	.	.	(II)
 Differentiate	w.	r.	t.	x,	we	get

∴ 
dy
dx  = v + x 

dv
dx 	 	 	 .	.	.	(III)

	 Put	(II)	and	(III)	in	Eq.	(I),	it	becomes,	

 x2·vx	−	(x3 + v3x3) v + x 
dv
dx  = 0 

	 divide	by	x3,	we	get	

 v	−	(1	+	v3) v + x 
dv
dx  = 0 

∴ v	−	v −	x 
dv
dx  −	v4 −	v3 x 

dv
dx  = 0

∴ −	x (1	+ v3) 
dv
dx  = v4

∴ 
1	+	v3

v4 ·dv = −	
dx
x

∴ 
1	+	v3

v4 ·dv = −	
dx
x

∴ 
1
v4  −	

v3

v4  dv + 
dx
x  = 0

	 integrating	eq.,	we	get	

∴ �v−4 dv +�
dv
v  +�

dx
x  = c1

∴ 
v−3

−3 +	log	(v)	+	log	(x) = c1

∴ log	(vx) = c1 + 
v−3

3      ∴  log	(	y ) = c1 + 
1
3 ·

v−3

x−3

∴ 3	log	(	y ) = 3 c1 + 
x3

y3

∴ 3	log	y = 
x3

y3  + c			 .	.	.	where	c = 3 c1 

(ii) x 
dy
dx  = x	tan	

y
x  + y 	 .	.	.	(I)

 This	is	homogeneous	Differential	equation.	

	 Put	y = vx	 	 	 .	.	.	(II)
 Differentiate	w.	r.	t.	x,	we	get

∴ 
dy
dx  = v + x 

dv
dx 	 	 	 .	.	.	(III)

	 Put	(II)	and	(III)	in	Eq.	(I),	it	becomes,	

   x v + x 
dv
dx  = x	tan	

vx
x  + vx 

	 divide	by	x,	we	get

∴ v + x 
dv
dx  = tan	v + v

∴ x 
dv
dx  = tan	v 

∴ 
dv
tan	v  = 

dx
x

	 integrating	eq.,	we	get	

∴ �cot	v dv = �
dx
x  

∴ log	(	sin v )	=	log	(x) +	log	c

∴ log	(	sin v )	=	log	( x × c )

∴ sin v = cx

∴ sin 
y
x  = cx is	the	solution.
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(iii) 
dy
dx  = 

y + √ x2 + y2
 

x 	 .	.	.	(I)

Solution : It	is	homogeneous	differential	equation.	

	 Put	y = vx	 	 	 .	.	.	(II)
 Differentiate	w.	r.	t.	x,	we	get

∴ 
dy
dx  = v + x 

dv
dx 	 	 	 .	.	.	(III)

	 Put	(II)	and	(III)	in	Eq.	(I),	it	becomes,	

 v + x 
dv
dx  = 

vx + √ x2 + v2x2
 

x

∴ v + x 
dv
dx  = v + √ 1 + v2

∴ x 
dv
dx  = √ 1 + v2

∴ 
dv

√ 1 + v2
 = 

dx
x 	 	 	 .	.	.	(IV)

	 integrating	eq.	(IV),	we	get	

∴ �
dv

√ 1 + v2
 = �

dx
x

∴ log	( v + √ 1 + v2 )	=	log	( x ) +	log	c

∴ log	( v + √ 1 + v2 )	=	log	( cx )

∴ v + √ 1 + v2  = cx

∴ 
y
x  + 1	+	

y2

x2 = cx

∴ y + √ x2 + y2
 = cx2 is	the	solution.

EXERCISE 6.4

I. Solve the following differential equations :

(1)	 	x	sin	
y
x  dy =  y	sin	

y
x 	−	x  dx  (2) (x2 −	y2) dx	−	2xy·dy = 0

(3) 1	+	2e
x
y  + 2e

x
y  1	−	

x
y  

dy
dx  = 0  (4) y2·dx + (xy + x2) dy = 0 

(5) (x2 −	y2) dx + 2xy·dy	=	0		 (6)	
dy
dx  + 

x	−	2y
2x	−	y = 0 

(7) x 
dy
dx  −	y + x	sin	

y
x  = 0  (8) 1	+	e

x
y  dx + e

x
y  1	−	

x
y  dy = 0 

(9) y2	−	x2 
dy
dx  = xy 

dy
dx 		 (10)	 xy 

dy
dx  = x2 + 2y2,	y (1)=0	

(11)	x dy + 2y·dx	=	0,	when	x	=	2,	y	=	1	 (12)	 x2 
dy
dx  = x2 + xy + y2 

(13)	(9x + 5y) dy	+	(15x	+	11y) dx	=	0		 (14)	 (x2 + 3xy + y2) dx	−	x2 dy = 0 

(15)	(x2 + y2) dx	−	2xy·dy = 0 
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6.4.2 Linear Differential Equation :

The	differential	equation	of	the	type,	
dy
dx  + Py = Q		(where	P,	Q	are	functions	of	x.)	

is	called	linear differential equation. 

To	get	the	solution	of	equation,	multiply	the	equation	by	e∫Pdx,	which	is	helping	factor	here.

We	get, 

  e∫Pdx  
dy
dx

 + Py  = Q·e∫Pdx

 Note	that, 
d
dx  [ y·e∫Pdx ] = 

dy
dx

 + y·P  · e∫Pdx

 ∴ d
dx

 [ y·e∫Pdx]	= Q·e∫Pdx

 ∴ �Q·e∫Pdx ·dx = y·e∫Pdx

 Hence, y·e∫Pdx = �Q·(e∫Pdx) dx + c   is	the	solution	of	the	given	equation

Here	e∫Pdx	is	called	the	integrating	factor.	(I.F.)	

Note : For	the	linear	differential	equation.	

 
dx
dy

 + py = Q	 	 (where	P,	Q	are	constants	or	functions	of	y)	the	general	solution	is		

 x	(I.F.)	=	�Q·(I.F.)	dy + c	,	where	I.F.	(integrating	factor)	=	e∫Pdy 

SOLVED EXAMPLES 

Ex. 1: Solve	the	following	differential	equations	:

  (i) 
dy
dx  + y = e−x     (ii) x sin 

dy
dx  + (x	cos	x	+	sin	y)	=	sin	x 

	 	 (iii)	(1	+	y2) dx	=	(tan−1	y	−	x) dy
Solution : 

(i) 
dy
dx  + y = e−x   .	.	.	(I)	

	 This	is	linear	differential	equation	of	the	form	

 
dy
dx  + Py	=	Q	where	P	=	1,	Q = e−x

	 It's	Solution	is	

 y	(I.F.)	=	�Q·(I.F.)	dx + c	 .	.	.	(II)	

	 where	 I.F.	=	e∫Pdx = e∫dx = ex

	 eq.	(II)	becomes,	

 y·ex = �e−x × ex·dx + c

∴ y·ex = �e−x + x·dx + c

∴ y·ex = �e0·dx + c

∴ y·ex = �dx + c

∴ y·ex = x + c	is	the	general	solution.	
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(ii) x sin	x 
dy
dx  + (x	cos	x	+	sin	x) y	=	sin	x

	 divide	by	x sin	x,	we	get	

 
dy
dx  + cot	x + 

1
x  y = 

1
x 		 .	.	.	(I)	

	 It	is	the	linear	differential	equation	of	the		type

 
dy
dx  + Py = Q		 where	 P	=	cot	x + 

1
x ,	

      Q = 
1
x

	 Its	solution	is	

 y	(I.F.)	=	�Q·(I.F.)	dx + c	 .	.	.	(II)	

	 where	 I.F.	=	e∫Pdx = e∫(cot	x + 
1
x ) dx

   I.F.	=	e∫cot	x dx	+	∫ 
dx
x

   I.F.	=	elog	| sin	x |	+	log	x 

   I.F.	=	x sin x

	 eq.	(II)	becomes,	

 y·x sin x = �
1
x  × x sin x·dx + c

∴ xy·sin x =	−	cos	x + c

∴ xy·sin x +	cos	x = c is	the	general	solution.	

(iii)	 (1	+	y2) dx	=	(tan−1	y	−	x) dy

∴ 
dx
dy  = 

(tan−1	y	−	x)
(1	+	y2)

∴ 
dx
dy  + 

1
1	+	y2  x = 

tan−1	y
1	+	y2

	 This	is	linear	differential	equation	of	the	type	

 
dx
dy  + Px = Q	where	P = 

1
1	+	y2 ,	Q = 

tan−1	y
1	+	y2

	 Its	solution	is			

 x	(I.F.)	=	�Q·(I.F.)	dy + c	 .	.	.	(II)	

	 where	 I.F.	=	e∫Pdy = e∫ 

1
1 + y2 dy

   I.F.	=	etan
−1

 y

	 eq.	(II)	becomes,	

 x·etan
−1

 y = �
tan−1	y
1	+	y2 ·etan

−1
 y·dy + c	.	.	.	(III)

	 in	R.H.S.	Put	 tan−1 y = t 

	 differentiate	w.	r.	t.	x,	we	get

   ∴ 
dy

1	+	y2 = dt

	 eq.	(III)	becomes	

 x·etan
−1

 y = �t·et·dt + c 

   = t�et·dt −	�[1× et ]	dt + c 

   = t·et	−	�et·dt + c 

   = t·et	−	et + c 

 x·etan
−1

 y	 =	tan−1 y·etan
−1

 y−	etan
−1

 y	+	c	

∴ x	=	tan−1 y −	1	+	
c

etan
−1

 y

∴ x	+	1	−	tan−1 y = c·e−	tan
−1

 y	is	the	solution.	
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Ex. 2: The	slope	of	the	targent	to	the	curve	at	any	point	is	equal	to	y + 2x.	Find	the	equation	of	the	
curve	passing	through	the	origin.

Solution : Let	P	(x,	y)	be	any	point	on	the	curve	y = f (x)

	 	 	 The	slope	of	the	tangent	at	point	P	(x,	y)	is	
dy
dx .	

   ∴   
dy
dx  = y + 2x   ∴ 

dy
dx 	−	y = 2x

	 	 	 This	is	linear	differential	equation	of	the	type	

   
dy
dx  + Py = Q	where	P	=	−1	,	Q = 2x

	 Its	solution	is			

 y	(I.F.)	=	�Q·(I.F.)	dx + c	 .	.	.	(I)	

	 where	 I.F.	=	e∫Pdx =  e∫−dx 

   I.F.	=	e−x

	 eq.	(I)	becomes,	

 y·e−x  = �2x × e−x·dx + c 

 y·e−x  = 2�x·e−x·dx + c	 .	.	.	(II)	

Consider,		 �x·e−x·dx

   = x�e−x·dx −	� 1× 
e−x

−1  dx

   = 
x·e−x

−1  + �e−x·dx

	 	 	 =	−	xe−x·dx + �e−x·dx

	 	 	 =	−	xe−x −	e−x

	 	 (II)	becomes	

 y·e−x	=	2	[−	xe−x −	e−x]	+	c

∴   y	 	=	−	2x −	2	+	ce−x	 .	.	.	(III)	

The	curve	passes	through	the	origin	(0,	0)	

∴	 		0	 	=	−	2	(0) −	2	+	ce−0 

∴	 		0	 	=	−	2	+	c

∴   2  =  c				Put	in	(III)	

∴   y	 	=	−	2x −	2	+	2e−x

∴   2x + y + 2 = 2e−x

	 		is	the	equation	of	the	curve.	

EXERCISE 6.5

(1) Solve the following differential equations :

 (i)  
dy
dx  + 

y
x  = x3	−	3		 (ii)	 cos2 x 

dy
dx  + y	=	tan	x 

 (iii) (x + 2y3) 
dy
dx  = y	 (iv)	

dy
dx  + y	sec	x	=	tan	x 

	 (v)	 x 
dy
dx  + 2y = x2	log	x		 (vi)	 (x + y) 

dy
dx 	=	1	

	 (vii)	 (x + a) 
dy
dx 	−	3y = (x + a)5		 (viii)	 dr +  (2r	cot	θ	+	sin	2θ) dθ = 0 
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	 (ix)	 ydx + (x −	y2) dy	=	0		 (x)	 (1	−	x2) 
dy
dx  + 2xy = x	(1	−	x2)

1
2

	 (xi)	 (1	+	x2) 
dy
dx  + y = etan

−1
 x

(2)	 	 Find	the	equation	of	the	curve	which	passes	through	the	origin	and	has	slope	x + 3y	−	1	at	any	point	
(x,	y)	on	it.

(3)	 	 Find	the	equation	of	the	curve	passing	through	the	point	
3
√ 2

,	√ 2 	having	slope	of	the	tangent	to	

	 	 the	curve	at	any	point	(x,	y)	is	−	
4x
9y .

(4)	 	 The	curve	passes	through	the	point	(0,	2).	The	sum	of	the	co-ordinates	of	any	point	on	the	curve	
exceeds	the	slope	of	the	tangent	to	the	curve	at	that	point	by	5.	Find	the	equation	of	the	curve.	

(5)	 	 If	the	slope	of	the	tangent	to	the	curve	at	each	of	its	point	is	equal	to	the	sum	of	abscissa	and	the	
product	of	the	abscissa	and	ordinate	of	the	point.	Also	the	curve	passes	through	the	point	(0,	1).	
Find	the	equation	of	the	curve.

6.5 Application of differential Equations :

There	are	many	situations	where	the	relation	in	the	rate	of	change	of	a	function	is	known.	This	gives	
a	differential	equation	of	the	function	and	we	may	be	able	to	solve	it.

6.5.1 Population Growth and Growth of Bacteria : 

It	is	known	that	a	number	of	bacteria	in	a	culture	increase	with	time.	It	means	there	is	growth	in	the	
number	of	bacteria.	It	the	population	P	increases	at	time	t	then	the	rate	of	change	of	P	is	proportional	to	
the	population	present	at	that	time.

   ∴ 
dP
dt  ∝ P

   ∴ 
dP
dt  = k·P ,	 (k > 0)

   ∴ 
dP
P  = kdt 

   	 on	integrating	

   ∴ �
dP
P  = �kdt

   ∴ log	P =  kt + c1

   ∴ P = c·ekt where	c = ec1 

	 	 	 which	gives	the	population	at	any	time	t.	
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SOLVED EXAMPLES 

Ex. 1 : The	 population	 of	 a	 town	 increasing	 at	
a	 rate	proportional	 to	 the	population	at	 that	
time.	 If	 the	 population	 increases	 from	 40	
thousands	to	60	thousands	in	40	years,	what	
will	be	the	population	in	another	20	years.	

 Given	
3
2 	=	1·2247 .

Solution : Let	P	be	the	population	at	time	t.	Since	
rate	 of	 increase	 of	P	 is	 a	 proportional	 to	P 
itself,	we	have,	

 
dP
dt  = k·P	 	 	 	 	 .	.	.	(1)	

	 where	k	is	constant	of	proportionality.	

	 Solving	this	differential	equation,	we	get	

 P = a·ekt,	where	a = ec		.	.	.	(2)	

	 Initially	P	=	40,000	when	t = 0 

∴	 From	equation	(2),	we	have	

	 40,000	=	a·1		 	 ∴ a	=	40,000

	 eq.	(2)	becomes

∴ P	=	40,000·ekt			 	 	 .	.	.	(3)	

	 Again	given	that	P	=	60,000	when	t = 40 

∴	 From	equation	(3),	

	 60,000	=	40,000·e40k 

 e40k = 
3
2 	 	 	 	 	 	 .	.	.	(4)

	 Now	we	have	to	find	P	when			t = 40 + 20 
	 	 	 	 	 	 	 	 	 	 =	60	years	

∴	 From	equation	(3),	we	have	

 P	 =	40,000·e60k	=	40,000	(e40k )
3
2   

	 	 =	40,000	
3
2

3
2  = 73482

∴	 Required	population	will	be	73482.

Ex. 2 : Bacteria	increase	at	the	rate	proporational	
to	 the	 number	 of	 bacteria	 present.	 If	 the	
original	number	N	doubles	 in	3	hours,	find	
in	 how	many	 hours	 the	 number	 of	 bacteria	
will	be	4N?

Solution : Let	x	be	the	number	of	bacteria	at	time	t.	
Since	the	rate	of	increase	of	x	is	proporational	
x,	the	differential	equation	can	be	written	as	:

 
dx
dt  = kx  

	 where	k	is	constant	of	proportionality.	

	 Solving	this	differential	equation	we	have	

 x = c1·e
kt,	where	c1 = ec		 .	.	.	(1)

	 Given	that	x	=	N	when	t = 0 

∴	 From	equation	(1)	we	get	

 N = c1·1

∴ c1 = N

∴ x = N·ekt		 	 	 	 	 	 .	.	.	(2)	

Again	given	that	x	=	2N	when	t = 3

∴	 From	equation	(2),	we	have	

 2N = N·e3k		 	 	 	 	 	 .	.	.	(3)	

 e3k = 2 

	 Now	we	have	to	find	t,	when	x = 4 N 

∴	 From	equation	(2),	we	have	

 4 N = N·ekt 

i.e.	 4	=	ekt = (e3k )
t
3  

∴ 22 = 2
t
3 			 	 	 	 	 .	.	.	by	eq.	(3)	

∴ 
t
3  = 2

∴ t	=	6
	 Therefore,	the	number	of	bacteria	will	be	4N	

in	6	hours.	
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6.5.2 Radio Active Decay : 

We	know	that	the	radio	active	substances	(elements)	like	radium,	cesium	etc.	disintegrate	with	time.	

It	means	the	mass	of	the	substance	decreases	with	time.	

The	rate	of	disintegration	of	such	elements	is	always	proportional	to	the	amount	present	at	that	time.	

If	x	is	the	amount	of	any	material	present	at	time	t	then	

    
dx
dt  =	−	k·x 

	 where	k	is	the	constant	of	proportionality	and	k	>	0.	The	negative	sign	appears	because	x	decreases	
as	t	increases.	

Solving	this	differential	equation	we	get	
    x = a·ekt		 where	a = ec	(check!)	 .	.	.	(1)	

If	x0	is	the	initial	amount	of	radio	active	substance	at	time	t	=	0,	then	from	equation	(1)	
    x0 = a·1	
   ∴ a = x0

   ∴ x = x0 e
−kt		 	 	 .	.	.	(2)	

This	expression	gives	the	amount	of	radio	active	substance	at	any	time	t.	

Half Life Period : 

Half	life	period	of	a	radio	active	substance	is	defined	as	the	time	it	takes	for	half	the	amount/mass	
of	the	substance	to	disintegrate.

Ex. 3 : Bismath	 has	 half	 life	 of	 5	 days.	A	 sample	 originally	 has	 a	mass	 of	 800	mg.	Find	 the	mass	
remaining	after	30	days.

Solution : Let	x	be	the	mass	of	the	Bismath	present	at	time	t.	

	 Then	
dx
dt  =	−	k·x			 	 	 where	k > 0

	 Solving	the	differential	equation,	we	get	

 x = c·e−kt			 	 	 	 	 	 .	.	.	(1)

	 where	c	is	constant	of	proporationality.	

	 Given	that	x	=	800,	when	t = 0 

	 using	these	values	in	euqation	(1),	we	get	

 800 = c·1	=	c

∴ x = 800 e−kt			 	 	 	 	 .	.	.	(2)	
	 Since	 half	 life	 is	 5	 days,	we	 have	 x = 400 

when	t	=	5,	

∴ From	equation	(2),	we	have	

 400 = 800 e−5k  

∴ e−5k = 
400
800

 = 
1
2
		 	 	 	 .	.	.(3)	

	 Now	we	have	determine	x,	when	t	=	30,	

∴ From	equation	(2),	we	have	

 x = 800 e−30k		=	12·5	(verify	!)

∴ The	mass	after	30	days	will	be	12·5	mg.	

	 Now	let	us	discuss	another	application	of	differential	equation.
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6.5.3 Newton's Law of Cooling :

Newton's	 law	 of	 cooling	 states	 that	 the	 rate	 of	 change	 of	 cooling	 heated	 body	 at	 any	 time	 is	
proporational	to	the	difference	between	the	temperature	of	a	body	and	that	of	its	surrounding	medium.

Let	θ	be	the	temperature	of	a	body	at	time	t	and	θ0	be	the	temperature	of	the	medium.	

Then	
d θ
dt 	is	the	rate	of	change	of	temperature	with	respect	to	time	t	and	θ - θ0	is	the	difference	of	

temperature	at	time	t.	According	to	Newton's	law	of	cooling.

  ∴  
d θ
dt  ∝ (θ - θ0)

  ∴  
d θ
dt  = -k (θ - θ0)   .	.	.	(1)

where	k	is	constant	of	proportionality	and	negative	sign	indicates	that	difference	of	temperature	is	
decreasing.	

  Now  
d θ
dt  = -k (θ - θ0)

  ∴  
dθ

(θ - θ0)
 = -k dt

∴Integrating	and	using	the	initial	condition	viz.

  ∴  θ = θ1	  when	t	=	0,	we	get

  ∴  θ = θ0 + (θ1 - θ0) e
−kt	(verify)	 	 	 	.	.	.	(2)

Thus	equation	(2)	gives	the	temperature	of	a	body	at	any	time	t.	

Ex. 4 : Water	at	100°c	cools	in	10	minutes	to	88°c	in	a	room	temperature	of	25°c.	Find	the	temperature	
of	water	after	20	minutes.

Solution : Let	θ	be	 the	temperature	of	water	at	 time	 t.	Room	temperature	is	given	to	be	25°c.	Then	
according	to	Newton's	law	of	cooling.	we	have

 
d θ
dt   ∝ (θ - 25)  

 
d θ
dt   = -k (θ - 25),	 	 where	k > 0

	 After	integrating	and	using	initial	condition.	
	 We	get	 θ = 25 + 75·e−kt			 	 	 .	.	.	(1)
	 But	given	that	θ = 88°c	when	t	=	10

∴ From	equation	(1)	we	get	

 88 = 25 + 75·e−10k 

∴ 63	=	75·e−10k ∴ e−10k = 
63
75

 = 
21
25

		 .	.	.	(2)

	 Now	we	have	to	find	θ,	when	t	=	20,	

∴ From	equation	(1)	we	have

 θ = 25 + 75·e−20k 

  = 25 + 75 (e−20k)2
 

  = 25 + 75 
dy
dx

 2 

		 .	.	.	by	(2)	

  = 25 + 
75 × 21	× 21

25 × 25

  = 25 + 
1323
25  = 77·92 

	 Therefore	 temperature	 of	 water	 after	 20	
minutes	will	be	77·92°c.
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6.5.4 Surface Area :

Knowledge	of	a	differential	equation	is	also	used	to	solve	problems	related	to	the	surface	area.	We	
consider	the	following	examples	:

Ex. 5 : Water	is	being	poured	into	a	vessel	in	the	form	of	an	inverted	right	circular	cone	of	semi	vertical	
angle	45°c	in	such	a	way	that	the	rate	of	change	of	volume	at	any	moment	is	proporational	to	the	
area	of	the	curved	surfaces	which	is	wet	at	that	moment.	Initially,	the	vessel	is	full	to	a	height	of					
2	cms.	And	after	2	seconds	the	height	becomes	10	cm.	Show	that	after	3.5	seconds	from	that	start,	
the	height	of	water	will	be	16	cms.

Solution : Let	the	height	of	water	at	time	t	seconds	be	h	cms.	

Fig. 6.2

	 We	are	given	that	initial	height	is	2	cms.	and	after	2	seconds,	the	height	is	10	cms.	

      ∴ h	=	2	when	t	=	0		 	 	 .	.	.	(1)	

	 		 	 	 	 	 and	 h	=	10	when	t	=	2		 	 	 .	.	.	(2)	

	 Let	v	be	the	volume,	r	be	the	radius	of	the	water	surface	and	l	be	that	slant	height	at	time	t	seconds.	

∴ Area	of	the	curved	surface	at	this	moment	is	πrl.	

	 But	the	semi	vertical	angle	is	45°.	

      ∴ tan	45° = 
r
h  =	1	

      ∴  r = h

	 		 	 	 	 and		 	 l2  = r2 + h2  = 2h2 

      ∴  l  = √ 2 h

   ∴ Area	of	the	curved	surface	 =	 πrl =  π·h·√ 2 h

         = √ 2 πh2 
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	 Since	rate	of	change	of	volume	is	proporational	to	this	area,	we	get	

        
dv
dt  ∝ √ 2 πh2

      ∴  
dv
dt  = c·√ 2 πh2

	 where	c	is	constant	of	proportionality.	

 Let		 	 	 	 	 c√ 2 π  = k

      ∴  
dv
dt  = kh2			 	 .	.	.	(3)

      ∴ where	k	is	constant	

	 	Now		 	 	 	 	 	 v = 
1
3  π r2 h 

         = 
1
3  π r2·h  = 

1
3  πh3,	(since	r = h) 

	 Differentiating	with	respect	to	t,	we	get	

      ∴  
dv
dt  = πh2 

dh
dt 	 	 	 .	.	.	(4)

	 Equating	
dv
dt 	from	(3)	and	(4)	we	get	

       πh2 
dh
dt  = kh2 

      ∴  
dh
dt  = 

k
π

 = a	(say)	

	 where	a	is	constant.

	 	integrating	we	get	

        h = at + b	 	 	 .	.	.	(5)	

	 using	(1)	we	have		 	 	 	 2	 =	 a.0	+	b  ∴ b = 2 

∴ Equation	(5)	becomes		 	

        h  = at + 2 

	 Now	using	(2)	we	get		 	 	

	 		 	 	 	 	 	 10	 =	 2a + 2  ∴ a = 4 

	 using	the	values	of	a	and	b	in	equation	(5),	we	have	

      ∴  h  = 4t + 2 

	 Now	put	t = 3·5 

      ∴  h  = 4 × 3·5 + 2 

	 		 	 	 	 	 	 	 =	14	+	2	=	16	cm	

	 Therefore,	height	of	water	after	3·5	seconds	will	be	16	cms.	
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EXERCISE 6.6

1.	 In	a	certain	culture	of	bacteria	the	rate	of	increase	is	proportional	to	the	number	present.	If	it	is	found	
that	the	number	doubles	in	4	hours,	find	the	number	of	times	the	bacteria	are	increased	in	12	hours.	

2.	 If	the	population	of	a	country	doubles	in	60	years,	in	how	many	years	will	it	be	triple	(treble)	under	
the	assumption	that	the	rate	of	increase	is	proporational	to	the	number	of	inhabitants?

	 [Given	log	2	=	0·6912,	log	3	=	1·0986]

3.	 If	a	body	cools	from	80°c	to	50°c	at	room	temperature	of	25°c	in	30	minutes,	find	the	temperature	
of	the	body	after	1	hour.	

4.		 The	rate	of	growth	of	bacteria	is	proportional	to	the	number	present.	If	initially,	there	were	1000	

bacteria	and	the	number	double	in	1	hour,	find	the	number	of	bacteria	after	2	
1
2 	hours.	

	 [Take	√ 2	=	1·414]	

5.		 The	rate	of	disintegration	of	a	radio	active	element	at	any	time	t	is	proportational	to	its	mass	at	that	
time.	Find	the	time	during	which	the	original	mass	of	1·5	gm.	will	disintegrate	into	its	mass	of	0·5	gm.	

6.		 The	rate	of	decay	of	certain	substance	is	directly	proporational	to	the	amount	present	at	that	instant.	
Initially,	there	are	25	gms	of	certain	substance	and	two	hours	later	it	is	found	that	9	gms	are	left.	
Find	the	amount	left	after	one	more	hour.	

7.		 Find	the	population	of	a	city	at	any	time	t,	given	that	the	rate	of	increase	of	population	is	proporational	
to	the	population	at	the	instant	and	that	in	a	period	of	40	years	the	population	increased	from	30,000	
to	40,000.	

8.		 A	body	cools	according	to	Newton's	law	from	100°c	to	60°c	in	20	minutes.	The	temperature	of	the	
surrounding	being	20°c	how	long	will	it	take	to	cool	down	to	30°c?

9.		 A	right	circular	cone	has	height	9	cms	and	radius	of	 the	base	5	cms.	It	 is	 inverted	and	water	 is	

poured	into	it.	If	at	any	instant	the	water	level	rises	at	the	rate	of	
π
A	cms/	sec.	where	A	is	the	area	of	

	 water	surface	at	that	instant,	show	that	the	vessel	will	the	full	in	75	seconds.	

10.		Assume	that	a	spherical	raindrop	evaporates	at	a	rate	proporational	to	its	surface	area.	If	its	radius	
originally	is	3mm	and	1	hour	later	has	been	reduced	to	2mm,	find	an	expression	for	the	radius	of	
the	raindrop	at	any	time	t.	

11.		 The	rate	of	growth	of	the	population	of	a	city	at	any	time	t	is	proportional	to	the	size	of	the	population.	
For	a	certain	city	it	is	found	that	the	constant	of	proportionality	is	0.04.	Find	the	population	of	the	
city	after	25	years	if	the	initial	population	is	10,000.	[Take	e	=	2·7182]

12.	Radium	decomposes	 at	 the	 rate	 proportional	 to	 the	 amount	 present	 at	 any	 time.	 If	p	 percent	 of	
amount	disappears	in	one	year,	what	percent	of	amount	of	radium	will	be	left	after	2	years	?	
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Let us Remember 

֍	 Equation	which	contains	the	derivative	of	a	function	is	called	a	differential equation. 

֍	 The	 order	 of	 a	 differential	 equation	 is	 the	 highest	 order	 of	 the	 derivative	 appearing	 in	 the	
equation.	

֍	 The	degree	of	the	differential	equation	is	the	power	of	the	highest	ordered	derivative	present	in	
the	equation.	

֍	 Order	and	degree	of	a	differential	equation	are	always	positive	integers.	

֍	 Solution	of	a	differential	equation	in	which	number	of	arbitary	constants	is	equal	to	the	order	
of	a	differential	equation	is	the	general solution	of	the	differential	equation.	

֍	 Solution	obtained	from	the	general	solution	by	giving	particular	values	to	the	arbitrary	constants	
is	the	particular	solution	of	the	differential	equation.	

֍	 The	most	general	form	of	a	linear differential equation of	the	first	order	is	:	
dy
dx  + Py = Q

	 where	P	and	Q	are	functions	of	x	or	constant.	

	 Its	solution	is	given	by	:	 y	(I.F.)	=	�Q·(I.F.)	dx + c	,	where	I.F.	(integrating	factor)	=	e∫Pdx 

֍	 Solution	of	a	differential	equation	
dx
dt  = kx	is	in	the	form	x = a·ekt	where	a	is	initial	value	of	x.	

Further,	k	>	0	represents	growth	and	k	>	0,	represents	decay.	

֍	 Newton's	law	of	cooling	is	θ = θ0 + (θ1 - θ0) e
−kt.

MISCELLANEOUS  EXERCISE 6

(I) Choose the correct option from the given alternatives :

	 (1)	 The	order	and	degree	of	the	differential	equation	 1	+	
dy
dx

2

 = 
d2 y
dx2

3
2 	are	respectively	.	.	.

  (A)	 2,	1		 (B)	 1,	2	 (C)	 3,	2	 (D)	 2,	3

	 (2)	 The	differential	equation	of		y = c2 + 
c
x 	is	.	.	.

  (A) x4 
dy
dx

2

 - x 
dy
dx

 = y    (B) 
d2 y
dx2  + x 

dy
dx

 + y = 0

  (C) x3 
dy
dx

2

 + x 
dy
dx

 = y   (D) 
d2 y
dx2  + 

dy
dx

 - y = 0
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 (3) x2 + y2 = a2	is	a	solution	of	...

  (A) 
d2 y
dx2  + 

dy
dx

 - y = 0    (B) y = x 1	+	
dy
dx

2 

+ a2y

  (C) y = x 
dy
dx

 + a 1	+	
dy
dx

2

  (D) 
d2 y
dx2  =  (x	+	1) 

dy
dx

 (4)	 The	differential	equation	of	all	circles	having	their	centers	on	the	line	y	=	5	and	touching	the	
X-axis	is

  (A) y2 1	+	
dy
dx

 = 25   (B) ( y	−	5)2 1	+	
dy
dx

2

 = 25 

  (C) ( y	−	5)2 + 1	+	
dy
dx

2

 = 25 (D) ( y	−	5)2 1	−	
dy
dx

2

 = 25 

 (5)	 The	differential	equation	y 
dy
dx

 + x	=	0	represents	family	of	.	.	.

	 	 (A)	 circles		 (B)	 parabolas		 (C)	 ellipses		 (D)	 hyper	bolas	

 (6)	 The	solution	of		
1
x ·

dy
dx 	=	tan

−1 x	is	...

  (A) 
x2	tan−1 x

2
 + c = 0    (B)  x	tan−1 x + c = 0 

  (C)  x	−	tan−1 x = c    (D) y = 
x2	tan−1 x

2
	−	

1
2  (x −	tan−1	x) + c 

 (7)	 The	solution	of	(x + y)2 
dy
dx 	=	1	is	...

  (A) x	=	tan−1 (x + y) + c   (B) y	tan−1 
x
y

 = c

  (C) y	=	tan−1 (x + y) + c    (D) y	+	tan−1 (x + y) = c

 (8)	 The	solution	of	
dy
dx

 =  
y +√ x2	−	y2

2
	is	.	.	.

	 	 (A)	 sin−1 
y
x

	=	2	log	|	x	|	+	c			 (B)	 sin−1 
y
x

	=	log	|	x	|	+	c 

	 	 (C)	 sin	
y
x

	=	log	|	x	|	+	c		 	 (D)	 sin	
y
x

	=	log	|	x	|	+	c 

 (9)	 The	solution	of	
dy
dx

 + y	=	cos	x	−	sin	x	is	.	.	.

  (A) y e x	=	cos	x + c    (B) y e x + e x	cos	x = c 

  (C) y e x = e x	cos	x + c    (D) y2 e x = e x	cos	x + c 
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 (10)	 The	integrating	factor	of	linear	differential	equation	x 
dy
dx  + 2y = x2	log	x is	.	.	.

  (A) 
1
x   (B) k  (C) 

1
n2   (D) x2 

 (11)		 The	solution	of	the	differential	equation	
dy
dx
	=	sec	x	−	y	tan	x	is	

  (A) y	sec	x	+	tan	x = c    (B) y	sec	x	=	tan	x + c 

	 	 (C)	 sec	x + y	tan	x = c		 	 	 (D)	 sec	x = y	tan	x + c 

 (12)	 The	particular	solution	of	
dy
dx  = xe 

y	−	x,	when	x = y	=	0	is	.	.	.

  (A) e 
x	−	y = x	+	1	 (B)	e 

x + y = x	+	1	 (C)	e 
x  + e 

y  = x	+	1		 (D)	e 
y	−	x = x	−	1

 (13) 
x2

a2 	−	
y2

b2  =	1	is	a	solution	of	.	.	.

  (A) 
d2 y
dx2

 + yx + 
dy
dx

2
 = 0   (B) xy 

d2 y
dx2

 + 2 
dy
dx

2
 	−	y 

dy
dx

 = 0 

  (C) y 
d2 y
dx2

 + 2 
dy
dx

2
  + y = 0   (D) xy 

dy
dx

 + y 
d2 y
dx2

 = 0 

 (14)	 The	decay	rate	of	certain	substance	 is	directly	proporational	 to	 the	amount	present	at	 that	

instant.	Initially	there	are	27	grams	of	substance	and	3	hours	later	it	is	found	that	8	grams	left.	

The	amount	left	after	one	more	hour	is...

  (A) 5 
2
3 	grams	 (B)	 5	

1
3 	grams		 (C)	 5·1	grams		 (D)	 5	grams

 (15)	 If	the	surrounding	air	is	kept	at	20°c	and	a	body	cools	from	80°c	to	70°c	in	5	minutes,	the	

temparature	of	the	body	after	15	minutes	will	be...

	 	 (A)	51·7°c  (B) 54·7°c  (C) 52·7°c (D) 50·7°c

(II) Solve the following :

	 (1)	 Determine	the	order	and	degree	of	the	following	differential	equations	:	

  (i) 
d2 y
dx2

 + 5 
dy
dx

 + y = x3   (ii) 
d3 y
dx3

2
 = 5 1	+	

dy
dx

  (iii) 3 1	+	
dy
dx

2
 = 

d2 y
dx2

 	 	 	 (iv)	
dy
dx  = 3y + 4 1	+	5	

dy
dx

2

	 	 (v)	
d4 y
dx4

 +	sin	
dy
dx

 = 0 



217

(2)	 In	each	of	the	following	examples,	verify	that	the	given	function	is	a	solution	of	the	differential	
equation.	

 (i) x2 + y2 = r2,	x 
dy
dx

 + r 1	+	
dy
dx

2

= y  

 (ii) y = e ax sin	bx ,		
d2 y
dx2

	−	2a 
dy
dx

 + (a2 + b2) y =0

 (iii) y	=	3	cos	(log	x)	+	4	sin	(log	x),	x 
d2 y
dx2

 + x 
dy
dx

 + y = 0

	 (iv)	 y = ae x + be −x + x2,	x 
d2 y
dx2

 + 2 
dy
dx

 + x3 = xy + 2 

	 (v)	 x2 = 2y2	log	y,	x2 + y2 = xy 
dx
dy

(3)	 Obtain	the	differential	equation	by	eliminating	the	arbitrary	constants	from	the	following	equations.	

 (i) y2 = a (b	−	x) (b + x)    (ii) y = a	sin	(x + b)

 (iii) ( y	−	a)2 = b (x	+	4)		 	 	 (iv)	 y = √ a	cos	(log	x) + b	sin	(log	x) 

	 (v)	 y = Ae 3x	+	1 + Be	−3x	+	1 

(4)	 Form	the	differential	equation	of	:

	 (i)	 all	circles	which	pass	through	the	origin	and	whose	centres	lie	on	X−axis.	

	 (ii)	 all	parabolas	which	have	4b	as	latus	rectum	and	whose	axes	is	parallel	to	Y−axis.	

	 (iii)	 an	ellipse	whose	minor	axis	is	twice	its	major	axis.	

	 (iv)	 all	the	lines	which	are	normal	to	the	line	3x	−	2y	+	7	=	0.	

	 (v)		 the	hyperbola	whose	 length	of	 transverse	and	conjugate	axes	are	half	of	 that	of	 the	given	

hyperbola	
x2

16	−	
y2

36 = k	.

(5)	 Solve	the	following	differential	equations	:	

	 (i)	 log	
dy
dx  = 2x + 3y    (ii) 

dy
dx  = x2y + y

 (iii) 
dy
dx  = 

2y	−	x
2y + x 	 	 	 (iv)	 x dy = (x + y	+	1)	dx

	 (v)	
dy
dx

 + y	cot	x = x2	cot	x + 2x	 	 (vi)	 y	log	y	=	(log	y2	−	x) 
dy
dx

  

	 (vii)	 4	
dx
dy

 + 8x = 5e−3y
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(6)	 Find	the	particular	solution	of	the	following	differential	equations	:	

	 (1)	 y	(1	+	log	x)	=	(log	x x ) 
dy
dx
,	when	y (e) = e 2 

 (2) (x + 2y2) 
dy
dx

 = y,	when	x	=	2,	y	=	1	

 (3) 
dy
dx
	−	3y	cot	x	=	sin	2x,	when	y 

π
2

 = 2 

 (4) (x + y) dy + (x	−	y) dx	=	0,	when	x	=	1	=	y 

 (5) 2e
x
y  dx +  y	−	2xe

x
y  dy	=	0,	when	y (0)	=	1	

(7)	 Show	 that	 the	 general	 solution	 of	 the	 differential	 equation	
dy
dx

 = 
y2 + y +	1
x2 + x +	1

	 is	 given	 by	

 (x + y	+	1)	=	c	(1	−	x	−	y	−	2xy) 

(8)	 The	normal	lines	to	a	given	curve	at	each	point	(x,	y)	on	the	curve	pass	through	(2,	0).	The	curve	
passes	through	(2,	3).	Find	the	equation	of	the	curve.	

(9)	 The	volume	of	spherical	balloon	being	inflated	changes	at	a	constant	rate.	If	initially	its	radius	is					
3	units	and	after	3	seconds	it	is	6	units.	Find	the	radius	of	the	balloon	after	t	second.	

(10)	A	person's	assets	start	reducing	in	such	a	way	that	the	rate	of	reduction	of	assets	is	proportional	to	
the	square	root	of	the	assets	existing	at	that	moment.	If	the	assets	at	the	begining	are	` 10	lakhs	and	

they	dwindle	down	to	`	10,000	after	2	years,	show	that	the	person	will	be	bankrupt	in	2	
2
9
	years	

from	the	start.	

v v v
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Let us Learn
 

• Random variables 

• Types of random variables

• Probability distribution of random variable.

   • Discrete random variable        • Continuous random variable

   • Probability mass function  • Probability density function

   • Expected values and variance  • Cumulative distribution function

Let us Recall

• A random experiment and all possible outcomes of an experiment

• The sample space of a random experiment

Let us Study

7.1 Random variables :

We have already studied random experiments and sample spaces corresponding to random 
experiments. As an example, consider the experiment of tossing two fair coins. The sample space 
corresponding to this experiment contains four elements, namely {HH, HT,TH,TT}. We have  already 
learnt to construct the sample space of any  random experiment.  However,  the interest is not always 
in a random experiment and its sample space. We are often not interested in the outcomes of a random 
experiment, but only in some number obtained from the outcome.  For  example, in case of the experiment 
of tossing two  fair coins, our interest  may  be only in the number of heads when two  coins are tossed.   
In general, it is possible to associate a unique real number to every possible outcome of a random 
experiment. The number obtained from an outcome of a random experiment can take different values 
for different outcomes. This is why such a number is a variable. The  value  of  this  variable depends on 
the outcome of the random experiment, therefore it is called a random variable.

A random variable is usually denoted by capital letters like X, Y, Z,   . . .

7. PROBABILITY  DISTRIBUTIONS



220

Consider the following examples to understand the concept of random variables.

(i) When we throw two dice, there are 36 possible outcomes, but if we are interested in the sum of the 
numbers on the two dice, then there are only 11 different possible values,  from 2 to12.

(ii) If we toss a coin 10 times, then there are 210 = 1024 possible outcomes, but if we are interested in the 
number of heads among the 10 tosses of the coin, then there are only 11 different possible values, 
from 0 to 10.

(iii) In the experiment of randomly selecting four items from a lot of 20 items that contains 6 defective 
items, the interest is in the number of defective items among the selected four items. In this case, 
there are only 5 different possible outcomes, from 0 to 4.

In all the above examples, there is a rule to assign a unique value to every possible outcome of the 
random experiment. Since this number can change from one outcome to another, it is a variable. Also, 
since this number is obtained from outcomes of a random experiment, it is called a random variable.

A random variable is formally defined as follows.

Definition :  

A random variable is a real-valued function defined on the sample space of a random experiment. 
In other words, the domain of a random variable is the sample space of a random experiment, while its 
co-domain is the set of real numbers.

Thus X : S → R is a random variable.

We often use the abbreviation r.v. to denote a random variable. Consider an experiment where three 
seeds are sown in order to find how many of them germinate. Every seed will either germinate or will 
not germinate. Let us use the letter Y when a seed germinates and the letter N when a seed does not 
germinate. The sample space of this experiment can then be written as

S = �YYY, YYN, YNY, NYY, YNN, NYN, NNY, NNN�, and n (S) = 23 = 8.

None of these outcomes is a number. We shall try to represent every outcome by a number. Consider 
the number of times the letter Y appears in a possible outcome and denote it by X. Then, we have

X (YYY ) = 3, X (YYN ) = X (YNY) = X (NY Y) = 2, X (YNN) = X (NYN) = X (NNY ) = 1, X (NNN ) = 0.

The variable X has four possible values, namely 0, 1, 2, and 3. The set of possible values of X is 
called the range of X. Thus, in this example, the range of X is the set �0, 1, 2, 3� .

A random variable is usually denoted by a capital letter, like X or Y . A particular value taken by 
the random variable is usually denoted by the small letter x. Note that x is always a real number and 
the set of all possible outcomes corresponding to a particular value x of X is denoted by the event      
[X = x]. 
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For example, in the experiment of three seeds, the random variable X takes four possible values, 
namely 0, 1, 2, 3. The four events are then defined as follows.

     [X = 0] = �NNN �,

     [X = 1] = �YNN, NYN, NNY �,

     [X = 2] = �YYN, YNY, NYY �,

     [X = 3] = �YYY�.

Note that the sample space in this experiment is finite and so is the random variable defined on it.

A sample space need not always be finite. For example, the experiment of tossing a coin until a head 
is obtained. The sample space for this experiment is S = �H, TH, TTH, TTTH, . . . �. 

Note that S contains an unending sequence of tosses required to get a head. Here, S is countably 
infinite.The random variable X : S → R, denoting the number of tosses required to get a head, has the 
range �1, 2, 3, . . . � which is also countably infinite.

7.2 Types of Random Variables : 

There are two types of random variables, namely discrete and continuous.

7.2.1 Discrete Random Variables :

Definition :  A random variable is said to be a discrete random variable if the number of its possible 
values is finite or countably infinite.

The values of a discrete random variable are usually denoted by non-negative integers, that is, 

�0, 1, 2, . . .  �. 

Examples of discrete random variables include the number of children in a family, the number of 
patients in a hospital ward, the number of cars sold by a dealer, number of stars in the sky and so on.

Note : The values of a discrete random variable are obtained by counting.

7.2.2 Continuous Random Variable :

Definition :  A random variable is said to be a continuous random variable if the possible values of this 
random variable form an interval of real numbers.

A continuous random variable has uncountably infinite possible values and these values form an 
interval of real numbers.

Examples of continuous random variables include heights of trees in a forest, weights of students 
in a class, daily temperature of a city, speed of a vehicle, and so on.
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The value of a continuous random variable is obtained by measurement. This value can be measured 
to any degree of accuracy, depending on the unit of measurement. This measurement can be represented 
by a point in an interval of real numbers.

The purpose of defining a random variable is to study its properties. The most important property 
of a random variable is its probability distribution. Many other properties of a random variable are 
obtained with help of its probability distribution. We shall now learn about the probability distribution 
of a random variable. We shall first learn the probability of a discrete random variable, and then learn 
the probability distribution of a continuous random variable.

7.3 Probability Distribution of Discrete Random Variables : 

Let us consider the experiment of throwing two dice and noting the numbers on the upper-most 
faces of the two dice. The sample space of this experiment is

S = �(1, 1), (1, 2),.....(6, 6)� and n (S) = 36.

Let X denote the sum of the two numbers in any single throw.

Then �2, 3, · · · , 12� is the set of possible values of X. Further, 

     [X = 2] = �(1, 1)�,

     [X = 3] = �(1, 2), (2, 1)�,

     . . .

     . . .

     [X = 12] = �(6, 6)�.

Next, all of these 36 possible outcomes are equally likely if the two dice are fair, that is, if each of 
the six faces have the same probability of being uppermost when the die is thrown.

As the result, each of these 36 possible outcomes has the same probability = 
1
36

This leads to the following results.

     P [X = 2] = P �(1, 1)� = 
1
36

,

     P [X = 3] = P �(1, 2), (2, 1)� = 
2
36

,

     P [X = 4] = P �(1, 3), (2, 2), (3, 1)� = 
3
36

, 

     and so on.
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The following table shows the probabilities of all possible values of X.

x 2 3 4 5 6 7 8 9 10 11 12

P (x)
1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table 7.1

Such a description giving the values of the random variable X along with the corresponding 
probabilities is called the probability distribution of the random variable X.

In general, the probability distribution of a discrete random variable X is defined as follows.

Definition :  The probability distribution of a discrete random variable X is defined by the following 
system of numbers. Let the possible values of X be denoted by x1 , x2 , x3 , . . . , and the corresponding 
probabilities be denoted by p1 ,  p2 ,  p3 , . . . , where pi = P [X = xi ] for i = 1, 2, 3, . . .  .

Note : A discrete random variable can have finite or infinite number of possible values, but they are 
countable.

Sometimes, the probability distribution of a discrete random variable is presented in the form of 
ordered pairs of the form (x1 , p1 ), (x2 , p2 ), (x3 , p3 ), . . .   A common practice is to present the probability 
distribution of a discrete random variable in a tabular form as shown below.

xi x1 x2 x3 . . . 

P [X = xi ] p1 p2 p3 . . .

Table 7.2

Note : If xi is a possible value of X and pi = P [X = xi ], then there is an event [ Ei ] in the sample 
space S such that pi = P [ Ei ]. Since xi is a possible value of X, pi = P [ X = xi ] > 0. Also, all possible 
values of X cover all sample points in the sample space S, and hence the sum of their probabilities is 1. 

That is, pi ≥ 0, for all i and 
i

 pi = 1.

7.3.1 Probability Mass Function (p. m. f.) : 

Sometimes the probability pi of X taking the value xi is a function of xi for every possible value of 
X. Such a function is called the probability mass function (p. m. f.) of the discrete random variable X.

For example, consider the coin-tossing experiment where the random variable X is defined as the 
number of tosses required to get a head. Let probability of getting head be ‘t’ and that of not getting head 
be 1 − t. The possible values of X are given by the set of natural numbers, 1, 2, 3, . . . and 

     P [ X = i ] = (1 − t ) 
i − 1 t , for i = 1, 2, 3, . . .
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This result can be verified by noting that if head is obtained for the first time on the i th toss, then 
the first i − 1 tosses have resulted in tail. In other words, X = i represents the event of having i − 1 tails 
followed by the first head on the toss.

We now define the probability mass function (p. m. f.) of a discrete random variable.

Definition :  Let the possible values of a discrete random variable X be denoted by x1 , x2 , x3 , . . . , 
with the corresponding probabilities pi = P [X = xi ], i = 1, 2, . . . If there is a function f such that 
pi = P [X = xi ] = f (xi ) for all possible values of X, then f is called the probability mass function 
(p. m. f.) of X.

For example, consider the experiment of tossing a coin 4 times and defining the random variable 
X as the number of heads in 4 tosses. The possible values of X are 0, 1, 2, 3, 4, and the probability 
distribution of X is given by the following table.

x 0 1 2 3 4

P [X = x ]
1
16

1
4

3
8

1
4

1
16

Table 7.3

Note that :   P [X = x] = 
4
x

 
1
2

 4

, x = 0, 1, 2, 3, 4, . . .

where 
4
x

 is the number of ways of getting x heads in 4 tosses.

7.3.2 Cumulative Distribution Function (c. d. f. ) : 

The probability distribution of a discrete random variable can be specified with help of the p. m. 
f. It is sometimes more convenient to use the cumulative distribution function (c.d.f.) of the random 
variable. The cumulative distribution function (c. d. f.) of a discrete random variable is defined as 
follows.

Definition :  The cumulative distribution function (c. d. f.) of a discrete random variable X is denoted 
by F and is defined as follows. 

 F (x) = P [X ≤ x] = 
xi < x

 P [X = xi ]

  = 
xi < x

 pi  

  = 
xi < x

 f ( xi )

where f is the probability mass function (p. m. f.) of the discrete random variable X.
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For example, consider the experiment of tossing 4 coins and counting the number of heads. 

We can form the next table for the probability distribution of X.

x 0 1 2 3 4

f (x) = P [X = x]
1
16

1
4

3
8

1
4

1
16

F (x) = P [X ≤ x]
1
16

5
16

11
16

15
16

1

Table 7.4

For example, consider the experiment of tossing a coin till a head is obtained. The following table 
shows the p. m. f. and the c. d. f. of the random variable X, defined as the number of tosses required for 
the first head.

x 1 2 3 4 5 . . .

f (x)
1
2

1
4

1
8

1
16

1
32

. . .

F (x)
1
2

3
4

7
8

15
16

31
32

. . .

Table 7.5

It is possible to define several random variables on the same sample space. If two or more random 
variables are defined on the same sample space, their probability distributions need not be the same.

For example, consider the simple experiment of tossing a coin twice. The sample space of this 
experiment is  S = �HH, HT, TH, TT�.

Let X denote the number of heads obtained in two tosses. Then X is a discrete random variable and 
its value for every outcome of the experiment is obtained as follows.

    X (HH ) = 2, X (HT ) = X (TH ) = 1, X (TT ) = 0.

Let Y denote the number of heads minus the number of tails in two tosses. Then Y is also a discrete 
random variable and its value for every outcome of the experiment is obtained as follows. 

    Y (HH ) = 2, Y (HT ) = Y (TH) = 0, Y (TT ) = −2.

    Let  Z = 
Number of heads

Number of tails + 1

Then Z is also a discrete random variable and its values for every outcome of the experiment is 

obtained as follows.  Z (HH) = 2, Z (HT ) = Z (TH ) = 
1
2

 , Z (TT ) = 0.

These example show that it is possible to define many distinct random variables on the same sample 
space. Possible values of a discrete random variables can be positive or negative, integer or fraction. 
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SOLVED EXAMPLES  

Ex. 1 : Two persons A and B play a game of tossing a coin thrice. If the result of a toss is head, A gets 
` 2 from B. If the result of a toss is tail, B gets ` 1.5 from A. Let X denote the amount gained 
or lost by A. Show that X is a discrete random variable and show how it can be defined as a 
function on the sample space of the experiment.

Solution : X is a number whose value depends on the outcome of a random experiment.

   Therefore, X is a random variable. Since the sample space of the experiment has only 8 
possible outcomes, X is a discrete random variable. Now, the sample space of the experiment is 

      S = �HHH, HHT, HTH, THH, HTT, THT, TTH, TTT�. 

   The values of X in rupees corresponding to these outcomes of the experiment are as 
follows.

      X (HHH) = 2 × 3 = ` 6

      X (HHT) = X (HTH) = X (THH) = 2 × 2 − 1.50 × 1 = ` 2.50

      X (HTT) = X (THT) = X (TTH) = 2 × 1 − 1.50 × 2 = ` − 1.00

      X (TTT) = − 1.50 × 3 = ` − 4.50

   Here, a negative amount shows a loss to player A. This example shows that X takes a 
unique value for every element of the sample space and therefore X is a function on the sample 
space. Further, possible values of X are 4.50, 1, 2.50, 6.

Ex. 2 : A bag contains 1 red and 2 green balls. One ball is drawn from the bag at random, its colour is 
noted, and then ball is put back in the bag. One more ball is drawn from the bag at random and 
its colour is also noted. Let X denote the number of red balls drawn from the bag as described 
above. Derive the probability distribution of X.

Solution : Let the balls in the bag be denoted by r, g1 , g2 . The sample space of the experiment is then 
given by    S = �r r, r g1, r g2, g1 r, g2 r, g1 g1 , g1 g2 , g2 g1 , g2 g2 �.

  Since X is defined as the number of red balls, we have

      X ({r r}) = 2, 

      X ({r g1}) = X (r g2) = X (g1 r) = X (g2 r)= 1,

      X ({g1 g1}) = X (g1 g2) = X (g2 g1) = X (g2 g2) = 0.

  Thus, X is a discrete random variable that can take values 0, 1, and 2. 

  The probability distribution of X is then obtained as follows :

x 0 1 2

P [ X = x ]
4
9

4
9

1
9
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Ex. 3 : Two cards are randomly drawn, with replacement, from a well shuffled deck of 52 playing 
cards. Find the probability distribution of the number of aces drawn.

Solution : Let X denote the number of aces among the two cards drawn with replacement.

   Clearly, 0, 1, and 2 are the possible values of X. Since the draws are with replacement, the 
outcomes of the two draws are independent of each other. Also, since there are 4 aces in the deck 
of 52 cards,

      P [ ace ] = 
4
52

 = 
1
13

 and P [non-ace] = 
12
13

 . Then

      P [X = 0] = P [non-ace and non-ace] = 
12
13

 × 
12
13

 = 
144
169

,

      P [X = 1] = P [ace and non-ace] + P [non-ace and ace]

        = 
1
13

 × 
12
13

 + 
12
13

 × 
1
13

 = 
24
169

,

     and P [X = 2] = P [ace and ace] = 
1
13

 × 
1
13

 = 
1

169
 .

  The required probability distribution is then as follows.

x 0 1 2

P [ X = x ]
144
169

24
169

1
169

Ex. 4 : A fair die is thrown. Let X denote the number of factors of the number on the upper face. Find 
the probability distribution of X.

Solution : The sample space of the experiment is S = �1, 2, 3, 4, 5, 6� . The values of X for the possible 
outcomes of the experiment are as follows. 

  X(1) = 1, X(2) = 2, X(3) = 2, X(4) = 3, X(5) = 2, X(6) = 4. Therefore,

      p1 = P [X = 1] = P [{1}] = 
1
6

      p2 = P [X = 2] = P [{2, 3, 5}] = 
3
6

      p3 = P [X = 3] = P [{4}] = 
1
6

      p4 = P [X = 4] = P [{6}] = 
1
6

  The probability distribution of X is then as follows.

x 1 2 3 4

P [ X = x ]
1
6

3
6

1
6

1
6
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Ex. 5 : Find the probability distribution of the number of doublets in three throws of a pair of dice.

Solution : Let X denote the number of doublets. Possible doublets in a pair of dice are (1, 1), (2, 2),       
(3, 3), (4, 4), (5, 5, ), (6, 6).

  Since the dice are thrown thrice, 0, 1, 2, and 3 are possible values of X. Probability of getting a 

  doublet in a single throw of a pair of dice is p = 
1
6

 and q = 1 − 
1
6

 = 
5
6

.

  P [X = 0] = P [ no doublet] = qqq = 
5
6

 × 
5
6

 × 
5
6

 = 
125
216

.

  P [X = 1] = P [one doublet] = pqq + qpq + qqp = 3pq2 = 
75
216

.

  P [X = 2] = P [two doublets] = ppq + pqp + qpp = 3p2q = 
15
216

.

  P [X = 3] = P [three doublets] = ppp = 
1

216
.

Ex. 6 : The probability distribution of X is as follows : 

x 0 1 2 3 4

P [ X = x ] 0·1 k 2k 2k k

  Find (i) k, (ii) P [X < 2], (iii) P [X ≥ 3], (iv) P [1 ≤  X < 4], (v) F(2).

Solution : The table gives a probability distribution and therefore

  P [X = 0] + P [X = 1] + P [X = 2] + P [X = 3] + P [X = 4] = 1.

  That is, 0·1 + k + 2k + 2k + k = 1.

  That is, 6k = 0·9. Therefore k = 0·15.

(i)  k = 0·15.

(ii)  P [X < 2]  = P [X = 0] + P [X = 1] = 0·1 + k = 0·1 + 0.15 = 0·25

(iii)  P [X ≥ 3] = P [X = 3] + P [X = 4] = 2k + k = 3(0·15) = 0·45

(iv)  P [1 ≤  X < 4] = P [X = 1] + P [X = 2] + P [X = 3] = k + 2k + 2k = 5k

            = 5(0·15) = 0·75.

(v)  F (2) = P [X ≤ 2] = P [X = 0] + P [X = 1] + P [X = 2]  = 0·1 + k + 2k  = 0·1 + 3k

            = 0·1 + 3(0·15) = 0·1 + 0·45 = 0·55.

7.3.3 Expected value and Variance of a random variable : 

In many problems, it is desirable to describe some feature of the random variable by means 
of a single number that can be computed from its probability distribution. Few such numbers are 
mean, median, mode and variance and standard deviation. In this section, we shall discuss mean and 
variance only. Mean is a measure of location or central tendency in the sense that it roughly locates a 
middle or average value of the random variable.
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Definition :  Let X be a random variable whose possible values x1 , x2 , x3 , . . . , xn occur with probabilities 
p1 , p2 , p3 , . . . , pn respectively. The expected value or arithmetic mean of X, denoted by E (X ) or µ is 
defined by
   E(X ) = µ = 

n

i = 1
 xi pi = x1 p1 + x2 p2 + x3 p3 + . . .  + xn pn

In other words, the mean or expectation of a random variable X is the sum of the products of all 
possible values of X by their respective probabilities.

Definition :  Let X be a random variable whose possible values x1 , x2 , x3 , . . . , xn occur with probabilities 
p1 , p2 , p3 , . . . , pn respectively. The variance of X, denoted by Var (X ) or σ2

x is defined as

σ2
x  = Var (X ) = 

n

i = 1
 (xi − µ)2 pi

The non-negative number σx = Var (X ) is called the standard deviation of the random 

variable X.

We can also use the simplified form of

     Var (X ) = 
n

i = 1
  xi

2
 pi  − 

n

i = 1
 xi pi

 2

     Var (X ) =
  

E(X 2
 ) − [E(X )]2

 where 
n

i = 1
 xi

2
 pi = E(X 2

 )
SOLVED EXAMPLES 

 
Ex. 1 : Three coins are tossed simultaneously, X is the number of heads. Find expected value and 

variance of X.

Solution : S = �HHH, HHT, HTH, THH, HTT, THT, TTH, TTT� and X = � 0 , 1 , 2 , 3 �

X = xi P = pi xi pi xi
2
 pi

0
1
8

0 0

1
3
8

3
8

3
8

2
3
8

6
8

12
8

3
1
8

3
8  

9
8

n

i = 1
 xi pi  = 

12
8

n

i = 1
 xi

2
 pi = 

24
8

      Then E (X)  = 
n

i = 1
 xi pi  = 

12
8

 = 1·5

       Var (X )  = 
n

i = 1
  xi

2
 pi  − 

n

i = 1
 xi pi

 2  

= 
24
8

 − (1·5)2 = 3 − 2·25 = 0·75



230

Ex. 2 : Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear 
on the two dice. Find the mean or expectation of X and variance of X.

Solution : The sample space of the experiment consists of 36 elementary events in the form of ordered 
pairs (xi , yi ), where xi = 1, 2, 3, 4, 5, 6 and yi = 1, 2, 3, 4, 5, 6.

  The random variable X i.e. the sum of the numbers on the two dice takes the values 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11 or 12.

X = xi P = pi xi pi xi
2

 pi 

2
1
36

2
36

4
36

3
2
36

6
36

18
36

4
3
36

12
36

48
36

5
4
36

20
36

100
36

6
5
36

30
36

180
36

7
6
36

42
36

294
36

8
5
36

40
36

320
36

9
4
36

36
36

324
36

10
3
36

30
36

300
36

11
2
36

22
36

242
36

12
1
36

12
36

144
36

n

i = 1
 xi pi  = 

252
36

 = 7
n

i = 1
 xi

2
 pi = 

1974
36

 = 54·83

      Then E (X)  = 
n

i = 1
 xi pi  = 7

       Var (X )  = 
n

i = 1
  xi

2
 pi  − 

n

i = 1
 xi pi

 2  

= 54·83 − (7)2 

         = 54·83 − 49  
         = 5·83
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Ex. 3 : Find the mean and variance of the number randomly selected from 1 to 15.

Solution : The sample space of the experiment is S = � 1, 2, 3, …, 15 �.

  Let X denote the number selected. 

  Then X is a random variable which can take values 1, 2, 3, …, 15. Each number selected is 
equiprobable therefore

  P(1) = P(2) = P(3) = … = P(15) = 
1
15

  µ = E(X )  = 
n

i = 1
 xi pi = 1 × 

1
15

 + 2  × 
1
15

 + 3 × 
1
15

 + … + 15 × 
1
15

      = (1 + 2 + 3 + … + 15) × 
1
15

 = 
15 × 16

2
 × 

1
15

 = 8

  Var (X )  = 
n

i = 1
  xi

2
 pi  − 

n

i = 1
 xi pi

 2   

= 12 × 
1
15

 + 22 × 
1
15

 + 32 × 
1
15

 + … + 152 × 
1
15

 − (8)2

         
= (12 + 22 + 32 + … + 152 ) × 

1
15

 − (8)2

         
= 

15 × 16 × 31
6

 × 
1
15

 − (8)2

         
= 82·67 − 64 = 18·67

Ex. 4 : Two cards are drawn simultaneously (or successively without replacement) from a well shuffled 
pack of 52 cards. Find the mean, variance and standard deviation of the number of kings drawn.

Solution : Let X denote the number of kings in a draw of two cards. X is a random variable which can 
assume the values 0, 1 or 2.

  Then  P (X = 0) = P ( no card is king) = 
48C2

52C2

 = 
48 × 47
52 × 51

= 
188
221

  Then  P (X = 1) = P ( exactly one card is king) = 
4C1 × 48C1

52C2

 = 
4 × 48 × 27

52 × 51
= 

32
221

  Then  P (X = 2) = P ( both cards are king) = 
4C2

52C2

 = 
4 × 3

52 × 51
= 

1
221

  µ = E(X )  = 
n

i = 1
 xi pi = 0 × 

188
221

 + 1  × 
32
221

 + 2 × 
1

221
 = 

34
221

  Var (X )  = 
n

i = 1
  xi

2
 pi  − 

n

i = 1
 xi pi

 2   

= 02 × 
188
221

 + 12 × 
32
221

 + 22 × 
1

221
 − 

34
221

 2 

         
= 

36
221

 − 
1156

48841
 = 

6800
48841

 = 0·1392

      
σ = Var (X ) = √ 0·1392
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EXERCISE 7.1

1. Let X represent the difference between number of heads and number of tails obtained when a coin 
is tossed 6 times. What are possible values of X ?

2. An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black 
balls drawn. What are possible values of X ?

3. State which of the following are not the probability mass function of a random variable. Give 
reasons for your answer.

 (i)
X 0 1 2

P (X ) 0·4 0·4 0·2

(iii)
X 0 1 2

P (X ) 0·1 0·6 0·3

 (v)
Y –1 0 1

P (Y ) 0·6 0·1 0·2

 (ii) 
X 0 1 2 3 4

P (X ) 0·1 0·5 0·2 –0·1 0·2

 (iv) 
Z 3 2 1 0 –1

P (Z ) 0·3 0·2 0·4 0 0·05

 (vi)
X 0 –1 –2

P (X ) 0·3 0·4 0·3

4 Find the probability distribution of (i) number of heads in two tosses of a coin. (ii) Number of tails 
in the simultaneous tosses of three coins. (iii) Number of heads in four tosses of a coin.

5.  Find the probability distribution of the number of successes in two tosses of a die, where a success 
is defined as number greater than 4 appears on at least one die.

6. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with 
replacement. Find the probability distribution of the number of defective bulbs.

7. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find 
the probability distribution of number of tails.

8. A random variable X has the following probability distribution :
X 0 1 2 3 4 5 6 7

P (X ) 0 k 2k 2k 3k k2 2k2 7k2 + k

 Determine : (i) k   (ii) P (X < 3)   (iii) P ( X > 4)

9. Find expected value and variance of X for the following p.m.f.
X –2 –1 0 1 2

P (X ) 0·2 0·3 0·1 0·15 0·25
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10. Find expected value and variance of X ,where X is number obtained on uppermost face when a fair 
die is thrown.

11. Find the mean number of heads in three tosses of a fair coin.

12. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.

13.  Two numbers are selected at random (without replacement) from the first six positive integers. Let 
X denote the larger of the two numbers obtained. Find E (X ).

14. Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard 
deviation of X.

15. A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 
years. One student is selected in such a manner that each has the same chance of being chosen and 
the age X of the selected student is recorded. What is the probability distribution of  the random 
variable X ? Find mean, variance and standard deviation of X.

16. In a meeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected 
at random and we take X = 0 if he opposed, and X = 1 if he is in favour. Find E (X ) and Var (X ).

7.4 Probability Distribution of a Continuous Random Variable : 

A continuous random variable differs from a discrete random variable in the sense that the possible 
values of a continuous random variable form an interval of real numbers. In other words, a continuous 
random variable has uncountably infinite possible values. 

For example, the time an athlete takes to complete a thousand-meter race is a continuous random 
variable. 

We shall extend what we learnt about a discrete random variable to a continuous random variable. 
More specifically, we shall study the probability distribution of a continuous random variable with 
help of its probability density function (p. d. f.) and its cumulative distribution function (c. d. f.). If 
the possible values of a continuous random variable X form the interval [a, b], where a and b are real 
numbers and a < b, then the interval [a, b] is called the support of the continuous random variable X. 
The support of a continuous random variable is often denoted by S.

In case of a discrete random variable X that takes finite or countably infinite distinct values, 
the probability P [X = x] is determined for every possible value x of the random variable X. The 
probability distribution of a continuous random variable is not defined in terms of probabilities of 
possible values of the random variable since the number of possible values are unaccountably infinite. 
Instead, the probability distribution of a continuous random variable is characterized by probabilities 
of intervals of the form [ c, d ], where c < d. That is, for a continuous random variable, the interest is 
in probabilities of the form P [c < X < d], where a ≤ c < d ≤ b. 
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This probability is obtained by integrating a function of X over the interval [c, d]. Let us first 
define the probability density function (p.d.f.) of a continuous random variable.

7.4.1 Probability Density Function (p. d. f.) : 

Let X be a continuous random variable defined on interval S = (a , b). A non-negative integrable 
function f (x) is called the probability density function (p. d. f.) of X if it satisfies the following 
conditions.

 1. f (x) is positive or zero every where in S, that is, f (x) ≥ 0, for all x ∈ S.

 2. The area under the curve y = f (x) over S is 1. That is, �
S
 f (x) dx = 1

 3. The probability that X takes a value in A, where A is some interval, is given by the integral of 
f (x) over that interval. That is

       P [X ∈ A] = �
A

 f (x) dx

7.4.2 Cumulative Distribution Functions (c. d. f.) : 

The cumulative distribution function for continuous random variables is just a straightforward 
extension of that of the discrete case. All we need to do is replace the summation with an integral.

Definition :   The cumulative distribution function (c. d. f.) of a continuous random variable X is 
    defined as :
       F (x) = �

x

a
 f (t) dt  for a < x < b.

You might recall, for discrete random variables, that F (x) is, in general, a non-decreasing step 
function. For continuous random variables, F (x) is a non-decreasing continuous function.

SOLVED EXAMPLES 
 

Ex. 1 : Let X be a continuous random variable whose probability density function is f (x) = 3x2 , 
  for 0 < x < 1. note that f (x) is not P [X = x]. 

  For example, f (0.9) = 3(0.9)2 = 2·43 > 1, which is clearly not a probability. In the continuous 
case, f (x) is the height of the curve at X = x, so that the total area under the curve is 1. Here it is 
areas under the curve that define the probabilities.

Solution :  Now, let’s start by verifying that f (x) is a valid probability density function. 

  For this, note the following results.

  1. f (x) = 3x2 ≥ 0 for all x ∈ [0, 1].

  2.  �
1

0
 f (x) = �

1

0
3x2 dx = 1

  Therefore, the function f (x) = 3x2, for 0 < x < 1 is a proper probability density function. 
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  Also, for real numbers c and d such that 0 ≤ c < d ≤ 1, note that 

  P [c < X < d] = �
d

c
 f (x) dx = �

d

c
3x2 dx = x3  

d

c
= d 3 – c 3 > 0

●  What is the probability that X falls between 
1
2

 and 1? That is, what is P 
1
2

 < X < 1  ?

  Substitute c = 
1
2

 and d = 1 in the above integral to obtain 

  P 
1
2

 < X < 1   = 13 – 
1
2

 3

 = 1 – 
1
8

 = 
7
8

.

●  What is P X = 
1
2

 ? 

  See that the probability is 0 . This is so because

  �
d

c
 f (x) dx = 

1⁄2

1⁄2

x3 dx = 1 – 1 = 0. 

  The ordinate AB, with A 
1
2

, 0  and B 
1
2

, 
1
8

 is degenerate case of rectangle and has area 0

   As a matter of fact, in general, if X is a continuous random variable, then the probability that X 
takes any specific value x is 0. That is, when X is a continuous random variable, then 

   P [X = x] = 0 for every x in the support.

Ex. 2 : Let X be a continuous random variable whose probability density function is f (x) = 
x3

4
 for an 

interval 0 < x < c. What is the value of the constant c that makes f (x) a valid probability density 

function?

Solution :  Note that the integral of the p. d. f. over the support of the random variable must be

  That is, �
c

0
 f (x) dx = 1. 

  That is, �
c

0
 

x3

4
 dx = 1. But, �

c

0
 

x3

4
 dx = 

x4

16
 
c

0

= 
c4

16
 . Since this integral must be equal to 1, 

  we have 
c4

16
 = 1, or equivalently c 4 = 16, so that c = 2 since c must be positive.

Ex. 3 : Let's return to the example in which X has the following probability density function :
f (x) = 3x2

  for 0 < x < 1. What is the cumulative distribution function F (x) ?

Solution : F (x) = 
x

−0
 f (x) dx = 

x

0
3x2 dx = x3  

x

0
 = x 3
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Ex. 4 : Let's return to the example in which X has the following probability density function :

  f (x) = 
x3

4
 for 0 < x < 4. What is the cumulative distribution function X ?

Solution : F (x) = 
x

0
 f (x) dx = 

x

0

x3

4
 dx = 

1
4

 
x4

4
 
x

0

= 
1
16

 = [x 4 – 0] = 
x4

16

Ex. 5 : Suppose the p.d.f. of a continuous random variable X is defined as:
  f (x) = x + 1 ,  for –1 < x < 0,  and   f (x) = 1 – x ,  for 0 ≤ x < 1.
  Find the c.d.f. F(x).

Solution : If we look the p.d.f. it is defined in two steps

  F (0) = 
1
2

  For 0 < x < 1

  F (x) = P (0 < x < 1) = P (–1 < x < 0) + P (0 < x < 1) = 
0

−1
 (x + 1) dx + 

x

0
 (1 – x ) dx 

            = 
1
2

 + 
x

0
 (1 – x ) dx 

            = 
1
2

 + x + 
x2

2

  F (x) = 0, for x ≤ –1

  F (x) = 
1
2

 (x + 1)2, for –1 < x ≤ 0

   = 
1
2

 + x – 
x2

2
, for 0 < x < 1  

  

Fig. 7.1

 Now for the other two intervals : 

 For –1 < x < 0 and 0 < x < 1.

 F (x) = 
x

−1
 (x + 1) dx 

  = 
x2

2
 + x  

x

−1

 = 
x2

2
 + x  – 

1
2

 – 1  

  = 
x2

2
 + x + 

1
2

 = 
x2 + 2x + 2

2
 

  = 
(x + 1)2

2
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  If probability function f (x) is defined on (a , b) with f (x) ≥ 0 and �
b

a
 f (x) dx = 1, then we can 

extend this function to the whole of 1R as follows.

  For x ≤ a and x ≥ b, define f (x) = 0.

  Then note that �
 t

−∞
 f (x) = 0 , for t ≤ a and for x ≥ b 

     �
 t

−∞
 f (x) dx = �

 a

−∞
 f (x) dx + �

 b

a
 f (x) dx + �

 t

b
 f (x) dx = 0 + 1 + 0

  Thus   F(t ) = 0, for t ≤ a and F(t ) = 1, for t ≥ b 

Ex. 6 : Verify if the following functions are p.d.f. of a continuous r.v. X.

  (i) f (x) = e –x, for 0 < x < ∞ and = 0, otherwise.

  (ii) f (x) = 
x
2

, for –2 < x < 2 and = 0, otherwise.

Solution : (i) e –x is ≥ 0 for any value of x since e > 0, 

   ∴ e –x > 0, for 0 < x < ∞

   �
∞

0
 f (x) dx = �

∞

0
 e –x dx = – e –x  

∞

0
= 

1
e∞

 – e 0  = –(0 – 1) = 1

   Both the conditions of p.d.f. are satisfied f (x) is p.d.f. of r.v.

  (ii) f (x) < 0 i.e. negative for –2 < x < 0 therefore f(x) is not p.d.f.

Ex. 7 : Find k if the following function is the p.d.f. of r.v. X.

  f (x) = kx2(1 – x), for 0 < x < 1 and = 0, otherwise.

Solution : Since f (x) is the p.d.f. of r.v. X

  
1

0
 kx2 (1 – x ) dx = 1

∴  
1

0
 k (x2 – x3 ) dx = 1

∴  k x3

3
 – 

x4

4
 
1

0

= 1  

∴  k �
1
3

 – 
1
4

  – (0)� = 1  

∴  k × 
1
12

 = 1   ∴ k = 12
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Ex. 8 : For each of the following p.d.f. of r.v. X, find (a) P ( X < 1) and (b) P ( | X | < 1 )

  (i) f (x) = 
x2

18
,  for –3 < x < 3 and = 0, otherwise.

  (ii) f (x) = 
x + 2

18
, for –2 < x < 4 and = 0, otherwise.

Solution : 

(i)  (a) P ( X < 1)  = 
1

−3
 
x2

18
 dx = 

1
18

 (x3)

3
 

1

−3

 = 
1
54

 [1 – (–3)3]  = 
1
54

  (1 + 27) = 
28
54

  = 
14
27

 

  (b) P ( | X | < 1) = P (–1 < x < 1) = 
1

−1
 
x2

18
 dx = 

1
18

 (x3)

3
 

1

−1

 

      = 
1
54

 [1 – (–1)3]  = 
1
54

  (1 + 1) = 
2
54

  = 
1
27

(ii)  (a) P ( X < 1)  = 
1

−2
 
x + 2

18
 dx = 

1
18

  
x2

2
 + 2x  

1

−2

 

      = 
1
18

 �
1
2

 + 2  – 
(–2)2

2
 + 2 (–2) �  = 

1
18

 �
5
2

 + 2� = 
1
18

 × 
9
2

 = 
1
4

 

  (b) P ( | X | < 1) = P (–1 < x < 1) = 
1

−1
 
x + 2

18
 dx = 

1
18

  
x2

2
 + 2x  

1

−1

 

      = 
1
18

 �
1
2

 + 2  – 
1
2

 – 2 � = 
1
18

 �
5
2

 + 
3
2

� = 
1
18

 × 4 = 
2
9

 

Ex. 9 : Find the c.d.f. F(x) associated with p.d.f. f (x) of r.v. X where

  f (x) = 3 (1 – 2x2)  for 0 < x < 1 and = 0, otherwise.

Solution : Since f (x) is p.d.f. of r.v. therefore c.d.f. is

  F (x) = 
x

0
 3 (1 – 2x2) dx = 3  x – 

2x3

3
 
x

0

= [ 3x – 2x3 ] = 3x – 2x3

EXERCISE 7.2

1. Verify which of the following is p.d.f. of r.v. X :

 (i) f (x) = sin x, for 0 ≤ x ≤ 
π
2

 (ii) f (x) = x, for 0 ≤ x ≤ 1 and = 2 – x for 1 < x <2

 (iii) f (x) = 2,  for 0 ≤ x ≤ 1
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2. The following is the p.d.f. of r.v. X : f (x) = 
x
8

, for 0 < x < 4 and = 0 otherwise

 Find (a) P (x < 1·5 ) (b) P ( 1 < x < 2 ) (c) P( x > 2 )

3. It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is 
continuous r.v. given by

 f (x) = 
x2

3
,  for –1 < x < 2 and = 0 otherwise

 (i) Verify whether f (x) is p.d.f. of r.v. X. (ii) Find P( 0 < x ≤ 1 )

 (iii) Find probability that X is negative.

4. Find k if the following function represent p.d.f. of r.v. X.

 (i) f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P 
1
4

 < x < 
3
2

.

 (ii) f (x) = kx (1 – x), for 0 < x < 1 and = 0 otherwise, Also find P 
1
4

 < x < 
1
2

 , P x < 
1
2

.

5. Let X be amount of time for which a book is taken out of library by randomly selected student and 
suppose X has p.d.f.

 f (x) = 0·5x, for 0 ≤ x ≤ 2 and = 0 otherwise.

 Calculate: (i) P (X ≤ 1) (ii) P (0·5 ≤ x ≤ 1·5) (iii) P ( x ≥ 1·5)

6. Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by

 f (x) = 
1
5

, for 0 ≤ x ≤ 5 and = 0 otherwise.

 Find the probability that  (i) waiting time is between 1 and 3 

    (ii) waiting time is more than 4 minutes.

7. Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

 f (x) = k (4 – x2), for –2 ≤ x ≤ 2 and = 0 otherwise.

 Compute : (i) P(x > 0)  (ii) P(–1 < x < 1)  (iii) P(–0·5 < x or x > 0·5)

8. The following is the p.d.f. of continuous r.v. 

 f (x) = 
x
8

, for 0 < x < 4 and = 0 otherwise.

 (i) Find expression for c.d.f. of X   (ii) Find F(x) at x = 0·5 , 1.7 and 5.

9. Given the p.d.f. of a continuous r.v. X , f (x) = 
x2

3
,  for –1 < x < 2 and = 0 otherwise

 Determine c.d.f. of X hence find P( x < 1) , P( x < –2) , P( X > 0) , P(1 < x < 2)

10. If a r.v. X has p.d.f., 

 f (x) = 
c
x

, for 1 < x < 3, c > 0, Find c, E(X) and Var (X).
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Let us Remember 

֍ A random variable (r.v.) is a real-valued function defined on the sample space of a random 
experiment.

 The domain of a random variable is the sample space of a random experiment, while its co-
domain is the real line.

 Thus X : S → R is a random variable.

 There are two types of random variables, namely discrete and continuous.

֍ Discrete random variable : Let the possible values of discrete random variable X be denoted 

by x1 , x2 , x3 , . . . , and the corresponding probabilities be denoted by p1 ,  p2 ,  p3 , . . . , where 

pi = P [X = xi ] for i = 1, 2, 3, . . .  . If there is a function f such that pi = P [X = xi ] = f (xi ) for 

all possible values of X, then f is called the probability mass function (p. m. f.) of X.

 Note : If xi  is a possible value of X and pi = P [X = xi ], then there is an event Ei in the sample 

space S such that pi = P [Ei ]. Since xi  is a possible value of X, pi = P [X = xi ] > 0. Also, all 

possible values of X cover all sample points in the sample space S, and hence the sum of their 

probabilities is 1. That is, pi > 0 for all i and Σ pi = 1.

֍ c.d.f (F(x)) : The cumulative distribution function (c. d. f.) of a discrete random variable X is 

denoted by F and is defined as follows.

    F (x) = P [X ≤ x] = 
xi < x

 P [X = xi]

       = 
xi < x

 pi  

       = 
xi < x

 f ( xi )

֍ Expected Value or Mean of Discrete r. v. : Let X be a random variable whose possible values 

x1 , x2 , x3 , . . . , xn occur with probabilities p1 , p2 , p3 , . . . , pn respectively. The expected value 

or arithmetic mean of X, denoted by E (X ) or µ is defined by

   E(X ) = µ = 
n

i = 1
 xi pi = x1 p1 + x2 p2 + x3 p3 + . . .  + xn pn

 In other words, the mean or expectation of a random variable X is the sum of the products of 

all possible values of X by their respective probabilities.
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֍ Variance of Discrete r. v. : Let X be a random variable whose possible values x1 , x2 , x3 , . . 

. , xn occur with probabilities p1 , p2 , p3 , . . . , pn respectively. The variance of X, denoted by         

Var (X ) or σx2 is defined as

σ2
x  = Var (X ) = 

n

i = 1
 (xi − µ)2 pi

The non-negative number σx = Var (X )

is called the standard deviation of the random variable X.

Another formula to find the variance of a random variable. We can also use the simplified form of

     Var (X ) = 
n

i = 1
  xi

2
 pi  − 

n

i = 1
 xi pi

 2

     Var (X ) =
 

E(X 2
 ) − [E(X )]2

  where 
n

i = 1
 xi

2
 pi = E(X 2

 )

֍ Probability Density Function (p. d. f.) : Let X be a continuous random variable defined on 

interval S = (a , b). A non-negative integrable function f (x) is called the probability density 

function (p. d. f.) of X if it satisfies the following conditions.

 1. f (x) is positive every where in S, that is, f (x) > 0, for all x ∈ S.

 2. The area under the curve f (x) over S is 1. That is, �
S
 f (x) dx = 1

 3. The probability that X takes a value in A, where A is some interval, is given by the integral 

of f (x) over that interval. That is

       P [X ∈ A] = �
A

 f (x) dx

֍ The cumulative distribution function (c. d. f.) of a continuous random variable X is defined 
as :

       F (x) = �
x

a
 f (t) dt  for a < x < b.

MISCELLANEOUS  EXERCISE 7

(I) Choose the correct option from the given alternatives :

 (1) P.d.f. of a.c.r.v X is  f (x) = 6x (1 − x), for 0 ≤ x ≤ 1 and  = 0, otherwise (elsewhere)

  If P (X < a) = P (X > a), then a = 

  (A) 1 (B) 
1
2  (C) 

1
3  (D) 

1
4
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 (2) If the p.d.f of a.c.r.v. X is  f (x) = 3 (1 − 2x2), for 0 < x < 1 and  = 0, otherwise (elsewhere)

  then the c.d.f of X is F(x) =

  (A) 2x − 3x2 (B) 3x − 4x3 (C) 3x − 2x3 (D) 2x3 − 3x

 (3) If the p.d.f of a.c.r.v. X is   f (x) = 
x2

18
, for −3 < x < 3 and  = 0, otherwise

  then P (| X | < 1) =

  (A) 
1
27  (B) 

1
28  (C) 

1
29  (D) 

1
26

 (4) If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x, where k is 

a constant, then P (X = 0) =

  (A) 
7
25  (B) 

16
25  (C) 

18
25  (D) 

19
25

 (5) If p.m.f. of a d.r.v. X is P (X = x) = 
(5 Cx)

25 , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise

  If a = P (X ≤ 2) and b = P (X ≥ 3), then  E (X ) =

  (A) a < b (B) a > b (C) a = b (D) a + b

 (6) If p.m.f. of a d.r.v. X is P (X = x) = 
x

n (n + 1) , for x = 1, 2, 3, . . ., n and = 0, otherwise

  then  E (X ) =

  (A) 
n
1  + 

1
2  (B) 

n
3  + 

1
6  (C) 

n
2  + 

1
5  (D) 

n
1  + 

1
3

 (7) If p.m.f. of a d.r.v. X is P (x) = 
c
x3  , for x = 1, 2, 3 and = 0, otherwise (elsewhere)

  then  E (X ) =

  (A) 
343
297  (B) 

294
251  (C) 

297
294  (D) 

294
297

 (8) If the a d.r.v. X has the following probability distribution :
X −2 −1 0 1 2 3

P (X = x) 0·1 k 0·2 2k 0·3 k

  then  P (X = −1) =

  (A) 
1
10  (B) 

2
10  (C) 

3
10  (D) 

4
10

 (9) If the a d.r.v. X has the following probability distribution :
X 1 2 3 4 5 6 7

P (X = x) k 2k 2k 3k k2 2k2 7k2 + k

  then  k =

  (A) 
1
7  (B) 

1
8  (C) 

1
9  (D) 

1
10
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 (10) Find expected value of and variance of X for the following p.m.f.
X –2 –1 0 1 2

P (X ) 0·3 0·4 0·2 0·15 0·25

  (A) 0·85 (B) – 0·85 (C) 0·15 (D) – 0·15

(II) Solve the following :
 (1) Identify the random variable as either discrete or continuous in each of the following. Write 

down the range of it.
  (i) An economist is interested the number of unemployed graduate in the town of population 

1 lakh.
  (ii) Amount of syrup prescribed by physician.
  (iii) The person on the high protein diet is interested gain of weight in a week.
  (iv) 20 white rats are available for an experiment. Twelve rats are male. Scientist randomly 

selects 5 rats number of female rats selected on a specific day.
  (v) A highway safety group is interested in studying the speed (km/hrs) of a car at a check 

point.

 (2) The probability distribution of discrete r.v. X is as follows
X = x 1 2 3 4 5 6

P (X = x) k 2k 3k 4k 5k 6k

  (i) Determine the value of k.  (ii) Find P (X ≤ 4) , P (2 < X < 4) , P ( X ≥ 3).

 (3) The following probability distribution of r.v. X
X = x –3 –2 –1 0 1 2 3

P (X = x) 0·05 0·1 0·15 0·20 0·25 0·15 0.1

  Find the probability that
  (i) X is positive.  (ii) X is non negative. (iii) X is odd. (iv) X is even.

 (4) The p.m.f. of a r.v. X is given by P (X = x) = 
(5 Cx)

25 , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise.  

  Then show that P (X ≤ 2) = P (X ≥ 3).

 (5) In the p.m.f. of r.v. X
x 1 2 3 4 5

P (X)
1
20

3
20

a 2a
1
20

  Find a and obtain c.d.f. of X.
 (6) A fair coin is tossed 4 times. Let X denotes the number of heads obtained write down the 

probability distribution of X. Also find the formula for p.m.f. of X.
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 (7) Find the probability distribution of the number of successes in two tosses of a die, where a 
success is defined as (i) number greater than 4 (ii) six appears on at least one die.

 (8) A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P (X ) 0 k 2k 2k 3k k2 2k2 7k2 + k

  Determine (i) k  (ii) P (X > 6)  (iii) P (0 < X < 3)

 (9) The following is the c.d.f. of r.v. X

X –3 –2 –1 0 1 2 3 4
F (X ) 0·1 0·3 0·5 0·65 0·75 0·85 0·9 1

  Find p.m.f. of X. (i) P (–1 ≤ X ≤ 2) (ii) P (X ≤ 3/ X > 0)

 (10) Find the expected value, variance and standard deviation of r.v. X whose p.m.f. are given 
below.

X = x 1 2 3

P (X = x)
1
5

2
5

2
5

X = x –1 0 1

P (X = x)
1
5

2
5

2
5

 (11) A player tosses two coins he wins ` 10 if 2 heads appears , ` 5 if 1 head appears and ` 2 if no 
head appears. Find the expected winning amount and variance of winning amount.

 (12) Let the p.m.f. of r.v. X be P (x) = 
3 – x
10 , for x = –1, 0, 1, 2 and = 0, otherwise 

  Calculate E(X ) and Var (X ).
 (13) Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
  f (x) = k (4 – x2) , for –2 ≤ x ≤ 2 and = 0 otherwise. 
  Compute (i) P ( X > 0)  (ii) P (–1 < x < 1)  (iii) P ( X < 0.5 or X > 0.5)

 (14) The p.d.f. of r.v. X is given by f (x) = 
1
2a , for 0 < x < 2a and = 0, otherwise.

  Show that P X < 
a
2  = P X > 

3a
2 .

 (15) The p.d.f. of r.v. of X is given by f (x) = 
k

√ x, for 0 < x < 4 and = 0, otherwise.

  Determine k . Determine c.d.f. of X and hence P (X ≤ 2) and P (X ≤ 1).

v v v

X = x 1 2 3 . . . n

P (X = x)
1
n

1
n

1
n

. . .
1
n

X = x 0 1 2 3 4 5

P (X = x)
1
32

5
32

10
32

10
32

5
32

1
32

(i)

(iii)

(ii)

(iv)
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Let us Study

• Bernoulli Trial

• Binomial distribution

• Mean and variance of Binomial Distribution.

Let us Recall

• Many experiments are dichotomous in nature. For example, a tossed coin shows a ‘head’ or ‘tail’, 
A result of student ‘pass’ or ‘fail’, a manufactured item can be ‘defective’ or ‘non-defective’, the 
response to a question might be ‘yes’ or ‘no’, an egg has ‘hatched’ or ‘not hatched’, the decision is 
‘yes’ or ‘no’ etc. In such cases, it is customary to call one of the outcomes a ‘success’ and the other 
‘not success’ or ‘failure’. For example, in tossing a coin, if the occurrence of the head is considered 
a success, then occurrence of tail is a failure.

Let us Learn

8.1.1 Bernoulli Trial :

Each time we toss a coin or roll a die or perform any other experiment, we call it a trial. If a coin 
is tossed, say, 4 times, the number of trials is 4, each having exactly two outcomes, namely, success or 
failure. The outcome of any trial is independent of the outcome of any other trial. In each of such trials, 
the probability of success or failure remains constant. Such independent trials which have only two 
outcomes usually referred to as ‘success’ or ‘failure’ are called Bernoulli trials.

Definition:

Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions :

(i) Each trial has exactly two outcomes : success or failure.

(ii) The probability of success remains the same in each trial.

 Throwing a die 50 times is a case of 50 Bernoulli trials, in which each trial results in success (say 
an even number) or failure (an odd number) and the probability of success ( p) is same for all 50 
throws. Obviously, the successive throws of the die are independent trials. If the die is fair and has 
six numbers 1 to 6 written on six faces, then

      p =  
1
2

 and q = 1 − p   ∴ q = 
1
2

8. BINOMIAL  DISTRIBUTION
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For example : 
Consider a die to be thrown 20 times. if the result is an even number, consider it a success, else it is 

a failure. Then p =  
1
2

 as there are 3 even numbers in the possible outcomes.

If in the same experiment, we consider the result a success if it is a multiple of 3, then p =  
1
3

 as there 
are 2 multiples of 3 among the six possible outcomes. Both above trials are Bernoulli trials.

SOLVED EXAMPLE 

Ex. 1 : Six balls are drawn successively from an urn containing 7 red and 9 black balls. Tell whether 
or not the trials of drawing balls are Bernoulli trials when after each draw the ball drawn is

  (i) replaced  (ii) not replaced in the urn.

Solution : 
(i)  The number of trials is finite. When the drawing is done with replacement, the probability of 

  success (say, red ball) is p = 
7
16

 which is same for all six trials (draws). Hence, the drawing of 

balls with replacements are Bernoulli trials.

(ii)  When the drawing is done without replacement, the probability of success (i.e. red ball) in first 

  trial is 
7
16

 in second trial is 
6
15

 if first ball drawn is red and is 
7
15

 if first ball drawn is black 

  and so on. Clearly probability of success is not same for all trials, hence the trials are not 
Bernoulli trials.

8.2 Binomial distribution:

Consider the experiment of tossing a coin in which each trial results in success (say, heads) or 
failure (tails). Let S and F denote respectively success and failure in each trial. Suppose we are interested 
in finding the ways in which we have one success in six trials. Clearly, six different cases are there as 
listed below:

SFFFFF, FSFFFF, FFSFFF, FFFSFF, FFFFSF, FFFFFS.

Similarly, two successes and four failures can have 
6!

4 ! × 2 !
 = 15 combinations. 

But as n grows large, the calculation can be lengthy. To avoid this the number for certain probabilities 
can be obtained with Bernoullis formula.For this purpose, let us take the experiment made up of three 
Bernoulli trials with probabilities p and q = 1 – p for success and failure respectively in each trial. The 
sample space of the experiment is the set

S = �SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF�
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The number of successes is a random variable X and can take values 0, 1, 2, or 3.The probability 
distribution of the number of successes is as below :

  P (X = 0) = P (no success)

   = P (�FFF�) = P(F )·P(F )·P(F ) , since trials are independent.

   = q · q · q = q3

  P (X = 1) = P (one success)

   = P (�SFF, FSF, FFS�)

   = P (�SFF�) + P (�FSF�) + P (�FFS�)

   = P (S)·P(F )·P(F) + P(F)·P(S)·P(F) + P(F)·P(F)·P(S)

   = p·q·q + q·p·q + q·q·p = 3pq2

  P (X = 2) = P (two success)

   = P (�SSF, SFS, FSS�)

   = P (�SSF�) + P (�SFS�) + P (�FSS�)

   = P(S)·P(S)·P(F) + P(S)·P(F)·P(S) + P(F)·P(S)·P(S)

   = p·p·q + p·q·p + q·p·p = 3p2q

and  P (X = 3) = P (three successes) 

   = P (�SSS�)

   = P(S)·P(S)·P(S) 

   = p3

Thus, the probability distribution of X is

X 0 1 2 3

P (X ) q3 3q2p 3qp2 p3

Also, the binominal expansion of 
(q + p)3 is q3 + 3q2 p + 3 qp2 + p3

Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1st, 2nd, 3rd and 4th term in the 
expansion of (q + p)3.

Also, since q + p = 1, it follows that the sum of these probabilities, as expected, is 1.Thus, we may 
conclude that in an experiment of n-Bernoulli trials, the probabilities of 0, 1, 2,..., n successes can be 
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obtained as 1st, 2nd, 3rd , . . . , (n + 1)th terms in the expansion of (q + p)n . To prove this assertion (result), 
let us find the probability of x successes in an experiment of n-Bernoulli trials.

Clearly, in case of x successes (S), there will be (n – x) failures (F ). Now x successes (S ) and (n – x) 

failures (F) can be obtained in 
n !

x ! (n – x) !
 ways.

In each of these ways the probability of x successes and (n – x) failures

   = P (x successes)· P ((n – x) failures) 

   = (P (S)·P (S). . . P (S) x times)·(P (F )·P(F))· . . .  ·(P(F)·(n – x) times)

   = ( p·p·p. . . p x times) (q·q·q. . . q (n – x) times)
   = px·qn – x 

Thus probability of getting x successes in n-Bernoulli trial is

P (x successes out of n trials) = 
n !

x ! (n – x) !
 × px × qn – x =  nCx  p

x × qn – x

Clearly, P (x successes), i.e. nCx p
x qn – x is the (x + 1)th term in the binomial expansion of (q + p)n .

Thus, the probability distribution of number of successes in an experiment consisting of n-Bernoulli 
trials may be obtained by the binomial expansion of (q + p)n . Hence, this distribution of number of 
successes X can be written as

X 0 1 2 . . . x . . . n

P (X )  nC0  p
0 × qn  nC1 p

1 × qn – 1 nC2  p
2 × qn – 2 . . . nCx  p

x × qn – x . . . nCn  p
n × q0

The above probability distribution is known as binomial distribution with parameters n and p, 
because for given values of n and p, we can find the complete probability distribution. It is represented 
X~B (n, p) as read as X follows binomial distribution with parameters n, p 

The probability of x successes P (X = x) is also denoted by P (x) and is given by

P (x) = nCx·q
n – x × p x, x = 0, 1, . . . , n,  (q = 1 – p)

This P (x) is called the probability function of the binomial distribution.

A binomial distribution with n-Bernoulli trials and probability of success in each trial as p, is 
denoted by B (n, p) or X~B (n, p).

Lets Note : (i) The number of trials should be fixed.

   (ii) The trials should be independent.
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SOLVED EXAMPLES 

Ex. 1 : If a fair coin is tossed 10 times, find the probability of getting 

  (i) exactly six heads  (ii) at least six heads (iii) at most six heads

Solution : The repeated tosses of a coin are Bernoulli trials. Let X denote the number of heads in an 
experiment of 10 trials.

  Clearly, X ~ B (n, p) with n = 10 and p =  
1
2

, q = 1 − p = 1 − 
1
2

  ∴ q = 
1
2

  P (X = x) = nCx  p
x × qn – x

      = 10Cx 
1
2

 x
 × 

1
2

 n – x

(i)  Exactly six successes means x = 6

  P (X = 6) = 10C6 
1
2

 6
 × 

1
2

 10 – 6

 = 
10 !

6 ! (10 – 6) !
 × 

1
2

 6
 × 

1
2

 4

 = 
10 × 9 × 8 × 7 
4 × 3 × 2 × 1

 × 
1
2

 10

             = 
105
512

(ii)  At least six successes means x ≥ 6

  P (X ≥ 6) = [P (X = 6) + P (X = 7) + P (X = 8) + P (X = 9) + P (X = 10)]

  = 10C6 
1
2

6
 × 

1
2

4

+ 10C7 
1
2

7

× 
1
2

3 

+ 10C8 
1
2

8

× 
1
2

2 

+ 10C9 
1
2

9

× 
1
2

1

+ 10C10 
1
2

10

× 
1
2

0

  = 
10 × 9 × 8 × 7 
4 × 3 × 2 × 1

 × 
1
2

 10

+ 
10 × 9 × 8 
3 × 2 × 1

 × 
1
2

 10 

+ 
10 × 9 
2 × 1

 × 
1
2

 10 

+
 

10 
1
2

10

+ 
1
2

10

  = (210 + 120 + 45 + 10 + 1) × 
1

1024

  = 
386
1024

 = 
193
512

(iii)  At most six successes means x ≤ 6

  P (X ≤ 6) = 1 – (P (X > 6) 

  = 1 – [P (X = 7) + P (X = 8) + P (X = 9) + P (X = 10)]

  = 1 – 10C7 
1
2

7

× 
1
2

3 

+ 10C8 
1
2

8

× 
1
2

2 

+ 10C9 

1
2

9

× 
1
2

1

+ 10C10 
1
2

10

× 
1
2

0 

  = 1 – 
10 × 9 × 8 
3 × 2 × 1

 × 
1
2

 10 

+ 
10 × 9 
2 × 1

 × 
1
2

 10 

+
 

10 
1
2

10

× 
1
2

10 

  = 1 – (120 + 45 + 10 + 1) × 
1

1024
 = 1 – 

176
1024

 = 1 – 
88
512

 = 
512 – 88

512
 = 

424
512

 = 
53
64



250

Ex. 2 : Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. 
Find the probability that there is at least one defective egg.

Solution : Let X denote the number of defective eggs in the 10 eggs drawn.
  Since the drawing is done with replacement, the trials are Bernoulli trials.

  Probability of success = 
1
10

        p = 
1
10

,     q = 1 − p = 1 − 
1
10

 ∴ q = 
9
10

n = 10

        X~B  10, 
1
10

        P (X = x) = 10Cx 
1
10

 x
 × 

9
10

 10 – x

 

        Here X ≥ 1

        P (X ≥ 1) = 1 − 10C0 
1
10

 0
 × 

9
10

 10

    
      

= 1 − 1 × 1 × 
9
10

 10 

          
= 1 − 

9
10

 10

8.3 Mean and Variance of Binomial Distribution ( Formulae without proof ) :

Let X~ B (n, p) then mean or expected value of r.v. X is denoted by µ or E (X ) and given by 
µ = E (X ) = np.
The variance is denoted by Var (X ) and given by Var (X ) = npq.

Standard deviation of X is denoted by SD (X ) or σ and given by SD (X ) = σx = Var (X )

For example : If X~B ( 10 , 0·4 ) then find E (X) and Var (X ). 

Solution :  Here n = 10, p = 0·4, q = 1 − p 
         q = 1 − 0·4 = 0·6

         E (X ) = np 

           = 10 × 0·4 = 4

         Var (X ) = npq 

           = 10 × 0·4 × 0·6 

           = 2.4
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SOLVED EXAMPLES 

Ex. 1 : Let the p.m.f. of r.v. X be

  P (X = x) = 4Cx 
5
9

 x
 × 

4
9

 4 – x 

, for x = 0, 1, 2, 3, 4.

  then find E (X) and Var (X ).

Solution : P (X = x) is binomial distribution with n = 4 , p = 
5
9

 and q = 
4
9

         E (X ) = np 

           = 4 × 
5
9

 = 
20
9

         Var (X ) = npq 

           = 4 × 
5
9

 × 
4
9

 = 
80
81

Ex. 2 : If E (X ) = 6 and Var (X ) = 4·2,  find n and p.

Solution : E(X ) = 6 therefore np = 6 and Var (X ) = 4·2 therefore npq = 4·2

     
npq
np

 = 
4·2
6

   
∴ q = 0·7

    
∴ p = 1 − q = 1 − 0·7  ∴  p = 0·3

     np = 6  

    ∴ n × 0·3 = 6  ∴ n  = 
6

0·3

  

= 20

EXERCISE 8.1

(1) A die is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of
 (i) 5 successes  (ii) at least 5 successes  (iii) at most 5 successes.

(2) A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of 
two successes.

(3) There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 
items will include not more than one defective item?

(4) Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. find the 
probability that

 (i) all the five cards are spades  (ii) only 3 cards are spades  (iii) none is a spade.

(5) The probability that a bulb produced by a factory will fuse after 150 days of use is 0·05. Find the 
probability that out of 5 such bulbs

 (i) none  (ii) not more than one (iii) more than one  (iv) at least one
 will fuse after 150 days of use.
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(6) A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn 
successively with replacement from the bag, what is the probability that none is marked with the 
digit 0?

(7) On a multiple choice examination with three possible answers for each of the five questions, what 
is the probability that a candidate would get four or more correct answers just by guessing?

(8) A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. 
find the probability that he will win a prize 

 (i) at least once  (ii) exactly once  (iii) at least twice

(9) In a box of floppy discs it is known that 95% will work. A sample of three of the discs is selected at 
random. Find the probability that 

 (i) none  (ii) 1 (iii) 2  (iv) all 3 of the sample will work.

(10) Find the probability of throwing at most 2 sixes in 6 throws of a single die.

(11) It is known that 10% of certain articles manufactured are defective. What is the probability that in 
a random sample of 12 such articles, 9 are defective?

(12) Given that X~ B (n, p)

 (i) If n = 10 and p = 0·4, find E (X ) and Var (X ) (ii) If p =0·6 and E(X ) = 6, find n and Var (X ).

 (iii) If n = 25 , E(X ) = 10 find p and SD(X ). (iv) If n = 10, E(X ) = 8, find Var (X ).

Let us Remember 

֍ Trials of a random experiment are called Bernoulli trials, if they satisfy the following 
conditions : 

 (i) Each trial has exactly two outcomes : success or failure.

 (ii) The probability of success remains the same in each trial.

 Thus probability of getting x successes in n-Bernoulli trial is

 P (x successes out of n trials) = 
n !

x ! (n – x) !
 × px × qn – x = nCx  p

x × qn – x

 Clearly, P (x successes), i.e. nCx px qn – x is the (x + 1)th term in the binomial expansion of               
(q + p)n .

֍ Let X~ B (n, p) then mean of expected value of r.v. X is denoted by µ. 
 E (X ) and given by µ = E (X ) = np.

The variance is denoted by Var (X ) and given by Var (X ) = npq.

Standard deviation of X is denoted by SD (X ) or σ and given by SD (X ) = σx = Var (X )



253

MISCELLANEOUS  EXERCISE 8

(I) Choose the correct option from the given alternatives :

 (1) A die is thrown 100 times. If getting an even number is considered a sucess, then the standard 
deviation of the number of successes is

  (A) √ 50 (B) 5 (C) 25 (D) 10

 (2) The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the 
probablity of 2 successes is

  (A) 
128
256  (B) 

219
256  (C) 

37
256  (D) 

28
256

 (3) For a binomial distribution, n = 5. If P (X = 4) = P (X = 3) then p = . . .

  (A) 
1
3

 (B) 
3
4

 (C) 1 (D) 
2
3

 (4) In a binomial distribution, n = 4. If 2 P (X = 3) = 3 P (X = 2) then p = . . .

  (A) 
4
13

 (B) 
5
13

 (C) 
9
13

 (D) 
6
13

 (5) If X~ B (4, p) and P (X = 0) = 
16
81

, then P (X = 4)  = . . .

  (A) 
1
16

 (B) 
1
81

 (C) 
1
27

 (D) 
1
8

 (6) The probability of a shooter hitting a target is 
3
4

.

  How many minimum number of times must he fire so that the probability of hitting the target 
at least once is more than 0·99 ?

  (A) 2 (B) 3 (C) 4 (D) 5

 (7) If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ...

  (A) 36 (B) 54 (C) 18 (D) 27

(II) Solve the following :

 (1) Let X~ B (10, 0·2), Find (i) P (X = 1)  (ii) P (X ≥ 1)  (iii) P (X ≤ 8).

 (2) Let X~ B (n, p) (i) If n = 10 , E (X ) = 5, find p and Var (X ).

    (ii) If E (X )= 5 and Var (X ) = 2·5 , find n and p.

 (3) If fair coin is tossed 10 times find the probability that it shows heads 

  (i) 5 times.  (ii) in the first four tosses and tail in last six tosses.



254

 (4) Probability that bomb will hit target is 0·8. Find the probability that out of 10 bombs dropped 
exactly 2 will miss the target.

 (5) The probability that a mountain-bike rider travelling along a certain track will have a tyre 
burst is 0·05. Find the probability that among 17 riders : (i) exactly one has a burst tyre 

  (ii) at most three have a burst tyre    (iii) two or more have burst tyres.

 (6) Probability that a lamp in a classroom will burnt out will be 0·3. Six lamps are fitted in the 
classroom. If it is known that the classroom is unusable if the number of lamps burning in it 
is less than four, find the probability that classroom can not used at random occasion.

 (7) Lot of 100 items contains 10 defective items. Five items are selected at random from the 
lot and sent to the retail store. What is the probability that the store will receive at most one 
defective item?

 (8) A large chain retailer purchases certain kind of electric device from manufacturer. The 
manufacturer indicates that the defective rate of the device is 3% . The inspector of the retailer 
picks 20 items from a shipment. What is the probability that the store will receive at most one 
defective item?

 (9) The probability that the certain kind of component will survive a check test is 0·6. Find the 
probability that exactly 2 of the next 4 components tested survive.

 (10) An examination consists of 10 multiple-choice questions, in each of which a candidate has 
to deduce which one of five suggested answers is correct. A completely unprepared student 
guesses each answer completely randomly. What is the probability that this student gets 8 or 
more questions correct? Draw the appropriate moral !

 (11) The probability that a machine will produce all bolts in a production run within specification 
is 0·998. A sample of 8 machines is taken at random. Calculate the probability that

  (i)  all 8 machines   (ii) 7 or 8 machines 

  (iii) at least 6 machines will produce all bolts within specification

 (12) The probability that a machine develops a fault within the first 3 years of use is 0·003. If 40 
machines are selected at random, calculate the probability that 38 or more will not develop 
any faults within the first 3 years of use.

 (13) A computer installation has 10 terminals. Independently, the probability that any one terminal 
will require attention during a week is 0·1. Find the probabilities that

  (i)  0  (ii) 1  (iii) 2 

  (iv) 3 or more, terminals will require attention during the next week. 
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 (14) In a large school, 80% of the pupils like mathematics. A visitor to the school asks each of         
4 pupils, chosen at random, whether they like mathematics.

  (i) Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils

  (ii) Find the probability that the visitor obtains the answer yes from at least 2 pupils: 

   (a)  when the number of pupils questioned remains at 4 

   (b) when the number of pupils questioned is increased to 8.

 (15) It is observed that, it rains on 12 days out of 30 days. Find the probability that

  (i) it rains exactly 3 days of week.  (ii) it will rain on at least 2 days of given week.

 (16)  If probability of success in a single trial is 0·01. How many trials are required in order to have 
probability greater than 0·5 of getting at least one success?

 (17)  In binomial distribution with five Bernoulli's  trials, probability of one and two success are 
0·4096 and 0·2048 respectively. Find probability of success.

v v v
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ANSWERS

1.  DIFFERENTIATION

EXERCISE 1.1

(1) (i) 5 (3x2 − 2) ( x3 − 2x − 1)
4

 (ii) 
5
2

 (3√ x − 4 3
 x ) (2x

3
2  − 3x

4
3  

− 5)
3
2

 (iii) 
x + 2

√ x2 + 4x − 7

 (iv) 
x (2√ x2 + 1 + 1)

2√ x2 + 1 · √ x2 + √ x2 + 1 

 (v) − 
4x − 7

(2x2 − 7x − 5) 8
3

 

 (vi) 
15 (3x − 4)

2 (3x − 5) 3
2

 √ 3x − 5 − 
1

√ 3x − 5

4 

(2) (i) − 2x sin (x2 + a2) (ii) 
3e(3x+ 2)

2√ e(3x+ 2) + 5

 (iii) cosec x (iv) 
sec2 √ x

4√ x ·√ tan √ x

 (v) 
− 9 cosec2 [log (x3)] · cot2 [log (x3)]

x
 (vi) 3 sin2 x · cos x · 5sin3 x + 3 · log 5

 (vii) 
sin x cosec √ cos x · cot (√ cos x)

2 √ cos x
 (viii) − 3x2 tan (x3 − 5)

 (ix) 5 sin 2x · e3 sin2 x − 2 cos2 x 

 (x) 
− 2x · sin [ 2 log (x2 + 7)]

x2 + 7
 (xi) − sec2 [cos (sin x)]·sin (sin x)·cos x

 (xii) 4x3·sec2 (x4 + 4)·sec[tan (x4 + 4)] ·
tan [tan (x4 + 4)]

 (xiii) 
2 log x

x  − 
2
x

 (xiv) 
cos √ sin √ x · cos √ x

4√ x · √ sin √ x
 

 (xv) 2x·e x 
2 [tan (e x 

2)]  (xvi)  
1

2x log x

 (xvii) 2 [ log [log(log x)]]
x log x · log(log x)

 (xviii) 4x sin (2x2)

(3) (i) 6 (x + 2)(x2 + 4x + 1)2 + 4 (3x2 − 5) 
  (x3 − 5x − 2)3

 (ii) 8 (1 − 2x) (1 + 4x)5 (3 + x − x2)7 

+ 20 (1 + 4x)4 (3 + x − x2)8

 (iii) 
14 − 3x

2(7 − 3x) 3
2

  (iv) 
6x2 (x3 + 15) (x3 − 5)4

(x3 + 3)6

 (v) sin 2x (1 + sin2 x) (1 + cos2 x)2 (1 − 5 sin2 x)

 (vi) − 
sin x

2 √ cos x
 − 

sin √ x

4 √ x· √ cos √ x

 (vii) 3 sec 3x  (viii) 
π cos x°

90 (1 − sin x°)2

 
(ix) − 

cosec2 log x
2

2x  + tan x · cosec2 x

 (x) 
8 e4x

(e4x + 1)2 (xi) − 
e√

 
x

√ x (e√
 
x − 1)2

 (xii) 6 cosec 2x + 4 cot x + 
14x

x2 + 7

 (xiii) 3 cosec 3x (xiv)  − 
5
2 cosec 

5x
2
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 (xv) − sec x 

 (xvi) 2 log 4 + 
3x

x2 + 5  − 
9x2

2 (2x3 − 4)

 (xvii) 2x − 
6

5 − 4x + 
2

7 − 6x

 (xviii) − sin x log a − 
6x

x2 − 3 − 
1

x log x

 (xix) 0 (xx)  
x(x2 + 2)3 (7x2 + 38)

(x2 + 5)
3
2

(4) (i) −16 (ii) 35 (iii) −20 (iv) 28

(5) −5  (6) 
12
5  (7) x = 0 or 

2π
3  or 2π

(8) e 2x + 6ex + 14, ex2 + 5 , 2x, ex, f ' [g(x)]·g' (x), 

2e2x + 6ex, 8, g' [ f (x)]· f ' (x), 2xe x2+5, − 2e6.

EXERCISE 1.2

(1) (i) 
1

2√ x
 (ii) − 

1

4 √x 2 − √x

 (iii) 
1

3 3 (x − 2)2
 , for x > 2  (iv) 

2
2x − 1

 (v) 2 (vi) ex

 (vii) 2e2x − 3 (viii) 
1

x log 2

(2) (i) 
1

x·ex (x + 2) 
  (ii) 

1
cos x − x sin x 

 (iii) 
1

7x(x log 7 + 1) 
 (iv) 

x
2x2 + 1

 (v) 
1

1 + log x 

(3) (i) 
1
14

 (ii) 
1
4

 (iii) 
1
12

 (iv) 
1
5

(4) 1

(5) (i) and (ii) derivative proved.

(6) (i) 
1

x [ 1 + (log x)2]
 (ii) 

ex 

√1 − e2x

 (iii) − 
3x2

1 + x6
 (iv) − 

4x log 4
1 + 42x

 (v) 
1

2√ x (1 + x)
 (vi) 

x
√ 1 − x4

 (vii) 
2

√ 2 − x2
 (viii) 

3 √ x
2 √ 1 − x3

 (ix) 9x8 (x) 2x

(7) (i)  2xex2 (ii)  − 5x log 5 (iii) 
1
2

 

 (iv) − x (v)  − 
1
2

 (vi) −6

 (vii) − 
1
6

 (viii) − 
3
2

 (ix) − 
7
2

 (x) − 
1
2

 (xi) − 
1
2

 (xii) 
2
3

(8) (i) 1 (ii) 1 (iii) 
1

2 √ x
 (iv) 3 (v) ex (vi) 2x log 2

(9) (i) 
2

1 + x2
 (ii) 

2
1 + x2

 (iii) − 
2

1 + x2
 (iv) ± 

2

√1 − x2
 

 (v) − 
3

√1 − x2
  (vi) − 

2ex

1 + e2x

 (vii) 
2·3x log 3

1 + 32x
 

 (viii) 
2·4x log 4

1 + 42x
 or  

4x + 1
2  log 4

1 + 42x

 (ix) − 
10

1 + 25x2
  (x) − 

3√x
1 + x3

 (xi) 
5x√x
1 + x5

 (xii) 
1

2 √ x (1 + x)

(10) (i) 
3

1 + 9x2  + 
5

1 + 25x2
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 (ii) 
7

1 + 49x2 − 
5

1 + 25x2

 (iii) 
1

2√x
 

3
1 + 9x

 − 
1

1 + x
  

 (iv) 2x log 2 
3

1 + 9(22x)
 + 

1
1 + 22x

 (v) 2x log 2 
2

1 + 4(22x)
 − 

1
1 + 22x

 (vi) 
3a

a2 + 9x2  + 
2a

a2 + 4x2   (vii) 1

 (viii) 
2

1 + (2x + 1)2 − 
3

1 + (3x − 4)2

 (ix) 
2

1 + (2x + 3)2 + 
1

1 + (x − 1)2

EXERCISE 1.3

(1)  (i) 
(x + 1)2

(x + 3)3 (x + 3)4
 

2
x + 1

 − 
3

x + 2
 − 

4
x + 3

 

 (ii)  
1
3

 3

4x − 1
(2x + 3) (5 − 2x)2

 
4

4x − 1
 − 

2
2x + 3

 + 
4

5 − 2x

 (iii) (x2 + 3)
3
2 ·sin3 2x·2x2 3x

x2 + 3
 + 6 cot 2x + 2x log 2

 (iv)  
(x2 + 2x + 2)

3
2

(√ x + 3)3 (cos x)x
 

3(x +1)
x2 + 2x + 2

 − 
3

2√ x (√ x + 3)
 + x tan x − log (cos x)

 (v) 
x5·tan3 4x

sin2 3x  
5
x  + 24 cosec 8x − 6 cot 3x   (vi)  xtan−1x 

tan−1 x
x

 + 
log x
1 + x2

 

 (vii) sinx x [x cot x + log (sin x)]   (viii) cos (xx) · xx (1 + log x)

(2) (i) ex 
e −1 + e 

x + x 
x

  (1 + log x) (ii) x 
x

 

x
 · x 

x
 · log x 1 + log x + 

1
x log x

  + e 
x

 

x · x 
x (1 + log x)  

 (iii) (log x) 
x 

1
log x

 + log (log x)  + (cos x) 
cot x [1 + cosec2 x log (cos x)]

 (iv) x 
e

 

x · e 
x  

1
x  + log x  + (log x) 

sin x 
sin x

x log x
 + cos x log (log x)  

 (v) sec2 x · etan x + (log x) 
tan x 

tan x
x log x

 + sec2 x log (log x)

 (vi) (sin x)tan x [1 + sec2 x log (sin x)] + (cos x) 
cot x [1 + cosec2 x log (cos x)]

 (vii) 10 
x

 

x x 
x log 10 (1 + log x) + x 

x
 

10·x 
9 (1 + 10 log x) + x 

10
 

x ·10 
x 

1
x  + log x·log 10     

 (viii) 2
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(3) (i) − 
y
x

 (ii) − 
x
y

 (iii) − √ 
y (2 √ 

x + √ 
y )

√ 
x (2 √ 

y + √ 
x )

  (iv)  − 
3x2 + 2xy + y2

x2 + 2xy + 3y2

 (v) − 
y
x

 (vi) − 
e y + yex

e x + xey

 (vii) 
sin (x − y) + e x + y

sin (x − y) − e x + y  (viii) − 
1 + y sin (xy)
1 + x sin (xy) 

 (ix) 
y (1 − xe x − y)
x (1 − ye x − y)

 (x) 
sin (x − y) − cos (x + y) − 1
sin (x − y) + cos (x + y) − 1

EXERCISE 1.4

(1) (i) 
1
t

 (ii) 
b
a

 cos θ (iii) 
2

√ a2 + m2

 (iv) sec3 θ (v) 
b
a

 tan 
θ
2

 (vi) 
y ( t2  + 1) log a

axt
  (vii) − 

1
2

 (viii) 
1
3

(2) (i) 
3√ 3

2
 (ii) − √ 3 (iii) − 

π
6

 (iv) 1 − √ 2 (v) 3 + π 

(4) (i) 
x cos x + sin x

sec2 x
  (ii)  1  

 (iii) − 
1
2

 (iv) 2 (v) − x (log x)2·3x

 (vi) − 
x √ x2 − 1

2
 

 (vii) 
(1 + log x)· xx + 1 − sin x

sin x + x cos x·log x

 (viii) √ 1 − x2

4(1 + x2)

EXERCISE 1.5

(1) (i) 40x3  − 24x − 
12
x4  

 (ii) 2e 
2x (1 + tan x) ·(2 + tan x + tan2 x)

 (iii) − e 
4x  (9 cos 5x + 40 sin 5x )

 (iv) x  (5 + 6 log x ) (v) − 
1 + log x
(x log x)2

 (iv) x 
x − 1 + x 

x (1 + log x)2

(2) (i) − 
1
4a

 cosec4 θ
2

  (ii) − 
1

4at3

 (iii) 6 (iv) − 
2√ 2 b

a2

(4) (i)  
d n y
dx n

 = 
m ! an (ax + b) m − n

(m − n) !
  if m > 0, m > n ,

  
d n y
dx n

 = 0 if m > 0, m < n

  
d n y
dx n

 = n ! a n if m > 0, m = n

 (ii) 
(− 1) n  n !

x n + 1
  (iii) a 

ne 
ax + b  

 (iv) p 
na 

px + q (log a) 
n

 (v) 
(− 1) n − 1 (n − 1) ! a n

(ax + b) n
  (vi) cos 

nπ
2

 + x

 (vii) a 
n sin 

nπ
2

 + ax + b   

 (viii) (− 2) 
n cos 

nπ
2

 + 3 − 2x

 (ix) 
(− 1) n − 1 (n − 1) ! 2 n

(2x + 3) n

 (x) 
(− 1) n · n ! · 3 n

(3x − 5) n + 1

 (xi) e 
ax (a2 + b2)

n
2 ·cos bx + c + n tan−1 b

a

 (xii) e 
8x·(10)n cos 6x + 7 + n tan−1 3

4
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MISCELLANEOUS  EXERCISE 1

(I) 
1 2 3 4 5 6 7 8 9 10 11 12
D C C B A C D C B C A B

(II) (1) 
3
4

 (ii) Does not exist (iii) −2

 (2) (A)  3, (B)  5, (C) 4, (D) 1.

 (3) (i) − 1
9

 (ii) − 40
3

 (iii) − 29
96

  (iv) − 4
9

 (4) (i) − 
x

√ 
1 − x2

 [Hint : x = cos 2θ]

  (ii) − 
1
2

 [Hint : x = cos 2θ]

  (iii) 
3

2√ 
x (1 + x)

 [Hint : √ 
x  = tan θ]

  (iv) − 
1

2·√ 
1 − x2

 [Hint : x  = cos 2θ]

  (v) 
3

1 + 9x2
 + 

5
1 + 25x2

  

  (vi) 
1

2 (1 + x2)
 [Hint : x  = tan θ]

 (6) (i) √ 
1 − x2

4 (1 + x2)

  (ii) − 
2x

√ 
1 + x2. sin (log x)

 (iii)  1

2. APPLICATIONS OF DERIVATIVES 

EXERCISE 2.1

(1) (i) 2x − y + 4 = 0, x + 2y − 8 = 0

 (ii) 4x − 5y + 12 = 0, 5x + 4y − 26 = 0,

 (iii) y = 2, x =√ 3

 (iv) πx + 2y − 2π = 0, 

  4x − 2πy + π2 − 4 = 0

 (v) 2x − y = 0, 4x + 8y − 5π = 0

 (vi) 4x + 2y − 3 = 0, 2x − 4y + 1 = 0

 (vii) 17x − 4y − 20 = 0, 8x + 34y − 135 = 0

(2) (4, 1)  

(3) (2, −2) − 
2
3

, − 
14
27

 (4) y = 0 and y = 4

(5) x + 3y − 8 = 0, x + 3y + 8 = 0

(6) a = 2, b = − 7   (7) (4, 11) and  − 4, − 
31
3

(8) 0.8 π cm2/sec.  (9) 6 cm3/ sec. 

(10) 
3 √ 6

2
 cm2/ sec. (11) 8 cm2/ sec

(12) 7.2 cm3/ sec (13) 3 km/hr

(14) (i) 3
8

 meter/sec.  (ii)  9
8

 meter/sec.

(15) 0.9 meter/sec. (16) 
4π
3

 cm3/ sec
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EXERCISE 2.2

(1) (i) 2.9168  (ii) 3.03704 (iii) 1.9997

 (iv) 248.32 (v) 64.48

(2) (i) 0.953  (ii) 0.42423 (iii) 0.4924

 (iv) 1.02334

(3) (i) 0.7845  (ii) 0.7859 (iii) 0.7859

(4) (i) 2.70471  (ii) 8.1279 (iii) 9.09887

(5) (i) 4.6152  (ii) 2.1983     (iii) 3.006049

(6) (i) 6.91  (ii) 9.72

EXERCISE 2.3

(1) (i) Valid (ii)  Valid  

 (iii)  Invalid (iv) Valid 

 (v)  Invalid (vi)  Invalid

(2)  b = 1 

(3) (i) 
π
4

 or 
5π
4

  (ii) c = π (iii) c = 
5
2

(4)  p = −6, q = 11  (6)  c = −2

(7)  (i) e − 1 (ii)  2 ± 
2

√ 3
 (iii) 

1
7

 (iv) 
1
2

 (v)  3 + √ 2

EXERCISE 2.4

(1) (i) Increasing ∀ x ∈ R 

 (ii) Decreasing∀ x ∈ R

 (iii) Increasing ∀ x ∈ R 

(2)  (i) x < −1 and x > 2  (ii) R − {1} 

 (iii) x < −2 and x > 6

(3)  (i) −1< x < 2   (ii) (−5, 5) − {0}

 (iii) x ∈ (2, 4)

(4) (a) (−∞, −4] ∪ [12, ∞) 

 (b) −4 ≤ x ≤ 12 i.e. [−4, 12]

(5) (a) x < −3 and x > 8 (b) −3 < x < 8

(6) (a) −1 < x < 1   (b) (−∞, −1) ∪ (1, ∞)

(9) (i) Max = 
36
25

, Min = − 
16
27

 (ii)  Max = − 3, Min = − 128

 (iii)  Max = 20, Min = 16  (iv) Min = 8 

 (v) Min = − 
1
e

         (vi) Max = 
1
e

(10) 15, 15 (11) 10, 10 (12) 9  (13) 12.8 

(14) l = √ 2 and b = 
1

√ 2

(15) Radius = Height = a  (16) 3, 3

(17) Side of square base = 8 cm, Height = 4 cm

(18) x = 75, P = 4000   (19) 6, 9

(22) 
4πr 3

3 √ 3
 cm3 

MISCELLANEOUS  EXERCISE 2

(I) 
1 2 3 4 5 6 7 8 9 10
A C B B D C D A D D
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(II) (2)  4 

 (3) 14x − 13y + 12 = 0, 13x + 14y − 41 = 0

 (4) 
2

9π
 ft/sec  (5) 

16
3 , 3  , − 

16
3 , − 3  

 (6) c = 0    (7) c = 2   (8) 2.025

 (9) 1.03565  

 (10) Decreasing in 0, 
1
e

 and 

  Increasing in 
1
e

, ∞

 (11) Increasing in [e, ∞), Decreasing in (1, e]

 (15) l = 
60

π + 4 , b = 
30

π + 4 , r = 
30

π + 4

  (17) Side = 
l

π + 4, Radius = 
l

2(π + 4)  = 
x
2

 (18) 24, 45  (21) Max = 
5
4

, Min = 1

3. INDEFINITE INTEGRATION

EXERCISE 3.1

(1) (i) 
x4

4
 + 

x3

3
 − 

x2

2
 + x + c (ii) 

x3

3
 − 2x2 + 4x + c

 (iii) 3 tan x − 4 log x − 
2

√ x
 − 7x + c

 (iv) 
x2

4
 − 

5x2

2
 + 3 log x − 

1
x4 + c

 (v) 
6
5

 x2 √ x − 4√ x − 
10
√ x

 + c

(2) (i) tan x − x + c (ii) − 2 cos x + c 

 (iii) sec x + c (iv) − cot x − 2x + c

 (v) − cot x − tan x + x + c

 (vi) sec x − tan x + x + c

 (vii) sec x − tan x + x + c

 (viii) sin x − cos x + c (ix) − √ 2 cos x + c

 (x) − 
1
14

 cos 7x − 
1
2

 cos x + c

(3) (i) x − 2 log ( x + 2) + c 

 (ii) 2x + 
1
2

 log (2x + 1) + c

 (iii) 
5
3

 x − 
26
9

 log (3x − 4) + c

 (iv) 2 (x + 5)
3
2

3
 − 14 √ x + 5 + c

 (v) 
1
12

 (4x − 1)
3
2  − 

13
4

 √ 4x − 1 + c

 (vi) − cos 2x + c 

 (vii) 
2
5

 sin 
5x
2

 − cos 
5x
2

 + c 

 (viii) 
1
4

 (2x + sin 2x) + c

 (ix) − 
4
9

 x
3
2  + (x + 3)

3
2  + c 

 (x) 
2
21

 (7x − 2)
3
2  + (7x − 5)

3
2   + c 

(4) f (x) = 
x2

2
 + 

3
2x2  + 

7
2

EXERCISE 3.2 (A)

I. 1. 
(log x) n + 1

n + 1  + c 2. 
2
5

 (sin −1 x)
5
2  

+ c

 3. log (cosec (x + log x ) −  cot (x + log x)) + c

 4. 
− 1

√ tan (x2)
 + c 5. 

1
3

 (e3x + 1) + c
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 6. 
1

log a
 · a x + tan−1 x  + c

 7. 
1
2

 [log (sin ex)]2 + c

 8. log (ex − e−x ) + c

 9. 
1
5

 sin5 x − 
1
7

 sin7 x + c

 10. 
1
48

 1og (4x12 + 5) + c

 11. 
1
10

 tan x10 + c 12. 
1
4

 log (x4 + 1) + c

 13. 2 √ tan x + c 14. tan−1 x + 
1

x2 + 1
 + c

 15. log (3 cos2 x + 4 sin2 x) + c

 16. 2 tan−1√ x + c 17. log (10x + x10) + c 

 18. 
√ 1 + 4x n

2n
 + c 

 19. 
4
5

 (x + 2)
5
2  − 2 (x + 2)

3
2  

+ c

20. 
1
7

 (a2 + x2)
7
2  − 

4a2

5
 (a2 + x2)

5
2  

+ 
2a4

3
 (a2 + x2)

3
2  

+ c

21. − 2 √ 2 − 3x − 
2
9

 (2 − 3x)
3
2  + c

22. 
5
12

 (2x + 3)
3
2  − 

11
2

 (2x + 3)
1
2  

− 
49

4 √ 2x + 3
 + c

23. 
1
3

 sin−1 
x 3

3
 + c 25. 

1
3

 log 
x3 − 1

x3
 + c

24. log (log (log x)) + c

II. 1. 2·log sec 
x
2

 + c 

 2. cos a·log (sin (x − a)) − (sin a) x + c

 3. cos (a + b)·log (sec (x + b)) − 

(sin (a + b))·x + c

 4. log (tan x + 2) + c

 5. 
11
75

 x + 
2
25

 log (3 sin x + 4 cos x) + c

 6. 
2x
13

 + 
3
13

 log (2 cos x + 3 sin x) + c 

 7. 5x − 3 log | 2e x − 5 | + c

 8. − 5x − log | 3e x − 4 | + c

 9. − x + 
7
8

 log | 4e 2x − 5 | + c

 10. 
cos8 x

8
 + 

cos6 x
6

 + 
cos4 x

4
 + 

cos2 x
2

 + 

  
1
2

 log (cos2 x − 1) + c

 11. 
tan4 x

4
 − 

tan2 x
2

 + log (sec x) + c

 12. sin x − sin3 x + 
3
5

 sin5 x − 
1
7

 sin7 x + c

 13. 
1
6

 log 
(sec 3x)2

(sec 2x)3 (sec x)6
 + c

 14. 
1
6

 cos11 x − 
1
9

 cos9 x + 
1
13

 cos13 x + c

 15. − 
1

log 3
· 3cos2 x + c

 16. 
1
20

 log 
sin5 4x
sin2 10x

 + c 

 17. 
1
2

 log [(1 + cos2x) − cos2x] + c 

EXERCISE 3.2 (B)

I. 1. 
1

4√ 3
  log 

2x − √ 3
2x + √ 3

  + c

 2. 
1
30

 log  
5 + 3x
5 − 3x   + c

 3. 
1

√ 14
 tan−1 

√ 2x
√ 7

  + c

 4. 
1

√ 3
 log  x +  x2 + 

8
3   + c
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 5. 
1
2

 sin−1 
2x

√ 11   + c

 6. 
1

√ 2
 log  x +  x2 − 

5
2   + c

 7. 9 sin−1 
x
9   − √ 9 − x2 + c

 8. 2 sin−1 
x
2   − √ 4 − x2   + c

 9. 2 sin−1 
x

10   − 
1
2

 (√ 100 − x2  ) + c

 10. 
1
4

 log  
x + 2
x + 6    + c

 11.  
1

√ 5
 log 

√ 5 − 1 + 2x
√ 5 + 1 − 2x   + c

 12. 
1

8√ 2
 log 

2x − 5 − 2 √ 2
2x − 5 + 2 √ 2

  + c

 13. 
1

2√ 19
 log 

3x + 2 + √ 19
3x + 2 − √ 19   + c

 14. 
1

√ 3
 log x + 

5
6  +  x2 + 

5
3  x + 

7
3   + c

 15.  log  (x + 4 + √ x2 − 8x − 20 ) + c

 16. 
1

√ 2
 log x − 

3
4   +  x2 − 

3
2  x + 4  + c

 17. log x − 
1
2  + √ x2 − x − 6  + c 

 18. 
1

2√ 7
 tan−1 

2 tan x
√ 7

  + c

 19. 
1

√ 2
 tan−1 (√ 2 tan x) + c

 20. 
1

2√ 3
  log    

√ 3 + tan x
√ 3 − tan x  + c

II. 1. 
2

√ 5
 tan−1 

2 tan x
2  + 2

√ 5
  + c

 2. 
1
3

 log 
3 tan x

2  − 1
3 tan x

2  + 1
 + c

 3. √ 2 tan−1 
tan x

2  − 1
√ 2

  + c

 4. tan−1 2 tan 
x
2   + 1  + c

 5. 
1

√ 5
 tan−1 (√ 5 tan x ) + c

 6. − 
1

√ 5
 tan−1 

3 tan x − 2
√ 5

  + c

 7. 
1

2√ 11
 log 

√ 11 − 2 + tan x
√ 11 + 2 − tan x   + c

 8. 
1

√ 2
 log sec x + 

π
4  + tan x + 

π
4  + c

 9. 
1
2

 log sec x + 
π
4  + tan x + 

π
4  + c

EXERCISE 3.2 (C)

I. 1. 
3
2

 log (x2 + 6x + 5) − 
5
4

 log 
x + 1
x + 5   + c

 2. log (x2 + 4x − 5) − 
1
2

 log  
x − 1
x + 5   + c

 3. 
1
2

 log (2x2 + 3x − 1) + 
3

2√ 17
 ·

 log 
4x + 3 − √ 17
4x + 3 + √ 17   + c

 4. 
3
2

 √ 2x2 + 2x + 1 + 
5

2√ 2
 ·

 log x + 
1
2

 + x2 + x + 
1
2

 + c

 5. − 7 √ 3 + 2x − x2  + 10·sin−1 
x − 1

2   + c
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 6. √ x2 − 16x + 63 + 

log �(x − 8) + √ x2 − 16x + 63� + c

 7. √ 9x − x2 + 
9
2

 sin−1 
2x − 9

9  + c

 8. 
3

4√ 2
 log 

2√ 2 sin x + √ 2 − 2
2√ 2 sin x + √ 2 + 2   + c

 9. √ e2x − 1 − log (ex + √ e2x − 1) + c

EXERCISE 3.3

I. 1. 
x3

9
 (3·log x − 1) + c

 2. − 
x2

3
 cos 3x + 

2
9

 x sin 3x + 
2
27

 cos 3x + c

 3. 
x2

2
 tan−1 x − 

1
2

 (x − tan−1 x) + c

 4. 
x3

3
 tan−1 x − 

x2

6
 + 

1
6

 log (1 + x2) + c

 5. 
1
4

 (tan−1 x) (x4 − 1) − 
x

12
 (x3 − 3x) + c

 6. x [(log x)2 − 2 (log x) + 2 ] + c

 7. 
1
2

 log (sec x + tan x) + 
1
2

 sec x·tan x + c

 8. 
1
4

 x2 − x·sin 2x − 
1
2

  cos 2x  + c

 9. 
x4

4
 log x − 

x4

16
 + c

 10. 
e2x

13
 [2 cos 3x + 3 sin 3x] + c

 11. 
x2

2
 sin−1 x + 

1
4

 x √ 1 − x2 − 
1
4

 sin−1 x + c

 12. 
x3

3
 cos−1 x − 

1
3

 √ 1 − x2  + 
1
9

 (1 − x2)
3
2  + c

 13. (log x) [log (log x) − 1 ] + c

 14. − (sin−1 t ) √ 1 − t2  + t + c

 15. 2 [√ x·sin √ x + cos √ x ] + c

 16. (cos θ)·[1 −  log (cos θ)] + c

 17. 
1
4

 
x
3

 sin 3x + 
1
9

  cos 3x + 3x sin x 

+ 3 cos x  + c

 18. − 
1
2

 cos (log x)2 + c

 19. − 
1
2

 (log x)2 + c

 20. 
x
6

 sin 3x + 
1
18

 cos x − 
1
14

 x sin 7x 

−  
1
98

 cos 7x + c 

 21. (3x
2
3  − 6) sin 3

 x + 6 3
 x cos 3

 x  + c

II. 1. 
e2x

13
 [ 2 sin 3x − 3 cos 3x ] + c 

 2. 
e−x

5
 [ − cos x + 2 sin 2x ] + c 

 3. 
x
2

 [ sin (log x) − cos (log x) ] + c 

 4. √ 5 
x
2

 x2 + 
3
5

  +

3
10

  log  x + x2 + 
3
5

   + c

 5. 
x3

6
 ·√ a2 − x6 + 

a2

2
 sin−1 

x3

a   + c

 6. 
x − 5

2  √ (x − 3) (7 − x) + 2 sin−1 
x − 5

2  + c

 7. 
1

log 2
 �

2x

2
 √ 4x + 4 + 2 log (2x + √ 4x + 4)� + c

 8. 
1
6

 (2x2 + 3)
3
2  + 

√ 2 
x
2

 x2 + 
3
2

 + 
3
4

 log  x + x2 + 
3
4

 + c
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 9. − 
1
3

 (5 − 4x − x2)
3
2  − (x + 2) √ 5 − 4x − x2  − 9 sin−1 

x + 2
3  + c

 10. 
(1 + 2 tan x)

4  √ tan2 x + tan x − 7 − 
29
8

 log �
1
2

 + tan x + √ tan2 x + tan x − 7 � + c

 11. 
x + 1

2
 √ x2 + 2x + 5 +  2 log �x + 1 + √ x2 + 2x + 5 � + c

 12. √ 2 � 
4x + 3

8
 x2 + 

3
2

 x + 2  + 
23

16 √ 2
 log x + 

3
4

 + x2 + 
3
2

 x + 2  � + c

III. 1. ex (2 + cot x ) + c 2. ex · tan 
x
2  + c 3. e x · 

1
x

 + c 4. ex · 
1

x + 1  + c

 5. e x ·(log x)2 + c 6. e 5x · log x + c 7. e sin−1 x ·x + c 

 8. 
(1 + x)2

2   log (1 + x) − 
1
2

 + c 9. x·cosec (log x) + c 

EXERCISE 3.4

I. 1.  
1
4

 log (x − 1) − 2 log (x + 2) + 
11
4

 (x + 3) + c

 2. 
1
6

 tan−1 x + 
1

15√ 2
 log 

x − √ 2
x + √ 2

  − 
√ 3
10

 tan−1 
x

√ 3
 + c

 3. 
51
41

 log (2x + 9) + 
31
41

 log (3x − 7) + c    4. − 
8
5

 log (x + 4) − 
2
5

 log (x − 1) + c

 5. x − log (x + 3) + log (x − 2) + c   6. x2 + 3x + 
5
3

 log (3x + 1) + log (x − 1) + c

 7. 
1
2

 log  
2x + 1
2x − 1   + 3 log (x + 3) + c 8.  

1
5

 log 
x5

x5 + 1  + c 9.  
11
√ 5

 tan−1 
x
2

 − 
9
2

 tan−1 
x
2

 + c 

 10. 2 log 
x + 1
x − 1  + 

5
2√ 2

 log 
x + √ 2
x − √ 2

  + c 11. log 
2 + x2

3 + x2  + c

 12. 
1

5·log 2
 log 

2 
x − 4

2 
x + 1  + c 13. 

5
2

 
1

x + 1  + 
11
4

 log 
x + 1
x + 3  + c

 14. 6·log x − log (x + 1) − 
9

x + 1  + c 15. 
1
8

 log 
x6 (x3 + 3)
(3x3 + 1)3  + c

 16. 
1
3

 log (x − l) − 
1
6

 log (x2 + x + l) − 
1

√ 3
 tan−1 

2x + 1
√ 3

 + c
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 17. 3·log (sin x − 2) − 
4

sin x − 2  + c 

 18. 
1
2

 log (cos x + 1) + 
1
6

 log (cos x − 1) − 
2
3

 log (2 cos x + 1) + c

 19. 
1
8

 log 
cos x − 1
cos x + 1  +  

1
4 · (cos x + 1) + c 20. 

1
6

 log 
(1 + 2 sin x)4

(1 − sin x) (1 + sin x)3  + c

 21. 
1
10

 log (1 − cos x) − 
1
2

 log (1 + cos x) + 
2
5

 log (3 + 2 cos x) + c 

 22. 
1
2

 log 
e x + 1

(e 2x + 9)
1
2

 + 
1
6

 tan−1 
e x

3 + c  23. 
5
26

 log 
(3 log x + 2)2

√ (log x)2 + 1
 + 

11
26

 tan−1 (log x) + c

MISCELLANEOUS  EXERCISE 3
(I) 

1 2 3 4 5 6 7 8 9 10
B A B A D B A A C B

11 12 13 14 15 16 17 18 19 20
A A D C A D A D C A

(II) (1) 
2
7

 x
7
2  − 

8
5

 x
5
2 − 

8
3

 x
3
2  + c 

 (2) 
x7

7
 − 

x6

6
 + 

x5

5
 − 

x4

4
 + 

x3

3
 − 

x2

2
 + x − log (x + 1) + c

 (3) 
1
15

 (6x + 5)
5
2  

+ c
 

 (4) 
t 

2

2
 − 2t + 3·log (t + 1) + 

1
t + 1  + c

 (5) 3 tan x − 2 sec x + c   (6) tan θ − cot θ − 3 θ + c

 (7) 
1
48

 (2 sin 6x + 3 sin 4x + 6 sin 2x + 12 x) + c (8) 
1
2

 sin 2x − 
1
3

 sin 3x + c

 (9) 
π
4

 x − 
1
4

 x2 + c 

(III)  (1) 
1
4

 (1 + log x)4 + c  

 (2) (tan−1 x) x − 
1
2

 log (1 + x2) − (1 − x) tan−1(1 − x) + 
1
2

 log (x2 −2x + 2) + c

 (3) − cot (log x) + c  (4) 
2
3

 sec x
3
2  

+ c
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 (5) x log (1 + cos x) + c  (6) 
1
3  sin−1 (x3 ) + c

 (7) 
1
4  log (3 − 2 cot x) + c  (8) x· log (log x) − 

1
log x  + c

 (9) 
2

√ 13
 tan−1 

2 tan x
2  − 3 

√ 13
 + c (10) 

1
4  2 sec−1 x + 

2√ x2 − 1
x2

 + c

 (11) − 
3
2  √ − 2x2 + x + 3 + 

7
4√ 2

 sin−1 
2x − 1

√ 7
 + c (12) x· log (x2 + 1) − 2 [ x − tan−1 x ] + c

 (13) 
1
4  e 2x · [ sin 2x − cos 2x ] + c 

 (14) 
1
18

 log (3x − 1) + 
1
2

 log (x − 1) − 
4
9

 log (3x − 2) + c 

 (15) 
1
6  log � 

(cos x − 1)(cos x + 1)3

(2 cos x + 1)4
 � + c

 (16) 
tan x − 1

2
 √ 7 + 2 tan x − tan2 x + 4 sin−1 

tan x − 1
2√ 2

 + c 

 (17) 
1
4  log � 

(x − 1)3 (x + 3)
(x + 1)4

 � + c (18) 
1
5  log 

x5

x5 + 1
 + c

 (19) 2 √ tan x + c  (20) 
1

3 cot3 x  + 
2

cot x  − cot x + c

4. DEFINITE  INTEGRATION

EXERCISE 4.1

I. (1) 4 (2) 
64
3

 (3) e 2 − 1 (4) 6 (5) 20

EXERCISE 4.2

I. (1) 
64
3

 (2) log 
25
24

  (3) − 1 + 
π
4

 (4) 2

 (5) 
1
18

 [13√ 13 + 7√ 7 − 3√ 3 − 27] (6) 1 − 
3π
4

 (7) 
4

7√ 2
 (8) 1  (9)  

3π
16

 

 (10) 
1
3

  tan−1 
4
3

 + tan−1  
2
3

 (11) π (12) 
π
6

 (13) 1  (14) 
π
4

 − 
1
2

 (15) 1
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II. (1) 
π
4

 − 
1
2

 log 2  (2) 
1
2

 log 2 (3) 
π
4

 (4) 0 (5) 
2
3

 tan−1  
1
3

 (6) 
1
4

 log 
2 √ 2 + 1
2 √ 2 − 1

 (7) log  
4
3

 (8) 
1
ab

 tan−1  
ae
b

 −  tan−1  
a
be

  

 (9) 
π
4

 (10) 
4
3

 (11) 
π
2

 − 1

 (12) 
8
3

 (13) 
π
2

 − 1 

 (14) e
π
4   

π
4

 + 1  − 
π
2

 + 1  (15) sin (log 3)

III. (1) 
π
4

 (2) 0 (3) 0 (4) 0 (5) 
16
77

(3)
7
2

 (6) 0 (7) 0 (8) 
π2

6 √ 3
 (9) 0 (10) 0

 (11) 4 log 
1 + √ 5

2
  (12) 0 (13) 

16
105

 (14) 
π
3

 (15) 
π
2

 log 
1
2

MISCELLANEOUS  EXERCISE 4
(I) 

1 2 3 4 5 6 7 8 9 10
A A C C D C A D B A

(II) (1) 
1
10

 (3 − log 3) (2) 2 − √ 2 (3) 6 − 4 log 2 (4) 
1
8

 (5) 
1
21

 (6) π − 2 (7) 
1
3

 log 2 (8) 
π
5

 (9) 0 (10) 
π
2

(III) (1) 
π2

16
 (2) 

2
√ 35

 tan−1 
7
5

 (3) 
1

√ 5 a
 log 

7 + 3 √ 5
2

  (4) 
π
20

 (5) 
π
2

 − log 2 (6) 
1
2

 
π
4

 − log √ 2   (7) − 
π
2

 log 2 (8) 
π3

6

 (9) log 
5 + 3 √ 3
1 + √ 3

   (10) 
17
2

(IV) (1) 
1
2

 when a = 0 ; 
9
2

 when a = 4 (2) k = 
1
2
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5. APPLICATION OF DEFINITE INTEGRAL 

EXERCISE 5.1

(1) (i) 25 (ii) 16 (iii) 20 

 (iv) 1 (v) 2 log 4 (vi) 
32
3

 

 (vii) 
128
3

 sq. units

(2) (i) 
128
3

 (ii) 
16
3

 

(3) (i) 
1
12

 (ii) 
8
3  (iii) 

32
3

 (iv) 8 
a2

3
 (v) 

1
6

MISCELLANEOUS  EXERCISE 5
(I) 

1 2 3 4 5 6 7 8 9 10
A A C B A D B D A B

11 12 13 14 15 16 17 18 19 20
A D B B C C A D A C

(II) 

1. (i) 10 (ii) 2 (iii) 
1
2  

2. 9π  3. 20π

4. (i) 
16
3    (ii) 

8
3   (iii) 

1
3

5. 
π
3   6. 

1
6  7. 

π
4

 − 
1
2

8. 
56
3

  9. 36 
3
4

 10. 
7
3

6. DIFFERENTIAL  EQUATIONS 

EXERCISE 6.1

(1) (i) 2, 1 (ii) 2, 3 (iii) 1, 2

 (iv) 3, 1 (v) 2, 1 (vi) 3, 2

 (vii) 2,  not definded (viii) 2, 2

 (ix) 3, 3 (x) 2, 1

EXERCISE 6.2

(1) (i) 2x3 + 3xy2 
dy
dx  − y3 = 0

 (ii) xy 
d2 y
dx2

 + x 
dy
dx

2

 − y 
dy
dx  = 0 

(iii) x2 
d2 y
dx2

 + x 
dy
dx  + y = 0 (iv) 8 

dy
dx

3

 − 27y = 0

(v) 
d2 y
dx2

 − 25y = 0 (vi) 2 
d2 y
dx2  + 

dy
dx

3

 = 0

(vii) (x2 + xy)
dy
dx  + y = 0  (viii) 

d2 y
dx2  − 7 

dy
dx  + 10y = 0

(ix) xy 
d2 y
dx2  + x 

dy
dx

2

 − 2y 
dy
dx = 0

(x) 
d2 y
dx2  + 4 

dy
dx  + 5y = 0
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(2) 
d2 y
dx2  = 0 (3) 2a 

d2 y
dx2  + 

dy
dx

3

 = 0

(4) x + 4y 
dy
dx = 0 (5) 3 

dy
dx  + 2 = 0

(6) 81 
d2 y
dx2

2

 = 
dy
dx

2

 + 1  

3

(7) y 
d2 y
dx2  + 

dy
dx

2

 = 0

EXERCISE 6.3

(2) (i) tan−1 y = tan−1 x + c

 (ii) 2e−3y + 3e2x = c  (iii) x = cy

 (iv) tan x · tan y = c  (v) sin y · cos x = c

 (vi) y = − kx + c 

 (vii) 2(x2 + y2) + 2 (x sin 2x + y sin 2y) + 

cos 2y + cos 2x + c = 0

 (viii) 2y2 tan−1 x + 1 = cy2

 (ix) 4ex + 3e−2y = c

 (x) 3ex + 3e−y + x3 = c 

(3)  (i) (1 + e x )3 tan y = 0

 (ii) (1 + x2) (1 − y2) = 5

 (iii) y = ex log x (iv) (sin x) (e y  + 1) = √ 2

 (v) 2 (2 + e y ) = 3 (x + 1)

 (vi) cos 
y − 2

x  = a

(4) (i) tan 
x + y

2   = x + c 

 (ii) c + 2y = a log 
x − y − a
x − y + a

 (iii) sin (x2 + y2) + 2x = c

 (iv) x = tan (x − 2y) + c

 (v) (2x − y) −  log ( x − y + 2 ) + 1 = 0

EXERCISE 6.4

(1)  cos 
y
x  dy = log (x) + c

(2) x2 − y2 = cx (3) x + 2ye
x
y  = c 

(4) xy2 = c2 (x + 2y) (5) x2 + y2 = cx

(6) y = c (x + y)3 + x

(7) x 1 − cos 
y
x  = sin 

y
x

(8) x + ye
x
y  = c (9) log ( y) + 

y
x  = c

(10) x2y = 4  (11)  x2 + y2 = x4 

(12) tan−1 
y
x  = log (x) + c

(13) (3x + y)3 (x + y)2 = c 

(14) c = log (x) + 
x

x + y (15) x2 − y2 = cx

EXERCISE 6.5

1. (i)  
x5

5  − 
3x2

2  − xy = c

 (ii) yetan x = etan x (tan x − 1) + c 

 (iii) x = y (c + y2) 

 (iv) y (sec x + tan x) = sec x + tan x − x + c

 (v) x2 y = 
x4 log x

4  − 
x4

16  + c

 (vi) x + y + 1 = ce 
y

 (vii) 2y = (x + a)5  + 2c (x + a)3

 (viii) r sin2 θ + 
sin4 θ

2
 = c

 (ix) 
y3

3  = xy + c

 (x) y = √ 1 − x2 + c (1 − x2)

 (xi) y = 
1
2  etan−1

 x + c e− tan−1
 x
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2.  3 (x + 3y) = 2 (1 − e 3x)

3.  4x2 + 9y2  = 36 

4.  y = 4 − x − 2e x

5.   1 + y = 2e
x2

2

EXERCISE 6.6

1. 8 times of original. 2. 95·4 years 3. 36·36°c  4. 5656

5.  
log 3

k    6. 
27 
5  gms 7. (3000) 

4 
9

 
t

40  

8. 1 hour  10. r = 3 − t 11. 27,182 12. 10 − 
p 
10

 2

% 

MISCELLANEOUS  EXERCISE 6
(I) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D A C B A D C B C D B A B B B

(II) (1) (i) 2, 1 (ii) 3, 10 (iii) 2 , 3 (iv) 1.4 (v) 4, not defined

(3) (i) xy 
d2 y
dx2

 + x 
dy
dx

2

 − 2y 
dy
dx  = 0 (ii) 

d2 y
dx2

 + y = 0 (iii) ( y − a) 
d2 y
dx2

 + 
dy
dx

2

 = 0

 (iv) 2x2y 
d2 y
dx2

 + 2x2 
dy
dx

2

 + y = 0 (v) 
d2 y
dx2

 − 9y = 0

(4) (i) 2xy 
dy
dx  + x2 − y2 = 0  (ii) 2b 

d2 y
dx2

 − 1 = 0 (iii) x + 4y 
dy
dx  = 0  (iv) 2 

dy
dx  − 3 = 0

(5) (i) 2e−3y +  3e2x + 6c = 0   (ii) log ( y ) = 
x3

3
 + x + c (iii) y = 

x
2

 log ( x2) + 2 + cx

 (iv)  y = 1 + x log  x + cx  (v) y = x2 + c·cosec x  (vi) x log y = (log y)2 + c

 (vii)  4xe2y + 5e −y = c

(6) (i) ex log x − y = 0  (ii)  x = 2y2   (iii) y cosec2 x + 2 = 4 sin 2x

 (iv) log √ x2 + y2 + tan−1 
y
x

 = 
π
4

     (v) x + 2ye
x
y  = 2

(8) x2 + y2 = 4x + 5  (9) r = (63 t + 27)
1
3    

(10) 
20
9

 years
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7. PROBABILITY  DISTRIBUTIONS

EXERCISE 7.1

4. (i)

X 0 1 2

P (X )
1
4

1
2

1
4

 (ii) 
X 0 1 2 3

P (X )
1
8

3
8

3
8

1
8

 (iii)
X 0 1 2 3 4

P (X )
1
16

1
4

3
8

1
4

1
16

5.  

X 0 1 2

P (X )
2
3

2
9

1
9

6.  

X 0 1 2 3 4

P (X ) 4
5

4 4
5

3 1
5

4
5

2  1
5

2 4
5

  1
5

3 1
5

4

7.  

X 0 1 2

P (X )
9
16

3
8

1
16

8. (i) 
1
10

 (ii) 
3
10

   (iii)  
1
5

 

9. –0·05, 2·2475    10.  
7
3

,  
524
54

 11. 1·5

12. 
1
3

  13.  4·67  14. 2·41

15. 17·53, 4·9, 2·21  16.  0·7, 0·21

1. { −6, −4, −2, 0, 2, 4, 6 } 

2.   { 0, 1, 2 } 

3. (i) p.m.f.  (ii) Not p.m.f 

 (iii) p.m.f  (iv) Not p.m.f  

 (v) Not p.m.f. (iv) p.m.f  

EXERCISE 7.2

1. (i) p.d.f.  (ii) Not a p.d.f 

 (iii) Not a p.d.f  
2. (a) 

2·25
16

,  (b) 
3
16

 , (c) 
3
4

3. (i) p.d.f. (ii) 
1
9

 (iii)  
1
9
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4. (i) 
1
2

 , 
35
64

 (ii) 6, 
11
32

 , 
1
2

 

5. (i) 
1
4

 (ii) 
1
2

   (iii) 
7
16

6. (i) 
2
5

  (ii) 
1
5

 

7. (i) 
1
2

 (ii) 
11
16

   (iii) 0·6328

8. (i) 
x2

16
 (ii) 

1
64

 , 0·18, 1

9. 
2
9

, 0, 
8
9

, 
7
9

  

10. 
1

log 3
 ,  

4
log 3

 ,  
4 (log 3 – 1)

(log 3)2

MISCELLANEOUS  EXERCISE 7

(I) 
1 2 3 4 5 6 7 8 9 10
B C A B C B B A D B

(II) Solve the following :

 (1) (i) Discrete {1, 2, 3, ..., 100000} (ii) Continuous.  (iii) Continuous.

  (iv) Discrete {0, 1, 2, 3, 4, 5 } (v) Continuous

 (2) (i) 
1
21

 (ii) 
10
21

, 
1
7

, 
6
7

 (3) (i) 0·5  (ii) 0·7 (iii) 0·55 (iv) 0·45

 (5) 
1
4

x 1 2 3 4 5

P (X)
1
20

3
20

1
4

1
2

1
20

F (x )
1
20

1
5

9
20

19
20

1

 (6) 
X 0 1 2 3 4

P (X)
1
16

1
4

3
8

1
4

1
16

  

4
xC

24

 (7) (i)    (ii)
X 0 1 2

P (X )
4
9

4
9

1
9

X 0 1 2

P (X )
25
36

10
36

1
36
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 (8) (i) 
1
10

 (ii) 
17
100

  (iii) 
3
10

 (9) 

X –3 –2 –1 0 1 2 3 4
F (X ) 0·1 0·3 0·5 0·65 0·75 0·85 0·9 1
P (x ) 0·1 0·2 0·2 0·15 0·10 0·10 0·05 0·10

  (i) 0·55 (ii) 0·25

 (10) (i) 
11
5

, 
14
25

, 
√ 14

5
  (ii) 

1
5

, 
14
25

, 
√ 14

5
   (iii) 

n + 1
2

, 
n2 – 1

12
, 

n2 – 1
12

  (iv)  
5
2

, 
5
4

, 
√ 5
2

 (11) ` 5·5, 8·25 (12) 0, 1 (13) (i) 
1
2

  (ii) 
11
16

  (iii) 
81
128

 

 (15) k = 
1
θ

, 
1
e

  (16) k = 
1
4

, F (x) = 
√ x
2 ,  

1
√ 2, 

1
2

8. BINOMIAL  DISTRIBUTION

1. (i)  
3
25

  (ii) 
7
26

 (iii) 
63
64

2. 
25
216

  3. 29 
199

2010

4. (i) 
1

1024
   (ii) 

45
1024

5. (i) (0·95)5    (ii) (1·2) (0·95)4 

 (iii) 1 – (1·2) (0·95)4  (iv) 1 – (0·95)5

6. 
9
10

4

 7. 
11

243

8. (i) 1 – 
99
100

50

   (ii) 50 
9949

10050

 (iii) 1 – 149 
9949

10050
 

9. (i) 
1

203
 (ii) 3 

19
203

 (iii) 3 
192

203
  (iv) 

19
20

3

10. 
7
3

 
5
6

5

 11. 22 
93

1011

12. (i) 4, 2·4  (ii) 10, 2·4 (iii) 
2
5

; √ 6 (iv) 
8
5

EXERCISE 8.1

MISCELLANEOUS  EXERCISE 8
(I) 

1 2 3 4 5 6 7
B D D C B C B
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(II) Solve the following :

 (1) (i) 2 × (0·8)9  (ii) 1 − (0·8)10

  (iii) 1 − (8·2) (0·2)9

 (2) (i) p = 
1
2

, Var (X ) = 2·5 

  (ii) n = 10, p = 
1
2

 (3) (i) 
63
256

 (ii) 
105
512

 (4) 45 
226

210
 

 (5) (i) 0·65 × (0·95)16   

  (ii) (2·0325) × (0·95)14  

  (iii) 1 − (1·6) × (0·95)16 

 (6) 0·2114  (7) 1·4 × (0·9)4

 (8) 6·97 × (0·97)19

 (9) 0·3456  (10) 
30·44

58

 (11) (i)  (0·998)8   (ii) 1·014 × (0·998)7  

  (iii) 1 − 1·014 × (0·998)7  

 (12) 775·44 × (0·003)38

  (13) (i)  0·910    (ii) 0·99  

  (iii) 0·45 × (0·9)8

  (iv) 1 − 2·16 × (0·9)8 

  (14) (i) 
1
54

, 
16
54

, 
96
54

, 
256
54

, 
256
54

  (ii) (a) 
608
54

   (b) 1 − 
33
58

  (15) (i) 35 × 8 × 
81
57

  (ii) 1 − 
12393

57

 (16) (i) 
log 0·5
log 0·99

    

 (17)  
1
5

v v v
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