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NATIONAL ANTHEM

Jana-gana-mana-adhinayaka jaya hé
Bharata-bhagya-vidhata,

Panjaba-Sindhu-Gujarata-Maratha
Dravida-Utkala-Banga

Vindhya-Himachala-Yamuna-Ganga
uchchala-jaladhi-taranga

Tava subha namé jage, tava subha asisa mage,
gahé tava jaya-gatha,

Jana-gana-mangala-dayaka jaya hé
Bharata-bhagya-vidhata,

Jaya hé, Jaya hé, Jaya heé,
Jaya jaya jaya, jaya hé.

PLEDGE

India is my country. All Indians
are my brothers and sisters.

I love my country, and I am proud
of its rich and varied heritage. I shall
always strive to be worthy of it.

I shall give my parents, teachers
and all elders respect, and treat
everyone with courtesy.

To my country and my people,
I pledge my devotion. In their
well-being and prosperity alone lies
my happiness.




( PREFACE )

Welcome to Standard XII, an important milestone in your life.

Dear Students,

Standard XII or Higher Secondary School Certificate opens the doors of higher
education. Alternatively, you can pursue other career paths like joining the workforce.
Either way, you will find that mathematics education helps you considerably. Learning
mathematics enables you to think logically, constistently, and rationally. The curriculum for
Standard XII Mathematics and Statistics for Science and Arts students has been designed
and developed keeping both of these possibilities in mind.

The curriculum of Mathematics and Statistics for Standard XII for Science and Arts
students is divided in two parts. Part I deals with topics like Mathematical Logic, Matrices,
Vectors and Introduction to three dimensional geometry. Part II deals with Differentiation,
Integration and their applications, Introduction to random variables and statistical methods.

The new text books have three types of exercises for focused and comprehensive
practice. First, there are exercises on every important topic. Second, there are comprehensive
exercises at the end of all chapters. Third, every chapter includes activities that students
must attempt after discussion with classmates and teachers. Additional information has
been provided on the E-balbharati website (www.ebalbharati.in).

We are living in the age of Internet. You can make use of modern technology with
the help of the Q.R. code given on the title page. The Q.R. code will take you to links
that provide additional useful information. Your learning will be fruitful if you balance
between reading the text books and solving exercises. Solving more problems will make
you more confident and efficient.

The text books are prepared by a subject committee and a study group. The books
(Paper 1 and Paper II) are reviewed by experienced teachers and eminent scholars. The
Bureau would like to thank all of them for their valuable contribution in the form of
creative writing, constructive and useful suggestions for making the text books valuable.
The Bureau hopes and wishes that the text books are very useful and well received by
students, teachers and parents.

Students, you are now ready to study. All the best wishes for a happy learning
experience and a well deserved success. Enjoy learning and be successful.

o

(Vivek Gosavi)
Pune

Director
Date : 21 February 2020 Maharashtra State Bureau of Textbook
Bharatiya Saur : 2 Phalguna 1941 Production and Curriculum Research, Pune.
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Mathematics and Statistics XII (Part II)
Arts and Science

Sr. No

Area / Topic

Sub Unit

Competency Statement

Differentiation

Differentiation

The students will be able to
» state and use standard formulas of

derivative of standard functions
use chain rule of derivatives

find derivatives of the logarithm,
implicit, inverse and parametric
functions

find second and higher order
derivatives.

Applications
of Derivatives

Applications of
Derivatives

find equations of tangents and normal
to a curve

determine nature of the function-
increasing or decreasing

find approximate values of the
function

examine function for maximum and
minimum values

verify mean value theorems

Indefinite
Integration

Indefinite
Integration

understand the relation between
derivative and integral

use the method of substitution

solve integrals with the help of
integration by parts

solve the integrals by the method of
partial fractions

Definite
Integration

Definite
Integration

understand integral as a limit of sum
the properties of definite integral
state the properties of definite integral
and use them to solve problems




Application
of Definite
Integration

Application
of Definite
Integration

find the area under the curve, bounded
by the curves using definite integrals.

Differential
Equation

Differential
Equation

form a differential equation and find
its order and degree

solve the first order and first degree
differential equation by various
methods

apply the differential equations to
study the polpulation, growth and
decay in amount of substance and
physics.

Probability
Distribution

Probability
Distribution

understand the random variable and its
types.

find probability mass function and its
probability distribution.

find the expected value, variance and
the standard deviation

find the probability density function of
continuous random variable

find distribution function of c.r.v.

Binomial
Distribution

Binomial
Distribution

understand random experiment with
two or more outcomes.

determine probability distribution of
random experiment with parameters n
and p.

find mean, variance, expected value
and standard deviation for the
binomial distribution.
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Answers

256-276




1. DIFFERENTIATION g3

Let us Study J

e Derivatives of Composite functions. e  Geometrical meaning of Derivative.
e Derivatives of Inverse functions e Logarithmic Differentiation
e Derivatives of Implicit functions. e Derivatives of Parametric functions.

e Higher order Derivatives.

4
o)

Let us Recall J
e The derivative of /' (x) with respect to x, at x = a is given by f'(a) = Ellng{

f(a+h)—f(a)}
h

e The derivative can also be defined for f (x) at any point x on the open interval as

f'(x) — 111_1;13|:f(x+ hz _f(X)

} If the function is given as y = f (x) then its derivative is written as
dy _ o
— = f'(x).
iy f'(x)
e For a differentiable function y = f(x) if 0x is a small increment in x and the corresponding increment
. (9o d
in y is 8y then lelg})(éj = d_i .

e Derivatives of some standard functions.

d , d :
y=1( 2o rw y=1x) 2 - fx)
dx dx
¢ (Constant) 0 sec x sec x tan x
X" nx™!
1 1 CoOsecC x — cosec x cot x
. - 2 cot x — cosec? x
1 n e* e~
xn a xn+1
a* a*loga
1
— 1
Vx N log x -
sin x COS X
COS X —sin x log x 1
tan x sec? x ‘ xloga
Table 1.1.1

/)
. O@O .
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Rules of Differentiation :

If u and v are differentiable functions of x such that

dx dx dx dx dx dx
. Jdu v
(i) y=—wherev=0then ® _ dx _ dx
v dx v

Introduction :

The history of mathematics presents the development of calculus as being accredited to Sir Isaac
Newton (1642-1727) an English physicist and mathematician and Gottfried Wilhelm Leibnitz (1646-
1716) a German physicist and mathematician. The Derivative is one of the fundamental ideas of calculus.
It's all about rate of change in a function. We try to find interpretations of these changes in a mathematical
way. The symbol & will be used to represent the change, for example dx represents a small change in the
variable x and it is read as "change in x" or "increment in x". dy is the corresponding change in y if y is

a function of x.

We have already studied the basic concept, derivatives of standard functions and rules of
differentiation in previous standard. This year, in this chapter we are going to study the geometrical
meaning of derivative, derivatives of Composite, Inverse, Logarithmic, Implicit and Parametric functions

and also higher order derivatives. We also add some more rules of differentiation.

E‘@; Let us Learn

1.1.1 Derivatives of Composite Functions (Function of another function) :

So far we have studied the derivatives of simple functions like sin x, log x, e* etc. But how about
the derivatives of sin +/x , log (sin (o + 5)) or e ¥ etc ? These are known as composite functions. In
this section let us study how to differentiate composite functions.

1.1.2 Theorem : If y = f(u) is a differentiable function of u and u = g (x) is a differentiable function of
b _ b du
dx du dx

Proof : Given that y = f(«) and u = g (x). We assume that u is not a constant function. Let there be a

x such that the composite function y = f[g (x)] is a differentiable function of x then

small increment in the value of x say dx then du and 0y are the corresponding increments in # and

y respectively.

As dx, du, oy are small increments in x, # and y respectively such that dx # 0, du # 0 and Sy # 0.

oy Oy Odu
have —=—x—.
We have ox Ou Oox

Taking the limit as 6x — 0 on both sides we get,

. SO0 .




lim(s—yj = lim(S—yJ X lim(s—u]
Sx—0 8x Sx—0 Su Sx—0 Sx

As dx — 0, we get, du — 0 (" u is a continuous function of x)

lim(a—yj = lim(s—yj X lim(s—uj ..... D
ax—0\ Ox du—0\ Jyy ax—0{ Ox

Since y is a differentiable function of # and u is a differentiable function of x.

we have,

. (oy) dy . (du) du

lim| — |=— lim| — |=—
Bgnm( Suj ™ and Bx_)o( ij e (I1)
From (I) and (II), we get

lim 7 = Qx@ ..... (I1I)
&0\ dx ) du dx

The R.H.S. of (IIT) exists and is finite, implies L.H.S.of (III) also exists and is finite

lim[S—yj = d_y Then equation (IIT) becomes,

ax—0{ Ox dx

dy _dy du

dx du dx
Note:

1. The derivative of a composite function can also be expressed as follows. y = f(u) is a differentiable
function of u and u = g (x) is a differentiable function of x such that the composite function

v =f[ g (x)] is defined then
Do rrgeng e
X

2. Ify=f(v)isadifferentiable function of v and v = g () is a differentiable function of # and u = / (x)

1s a differentiable function of x then
d_y B ﬂ y dv du

_x_

dx dv du  dx

3. Ifyis a differentiable function of u , u, is a differentiable function of u , fori=1,2,..,n—1 and u,
is a differentiable function of x, then

n

abc_du1 du, du, =~ du dx

n

dy _dy dw du, - du, du,

This rule is also known as Chain rule.

/
. O@O .
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1.1.3 Derivatives of some standard Composite Functions :

@ L
v dx v dx
L/ )]” n [f(a?;(")l f() cot [£()] — cosec? [ ()] /'(x)
NI \/x_ cosec [ f(x)] | —cosec [ f(x)] - cot [ /(x)] - f'(x)
2 J;(?) al® a’®. loga - f'(x)
1 g
/@) - [};(x—)]x et 0 S
sin [/ (0] cos [/ ()]-/'() log [ /(0] )
cos [/ ()] —sin [/ (0]-/'(0) kil
tan [ f(x)] sec’ [f ()] f'(x) log [/(] S'(x)
sec [f@)] | sec [f ()] tan [£ ()] -/'(x) el £ loga
Table 1.1.2
@) SOLVED EXAMPLES |
Ex. 1 :Differentiate the following w. r. . x.
(i) y=Nx+5 (i)  y=sin (logx) (iii)) y=e'n”
3
(iv) log(x°+4) (v)  SPcosxn2 (vi) y=
@2x* =7y
Solution : (i) y= \x*+5
Method 1 : Method 2 :
Let u = x> + 5 then y =+/u, where y is We have y= \ x*+5
a differentiable function of u# and u is a Differentiate w. r. £. x
differentiable function of x then
dy d (7 ¢
dy _dy du ) di dx ( e 5)
dx du dx ..
Now, y =7 [Treat x> + 5 as u in mind and use the formula
Diffe’rentiate w.r.t.u of derivative of \/_]
dy d R
a’y (\/_)— J_andu:x2+5 dx 2,/x +5 dx
. . a’y 1
S;ﬂerzntlate w.r.t.x o 5 \/x_+ (2x)
a = _x (x2 + 5) 2x ﬂ _ X
Now, equation (I) becomes, dx X' +5
dy 1 X
_= X 2 =
dx  24u : x> +5




(i) y =sin (log x)
Method 1 :

Let u = log xthen y = sin u, where y is
a differentiable function of u and u is a
differentiable function of x then

b _d du

dx du dx

Now, y =sinu
Differentiate w. r. t. u

d d .
—y=—(Slnu) =cosuand u =log x
du du

Differentiate w. r. 1. x

du d 1
—=—~(logx) =—

dx dx (log.x) X

Now, equation (I) becomes,
dy — cosix 1 _ cos(logx)
dx X X

Note : Hence onwards let's use Method 2.

(ii1) y = e "~

V)

Differentiate w. r. t. x

d_y — i[@ tanx]

dx dx

Y _ ™™ x i(tan x)

dx dx

D _ g oc? x = sec x- €™
dx

Lety — 53cosx72

Differentiate w. r. t. x

Q:i[sh:osxfz]

dx dx

dy 3cosx—2 i

5—5 longdx(3 cosx —2)
d

& 3sinx - 5372 - Jog 5

dx

Method 2 :
We have y = sin (log x)
Differentiate w. r. t. x

Y = i[sin (log x)]
dx dx

[Treat log x as « in mind and use the formula

of derivative of sin u]

dy d
— =cos(logx)x —(log x
iy (logx) dx( gx)

& = cos(logx)- 1
dx X

dy _ cos(logx)
dx X

(iv) Lety=log (x> +4)

Differentiate w. r. t. x

d d
d—i=a[10g o +4)]
Q: 51 xi(x5+4)
de x’+4 dx
dy 1 4 5x*
o T (5xY)=
dx x5+4<X) X’ +4
3
(vi) Lety =
x> =7y

Differentiate w. r. t. x

dy_df 3 | 34
dx dx| (2x*-7) dx

:3x%xi(2x2—7)
2x"=7)" dx

15
TR
& ___ 60x
dx  (2x°=7)°

1
_7)5

|



Ex. 2 : Differentiate the following w. r. . x.

(i) y=siny (ii)
(iv) y=(*+2x-3)*(x+cosx)?
Solution :

() y= \sinx’

Differentiate w. r. t. x

Q:i(\/sin)f)
dx dx
1 d . ;
=————x—(sinx’)
2+/sinx®  dx

1
- 2+/sin x*
1
2+/sin x°

dy _ 3x? cosx’

dx  2+/sinx’

(iii) y = log [cos (x°)]

d
x cosx” X — (x°
()

x cosx’ x (3x7)

Differentiate w. r. t. x

d d
= = log [eos ()
1 d s
- cos(xs)'E[COS(x )]
. 5 i 5
- m(_ sin(x*)) o (x°)

d
d_y =—tan (x°) (5x*) = — Sx*tan (x°)
x

(iv) y=(x* +2x - 3)*(x +cosx)?

Differentiate w. r. . x

% = i (x3 +2x—3)4 (x+cosx)3:|

dx

d
=(x3+2x—3)4~a (x +cosx)*+(x

y = cot? (x*) (iii)

(v)  y=(1+cos’x)*x\x++tanx

(ii) y =cot® (')
Differentiate w. r. t. x
dy d 2(.3
D _ 2 (cot?(x)
s (cot?(x?))
d 3 ?
=2 [eot
- [cot (x*)]
=2 cot (x*) 4 [cot (x*)]
dx
d
=2 cot (x*)[~ cosec? (x*)] — (x*)
dx
= — 2 cot (¥*)cosec? (x*)(3x?)
d
Y 6x? cot (x*)cosec? (x?)

d
+ cos x)ia (x* +2x - 3)*

X0

y = log [cos (x)]



d d
=(x*+2x-3)*"3 (x+cosx)2-d—(x+cosx) +(x +cos x) 3 4(x3+2x—3)3-5(x3+2x—3)
x

=P +2x-3)*3 (x+cosx)? (1 —sinx)+ (x+cosx)?® 4(x*+2x-3)(3x*+2)

d
d—y=3(x3+2x—3)4 (x+cos x)? (1 —sinx)+4 (3 +2) (¢ + 2x — 3)* (x + cos x)’
X

(v) y=(1+cos?x)*x \ x++/tan x

Differentiate w. r. . x

ﬂ = dili(lﬁ-cosz x)4 xvx+\/tanx}
X

dx
= (14 cos’ x)4di(\/x+\/tanx)+(\/x+\/tanx)di(l+cos2 x)*
x X

=(+cos’x)* -;-i(x+\/tanx)+(\/x+\/tanx)-4(l+cos2 x)3i[1+(cosx)2]
24x++Jtanx dx dx

=(1+cos’x)*- ! (1+ ! -i(tanx)j+(\/x+\/tanx)-4(l+cos2 x)*(2cos x)
2\/x+\/tanx 2Jtanx dx

d
—(cos
(005 %)

2
=(1+cos*x)*- ! (1+ See X J+(\/x+\/tanx)-4(l+coszx)S(ZCosx)(—sinx)
2\ x++/tan x 24/tan x

/ 2
= (1+ cos® x)* - Y ! (2 tazn\/x+sec xj—(\/x+\/tanx)-4(1+coszx)3(25inxcosx)
2/ x ++/tan x tan x

2 4 2
dy _ (1+cos” x)"(2vtanx +sec” x) ~ 4sin2x(1 + cos’ x)3m
dx 4+/tan x~/x +~/tan x

Ex. 3 : Differentiate the following w. r. t. x.

. . —4)

i =log, (log. x i =log| & (

(i)  y=log, (log,x) (i) y=loge™ T —
x+Vx’+a’

(111) (1v) y=logl ———
v x2 +a2 —X

(V) y :(4)10g2 (sinx) + (9)10g3(cosx) (Vl) y _ aaloga(colx)




Solution :

(i) » =log, (log,x)
= log, logx | _ log, (log x) — log, (log 5)
log5

log(log x)
= log3 log, (log 5)
Differentiate w. r. t. x
dy d | log(log x)
dx  dx log3

—log,(log 5)}

:Li[log(logx)]—dinogxlog )]
X

log3 dx
1 1 d .
- 10g3 logx Z(k’g") 0 [Note that log,(log 5) is constant]
1 1 1
= X X —
log3 logx x
y__ 1
dx xlogxlog3
2 2
. . Bx—4)° & - (3x—4)°
(11) yZIOg 83 '3— :log —_—
V2x+5 (2x+5)

= log[e” -(3x - 4)§} - log[(2x + 5);}

=loge™ +log(3x —4)® —log(2x +5)°

y=3x+§log(3x—4)—%log(2x+5) [ loge=1]

Differentiate w. r. t. x
dy d

dx  dx

{3x + % log(3x—4)—— log(2x + 5)}

d 2 d 1 d
= 3£(x) +§-£[log(3x—4)] —E'E[log(2x+ 9]

1 1 1

=3(1)+ Em_( )—g-ﬁ-d—(2x+5)
1 1
0+ 5 O35
dy_,. 2 2

+ j—
dx 3x—4 3(2x+)5)

. .




(i) y=log

: x+vx*+a’
(iv) y=log

)
1—cos| —
o \2)
1+cos(3x
2

\/x2+a2 —X

log

J

y =log

x2+a2+xxx/x2+a2+x
xX*+a’—x Ax*+a’+x
Wx*+a® +x)
L x2+a2—x2
Wx*+a® +x

2
a

] =log

=log

.

= log(\/x2 +a’ +x)2 —log(a®)
y= 210g(\/x2 +a’ +x)—log(a2)

Differentiate w. r. t. x

=log

:



Q d |:2log(\/x2 +a’ +x)—10g(azi|

dx dx

2; I:log(m+x):|—%[log(a2)]

:2><— —\/x +a +)£|
VX' +a® +x dx

= 2 : 1 ~i(x2+a2)+l}

VxP+a® +x | 2Vx* +4d° dx

I S P S
NxP+at +x | 2Vxt +d’
B 2 . x+Vx*+a’
Vxl+a® +x | Jx'+ad’
dy 2

d e ia?

(V) y _ (4)]0g2 (sinx) + (9)10g3 (cosx) (Vl) y _ aaloga (cotx)
_ (22)logz(SM) n (32) logs (cosx) y=a cot x [ qlogal/® =f(x)]
:(2)210g2 (sinx) +(3)210g3(c05x) Differentiate w. r. t. x
log, (sin? x) log; (cos” x) log , /' (x) Q = i((l cotx)

:(2) € +(3) & [ aa/® = f(x)] dx  dx

= sin’x + cos’x =a*loga - i(cot X)
y — 1 dx

— cotx _ 2

Differentiate w. r. t. x =a**log a (= cosec’ x)
d_4d 2L m=0 Y cosec x a “xlog a
dx  dx dx

Ex. 4 : Iff(x)=V7g2(x)—-3,g(B)=4and g' (3) =35, find /' (3).
Solution : Given that : £(x) = \ 7g (x) — 3

Differentiate w. r. t. x

f(x)——(1/7g(x) ) 2W_[ g(x)—3]

C o 18'(X)
S e
For x =3, we get
e 72'G) 35
SO, Fed3 26

. .

% [Since g (3) =4 and g' (3) = 5]




Ex. S

Solution :

Ex. 6

Hint basket :

Solution :

If F(x)=G {3G[5G(x)]}, G(0)=0 and G’ (0) = 3, find F' (0).
Given that : F (x) = G {3G [5G(x)]}

Differentiate w. r. . x

F ()= -G (3G [5G0}

G (3G 156N} 3 [6 15G]

G' 3G [5G}/ [5G0 5 (G0
X

F'(x)=15-G' {3G [5G(x)]} G' [5G(x)] G (x)
For x =0, we get

F'(0)=15-G' {3G [5G(0)]} G' [5G(0)] G’ (0)
= 15-G'[3G (0)]G' (0):(3) [ G(0) =0 and G’ (0) = 3]
= 15-G"(0)(3)(3) = 15-(3)(3)(3) = 405

Select the appropriate hint from the hint basket and fill in the blank spaces in the following
paragraph. [Activity]

The derivative of g [ f (x)] w. . t. x in terms of fand g is

d
Therefore % lelren]=_________ and {E [g[f(x)]]} -

T
x=—
3

cos (log x)

{1 g0 ¢ ), 1L g Lf @1 (), cotx, V3,

X

sin (log x), log (sin x), cos x, i}
X

sin (log x), log (sin x), cos x, i,f’ [g(x)]"g’ (x), M, Lg'[f(x)]f'(x), cotx, \/3
X X

(1) Different

i

|
{EXERCISE 1.1 )
iate w. r. t. Xx.
5
5 .. 3 4 2 3
—2x—1) (i) (M 3y _5)2 (v)

sy(22% - 7x-5)

(i) V¥rdr—7 (V) el (vi) (ng—__ ! j

3x-5

/,
she .
AN



(2) Differentiate the following w.r.t. x

€)

cos (x> + a?)

o)

cot’[log (x*)]
cosec (~/cos x)

2 2
e3sm x—2cos“x

(@)

(iii)
v)

(vii)
(ix)
(x1)
(xiii) elos [(ogx? - log?]

(xv) log[sec (exz)]

tan [cos (sin x)]

(xvii) [ log [log(log x)]]2

(xviii) sin*x? — cos”x?

Differentiate the following w.r.t. x

(2 +4x+ 1)+ (- 5x-2)"

(1)

(i) (1+4x)°(3+x—

.. X
(111) ﬁ

(v) (1 +sinx)’ (1 + cos’x)’
(vi) +Jcos x +\cos \x

(vii) log (sec 3x+ tan 3x) (viii)

(1x) cot( lozng - log(
(X) er _e—2x
er + e—2x

(xii) log [tan®xsin® x-(x+7)]

/1—cos3x
1+cos3x

(xiii) log

(XiV) log

cotx

(i) Ve +5
(iv) W tan\/;

(vi) gsin®x+3

(viii) log [cos (x*~ 5)]
(x) cos? [log (+7)]
(xii) sec[tan (x*+ 4)]

(xiv)sin \sin \x

(xvi)log . (log x)

4)

x2)*
' —s)
<x3 + 3)3

(iv)

1+sinx’

1—sinx’

)

Jx
Loet+1
(x1)
e*/;—l

(5)

(6)

(7)

(xv) log

(xvi) log

(xvii) log

(xviii) log 2“—3
(x - 3) log x
(XiX) y — (25)10g5 (secx) (16)10g4 (tan x)

(xx) M
x* =5

A table of values of f, g, /"and g'is given

x | S| g | Sx) | gk)
2 1 6 -3 4
4 3 4 5 -6
6 5 2 4 7
() Ifr(x) =/[g0)] find ' (2).
(i) IfR(x)=g[3+f(x)] find R’ (4).

(1) Ifs(x)=f[9 —f(x)] find s’ (4).
(iv) IfS(x)=g][ g(x)]find S’ (6).
Assume that /' (3)=—1,g'(2)=5,2(2)=3
and y = f[g(x)] then [d_y} =?
dx

x=2

Ifh(x)=4f(x)+3g(x),f(1)=4,g(1)=3,

f'(H)=3,¢g"(1)=4find 2" (1).

Find the x co-ordinates of all the points on

the curve y =sin 2x — 2 sinx, 0 < x < 2rn

where @ =0.
dx

SOL




(8) Select the appropriate hint from the hint basket and fill up the blank spaces in the following
paragraph. [Activity]

"Let f(x) =x>+ 5 and g (x) = e* + 3 then Therefore di [ f[g(x)]] = and
X
= d d

Sle@l=________ an P{ﬂgm@ = :
gl/®l=__ : Tflxd vative ot g [ (] w.r. . in terms of

o e derivative of g [ f(x)] w. r. £. x in terms o
Nowf't)=________ and fandgis__
g=________ d
The derivative of f[g (x)] w. r. . x in terms Therefore a [g L (x)]] T

ffand g1 .
offandgis ________ and Lli [g[f(x)]]} = _ M
X x=—1

Hint basket : {f’ [2(x)] g’ (x), 2¢* + 6¢%, 8, g' [ f ()] ' (x), 2xe* "5, — 2€°, e+ 6e*+ 14, e 5+ 3, 2x, e"}

1.2.1 Geometrical meaning of Derivative :

Consider a point P on the curve f (x). At x = a, the Y

»
>

coordinates of P are (a, f(a)). Let Q be another point on the
curve, a little to the right of P i.e. to the right of x = a, with

a value increased by a small real number /4. Therefore the
coordinates of Q are ((a + /), f(a + h)). Now we can calculate

the slope of the secant line PQ i.e. slope of the secant line P (af (@)

connecting the points P (a, f(a)) and Q ((a + &), f(a + h)), by
using formula for slope.
Sfla+h)—f(a) 5 " -
a- a+h
a+h—a v
fla+h)-f(a) Fig. 1.2.1

h
Suppose we make / smaller and smaller then a + 4 will approach a as 4 gets closer to zero, Q will

 Q(a+h,f(ath)

A

Slope of secant PQ =

approach P, that is as & — 0, the secant coverges to the tangent at P.

g_r}}, (Slope of secant PQ) = lim {f(a + hz _f(a)} — ' (a)
So we get, Slope of tangentatP=7"(a) ... [ If limit exists]

Thus the derivative of a function y = f'(x) at any point P (x,, y,) is the slope of the tangent at that
point on the curve. If we consider the point @ — 4 to the left of @, # > 0, then with R = ((a — &), f (a — h))

we will find the slope of PR which will also converge to the slope of tangent at P.

For Example : If y = x? + 3x + 2 then slope of the tangent at (2,3) is given by

dx dx

/
. O@O .
AN

d d
Slope m = {_y} = [— (x* +3x+ 2)} =(2x+3),,=2(2)+3) m="17
(2,3) (2,3)




1.2.2 Derivatives of Inverse Functions :

We know that if y = f (x) is a one-one and onto function then x = f ! (y) exists. If /7! (y) is
differentiable then we can find its derivative. In this section let us discuss the derivatives of some inverse

functions and the derivatives of inverse trigonometric functions.

x+2
Example 1 : Consider f(x) = 2x — 2 then its inverse is /! (x) = — Let g(x) =/ (%).

d d 1
If we find the derivatives of these functions we see that o [ f(x)]=2and o [g ()] = >
X X

These derivatives are reciprocals of one another.

Example 2 : Consider y=f(x)=x*.Letg=f"".

L g()=x=Ay
1
g'(y)=ﬁalsof’(x)=2x
4a _ S 2x _.. 9 _4
Now [ (f0)] =3 s =7 = tand g [F ] = 2. o le ()] = 0=
At a point (x, x*) on the curve,f’(x)=2xandg’(y)=ﬁ_=2i:f% %
y  2x X

1.2.3 Theorem : Supposey=f(x)isadifferentiable function ofx on an interval /and y is One-one, onto and

Y o 0on 1 Alsoif f'()is differentiable on /(7 ) then [ £ ! 1 here 2 40
a’x# on /. Also if f7!( y)is differentiable on f(/ ) then 0 [f (y)]—m or dy—?w ere dxi :
Proof : Given that y = f(x) and x = f ! (y) are differentiable functions.

Let there be a small increment in the value of x say ox then correspondingly there will be an

increment in the value of y say dy. As ox and dy are increments, ox # 0 and dy # 0.

ox Oy

We have, —x—=1
oy  Oox
ox 1 )
—:S—,Where—y;tO
oy ox

Taking the limit as 6x — 0, we get,

as ox — 0,0y — 0,

gin%@—xJ _ ﬁ ..... M
-0 &y ) lim( &

dx—0\ &x

Since y = f (x) is a differentiable function of x.

. .




we have, lim(g—yj = & and d_y 0 ... (I1)

a0\ ox ) dx dx
From (I) and (II), we get
. [ij (110)
lim| — |=—-
dy—0 6y e
d L (Ox)  d
As Y 0, S exists and is finite. .. %1m0 (—) = & exists and is finite.
dx 2 7E\8y ) dy
d d
Hence, from (III) oo diwhere D20
dy dx

An alternative proof using derivatives of composite functions rule.
We know that /' [ f(x)] = x [Identity function]
Taking derivative on bothe sides we get,
d 1 d
—lrrel=—o
. / d
ie. (/) /@I [/ ()] =1
ie. (/) /@1 @)=1
, 1
= ... @
() /')
So, if y = f(x) is a differentiable function of x and x = /' () exists and is differentiable then
' ' dx d
U @=() () =""andf (="
dy dx
(I) becomes

§=dl—ywhered—y¢0
dy % dx

@) SOLVED EXAMPLES |

Ex.1: Find the derivative of the function y = f (x) using the derivative of the inverse function

x= f7'(y) in the following

(i) y=ix+4 (i1) y:1/1+\/; (i) y=Inx
Solution :
(i) y=Ux+4

We first find the inverse of the function y = f'(x), i.e. x in term of y.

Vv=xt+t4 x=y"—4. . x=f"(y=)—-4
dy 1 1 1

de 5 A -4) W

- for x # —4
3x+4) 3Y(x+4) o




(i) y=+1+x

We first find the inverse of the function y = f'(x), i.e. x in term of y.
Y=l+yxieJx=y—1,x=f" ()= -1
dy L _ 1 B 1
a5 Gl -] 207 -DEe -
1 1

207 -h@n 4\/1+\/§[(\/1+\/§)2 —1}

) 1 o
IV TN TN I N

(ii1) y=log x
We first find the inverse of the function y = f'(x), i.e. x in term of y.

y=logx ..x=f"1(y)=¢e"
d 1 1 1 1 1

T dx T d Inx
ax a0y y X
dx dvdy (e) ¢ ¢

Ex.2: Find the derivative of the inverse of | Ex.3: Letfand g be the inverse functions of
function y = 2x* — 6x and calculate its each other. The following table lists a
value at x = —2. few values of f, g and 1’

Solution :  Given : y=2x>— 6x X fx) | gx) | f'x)

Diff. w. 2 1. x we get, 1
d —4 2 1 -
& e 6=6(—1) 3
dx
e 1 1 —4 -2 4
we hav =
’ ZJ find g’ (—4).
dx 1 Solution : In order to find g' (—4), we should first
E 6 (2—1) find an expression for g’ (x) for any input
atx=—2, x. Since f'and g are inverses we can use
we get, y = 2(-2)* — 6(-2) the following identify which holds for
——16+12=—4 any two diffetentiable inverse functions.
1
dx 1 g (x)=— ... [check, how?]
dy | . [# S gl
y=-4 H2 .. [Hint : f[g(x)] = x]
-1 1
- 6((—2)2—1 g’(—4) = P
(2-1) FTe ]
L 1o
18 T N A4
sy 4

. .



Ex.4: Letf(x)=x+2x—3. Find (/) (-3).
Solution :  Given : f(x) =x>+2x —3

Diff. w. . t. x we get,

f'(x)=5x*+2
Note that y = —3 corresponds to x= 0.
(/)3 =
1(0)
I
T50)+2 2

1.2.4 Derivatives of Standard Inverse trigononmetric Functions :

We observe that inverse trigonometric functions are multi-valued functions and because of this,
their derivatives depend on which branch of the function we are dealing with. We are not restricted to
use these branches all the time. While solving the problems it is customary to select the branch of the
inverse trigonometric function which is applicable to the kind of problem we are solving. We have to

pay more attention towards the domain and range.

. T T dy 1
. Ify=sin'x,—1<x<1,——<y<— then prove that — = , x| < 1.
2 2 dx 1 —x?
. . T T
Proof : G1venthaty=sm*1x,—1SxSl,—ESySE
X=siny (D
Differentiate w. 7. ¢. y
de d .
—x:—(smy)
dy dy
d. ;
d—x:cosy:i‘\lcoszy:i\/1—s1n2y
'y
d. :
I e [osiny =x]
dy
T T
But cos y is positive since y lies in 1* or 4™ quadrant as—ES ySE
d.
_x: 1—x2
dy
Wehave—y=%
dx o
Ly
d 1
2 <1
dx N1 —x? J
1
2. Ify=cos’1x,—1§x§1,0§y§nthenprovethat—y=— S
dx V1 — X2

[As home work for students to prove.]

/
. O@O .
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. dy 1
3. Ify=cot'x,xeR,0<y<mthen—=- .
dx 1 +x2
Proof : Giventhaty=cot'x,x e R,0<y<m
x=coty (D)

Differentiate w. 7. ¢. y

de d

—=—(coty)

dy dy

dx

—=—cosec’y=—(1+cot’y)

dy

d

d—x——(1+x2) oo [ coty=x]
d

Wehave:—y:dL
dx d—;

dy 1 dy 1

dc —(1+x%) dx 1+ x2

B T T dy
Ify=tanlx,xeR,—E<y<—then—

4.
dx

1 +x?

. [left as home work for students to prove.]

T dy 1
5. Ify=sec'x,suchthat|x|>1and0<y<m,y#—then —= if x>1
4 d 4 4 2 dx  x\Vx*—1
d 1
Yo if x<-1
dx x\x*—1
T
Proof: Giventhaty=sec'x, |[x|>1land0<y<m, y# 5 AY
xX=secy (D T
Differentiate w. . t. y \J
dc d, | et T e
@ —(sec y) I
dy dy ?
dx X'« : . > X
——=secytany -0 !
dy
dx _I]
- =+secy \tan’y 2
)y vY'
:isecy-\/m y=sec!x
d. Fig. 1.2.2
N e [ secy=x] i
dy
We use the sign + because for y in 1st and 2nd quadrant. sec y - tan y > 0.
Hence we choose x Vx>~ 1 ifx>1and —xVx>—1ifx<—1
In 1* quadrant both sec y and tan y are positive.
In 2" quadrant both sec y and tan y are negative.
sec y - tan y is positive in both first and second quadrant.
o o




Also, forx>0,xx>*—1>0
and forx<0,—x\x*—1>0

d .
d—xzx\/xz—l, whenx >0, [x[>1 ie.x>1
Y

=—xVx*—1, whenx <0, x[>1 iex<-1
d 1
Y= ifx> 1
dx  x\Nx*—1
d 1
dx xVx*—1

Note 1 : A function is increasing if its derivative is positive and is decreasing if its derivative is

negative.

Note 2 : The derivative of sec™! x is always positive because the graph of sec™ x is always increasing.

T T dy 1 )
6. Ify=-—cosecx,suchthat|x|>1and——<y<— y#0then —=——— if x>1
2 2 dx x\Vx—1
d 1
& if x<-1
dx  x\x*—1

[ Left as home work for students to prove ]

Note 3 : The derivative of cosec™! x is always negative because the graph of cosec ! x is always

decreasing.

1.2.5 Derivatives of Standard Inverse trigonometric Functions :

dy dy
y I Conditions y I Conditions
1 -1<x<1
in ! 1 x| > 1
R P A . L st | P
27 2 sec 'x |xVvx*—1 0<y<nm
1 n
1 -1<x<1 — forx <— 1 +—
-1 -, x| <1 -7 T— y
COS X \/lsz || OSySTC x\/ﬁ 2
1 xeR
tan ' x - x| >1
1+x — << = for x> 1
5 3 cosec x| xVx?—1 —ggygg
_ ! x€R forx<-1
cot 'x 1+ 2 0<y<m =l y#0
Table 1.2.1

= &



1.2.6 Derivatives of Standard Inverse trigonometric Composite Functions :

y o Y e
In dx
f'(x) S ()
- — L fI<1 t [ ()] R —
sin /) | ot 1+ [/ @]
: /)
') . , for [ f(x)[ > 1
-1 — ., |f)[<1 sec ! [/ ()] 2
cos ' [ f(%)] N SENLf)] -1
; ')
1) L - , for | f(x)] > 1
@] L+ [/ @F o U@ o or

Table 1.2.2

Some Important Formulae for Inverse Trigonometric Functions :

(1) sin”! (sin ©) = 0, sin(sin”! x) =x

(2) cos! (cos 0) =0, cos(cos!' x) =x

(3) tan! (tan 6) = O, tan(tan ' x) = x

(4) cot! (cot ) =0, cot(cot ' x) =x

(5) sec™! (sec 0) =0, sec(sec”! x) =x

(6) cosec™! (cosec 0) = 0, cosec(cosec™! x) =x

| — ain1| o E_ :E_ -1 (i _ -1 E_ :E_
(7) sin”" (cos 0) = sin {sm (2 6) } 5 0 (8) cos™ (sin 0) = cos {cos (2 6) } 5 0
(9) tan"! (cot 0) =tan! {tan (E - ] }: T 0 (10) cot™! (tan 6) = cot™ [cot (E - 9) }: T 0
2 2 2 2
(11) sec™! (cosec 0) = sec™! [sec (E - 6) }z T 0
2 2
(12) cosec™! (sec 0) = cosec™! {cosec (g - Oj }: g -0

(13) sin™! (x) = cosec™! (lj
X

1

(14) cosec™! (x) =sin™! (
X

)

(15) cos™! (x) = sec™! (lj
X

)

(16) sec! (x) =cos™! (

1

X

x
1

)

(17) tan™! (x) = cot™! (

(18) cot™! (x) =tan! (—)
X

(19) sin”! x + cos' x = (20) tan"' x + co

T
2

Xty

(22) tan' x + tan"! y = tan™! (

)

1 —xy

T T
tlx=— (21)sec'x +cosec ' x=—
2 2
y—
(23)tan' x —tan' y = tan™! ( Y j
1 +xy

In above tables, x is a real variable with restrictions.

4

Table 1.2.3




Some Important Substitutions :

Expression Substitutions Expression Substitutions
=5 x =sin 0 or x = cos 0 lixz Y=tan O
X
1 —x x=tan 0 orx =cot 0 2
x = sec 0 or x = cosec 0 1+ 2 x=tan0
a+x 3x—4x*or 1 — 2x? x=sin 0
x=acos20orx=acos0 3 >
75 4x°—3xor 2x°— 1 x=cos 0
1+x 3x —x°
/ \/1 x =cos 20 or x = cos 0 1= 3.2 x=tan 0
+x
— — 26 Tper |
2=acos20orx*=acos 0 e X) = tan
J J e | e L+[f@F 1+
Table 1.2.4

@) SOLVED EXAMPLES )

. . . T
Ex. 1: Using derivative prove that sin"' x + cos ' x = —

Solution :  Let f(x)=sin"x+cos'x ..... )
T
We have to prove that f (x) = 5

Differentiate (I) w. . t. x

di;c[f(x)] = di;[sin1 x + cos ! x]
1

1
'(x) = - =0
N N

f'(x) =0 = f(x) is a constant function.

Let f(x)=c. For any value of x, f'(x) must be ¢ only. So conveniently we can choose x =0,
from (I) we get,

F(0)=sin! (0)+cos! (0)=0+ =" ==L fo==
2 2 2 2
Hence, sin”! x + cos™! x = 5
Ex. 2 : Differentiate the following w. 7. ¢. x.

(i) sin' () (il) cos™ (2¥>— ) (iii) sin (29

(iv) cot™ (izj (v) cos™ ( ! ;—xj (vi) sin?(sin™' (x?))
x \
Sve
L L 4
N




Solution :
(i) Lety=sin!(x%)
Differentiate w. r. t. x.

dy d,. .
— =_—(sin'(x
dx dx( ( ))
1 d
= (x3)
1[1 _ (x3)2 dx
1
= (3x?)
1 —x°
dy 3x?
dx 1 —x°

(ii1) Let y =sin™'(2%)
Differentiate w. r. t. x.

dy d,. |
— = (s (2"
dx dx( ( ))
: ‘ (29
N1-y
1
= (2*log 2)
1 —2%
dy 2'log2
dx N1 -4

1
(iv) Lety =cot™ (?j =tan"' (x?)

Differentiate w. r. . x.

dy d
— = (tan' (x?
. dx( (%))
1 d
- )

1+(x2)2 dx
dy 2x
dv 1 +x*

(vi) Let y = sin?(sin™' (x?))

= [sin (sin™! (xz)]2 = (xz)2

y=x*
Differentiate w. r. . x.
d
d_y = i (x*) Y _ 4x3
dx  dx dx
L

(i) Lety=cos'(2x*—x)
Hence cos y =2x*—x .

Differentiate w. r. t. x.
dy

- siny~£:4x— 1
1 —4x

V1 —cos?y

= = ... from (I)
dx  A1-x22x—1)

dy 1 —4x

dx sin y

Alternate Method :
Ify =cos™' (2x*— x)
Differentiate w. r. t. x.
dy d .
— =—(cos ' (2x*—x)
dx dx( ( )
-1 d

=\/1—(2xz—x)2 dx
-1

“(4x—1)

(2x*—x)

V1 -x2(2x—1)
A N1-2(2x- 1)

1+
(v) Lety=cos™ [ 5 x]

Differentiate w. r. . x.

@ :i 00571 1 +x
dx  dx 2

d
2 dx

N V)

1 1 d(lﬂj
= — X X —
1+x 1+x dx 2
Ji-55 25

2

o \2 1 1
T V. aiex 2
dy 1
dx 21—




Ex. 3 : Differentiate the following w. 7. ¢ x.

1 —
(i) cos'(4cos’x—3cosx) (i) cos'[sin (49)] (iif) sin™" %
1 —cos 3
(iv) tan™! & (v) cot’! ( COS.X j
Solution : sin 3x I+ sinx

(i) Lety=cos'(4 cos®x— 3 cosx)
= cos ! (cos 3x)
y=3x
Differentiate w. r. ¢. x.

dy d
(3
dx dx( x)

(ii1) Let y =sin™

==

2
P
\ 2
sn(5 ]

' 3

Differentiate w. r. t. x.

=sin’!

=sin™!

X

dy d (xj dy 1
dx  dx \2 dx 2
1+ si
(v) Lety=cot! ( cos‘x J —tan ! | %
1 +sinx COS X

[cos (%) +sin(3)]’

(i) Lety=cos™ [sin (4]

a2

T 4
7
Differentiate w. r. . x.

d
d :1(1—4)6) —0—4log 4
dx  dx\2
dy
— =—4log4
dx 8
1 —
(iv) Lety =tan™' (ﬂj
sin 3x
2 sin?(%)
=tan’!
2 sin (38) cos (3)
3x
=tan’! [tan (—ﬂ
2
B 3x
775

Differentiate w. r. t. x.

dy d (ij
2

dx  dx

[eos (3) + sin(%)]zj (
= tan

cos*(3) — sin’(3)

tan™! (

cos(3) +sin(3) 1 +tan (%)

=tan’! : =tan’!| —— =~
cos(3) —sin(3) 1 —tan (%)

T X T X

=tan! | tan (—+—j Ly=—4+—
{ 42 42

[cos (3) = sin(3)] [cos(3) + sin(3)]

|

X
J....Divide Numerator & Denominator by cos (5)

Differentiate w. r. t. x.

dy d

dx B dx

0+

5+3)

4




Ex. 4 : Differentiate the following w. 7. . x.

) ] 2cosx+3sinx B
(i) sin! (i1) cos™!

V13

Solution :

(i) Lety=sin"! (

V13

2 3
=sin’! (— coS X + —— cos xj
V13 13

2cosx+3 sinxj

2 3
Put —=sino, — =cos o
V13 V13
) 4 9
Also, s1nza+cos2a:—+§:1

2 2
Andtano=— .. a =tan™! (_J
3 3

y = sin"! (sina cos x+ cos a sin x)
y = sin"! (sinx cos oL+ cosx sin o)

y= sin! [sin(x+ o]

2
y= x+tan! [—j
3

Differentiate w. r. . x.

acosx—bsinx

(ii1) Let y =sin™ (

a .
Put ———=sina, ———=cos a

1’a2+b2 «\’a2+b2

a? b?

(i) Lety=cos™! (

COS X —

j =sin’! [—a
a2 + b2 1’a2 + b2

Also, sin® o0 + cos® o =

y= sin"! (sina cos x— cosa sin x)

But sin (o0 — x) = sin at.cos x — cos a sin x

y= sin"! [sin (o — x)]

y= tan’! (%j —X

Differentiate w. r. t. x.

d_y :i tanl(ij—x =O_1
dx  dx b

+
a2+b2 a2+b2

4

3 sin x? + 4 cos x? o acosx—bsinx
(iii) sin!

5

Na* + b?

3 sin x>+ 4 cos xzj
5

3 4
=cos™! (g sin x> + 5 cos xzj

4
Put — =sin o, — =cos a
5 5
. 16
Also, sin> o + cos? oo = —+—=1
25 25

3 3
Andtanoo=— .. oo =tan™' (_)
4 4

y= cos! (sina sin x*+ cos a. cos x?)
y= cos ' (cosx? cos o+ sinx? sin o)

y= cos ! [cos(x*— a)]

3
= x*—tan!'| —
g (4]

Differentiate w. r. . x.

3
@ =i xz—tanl(—j =2x—0
dx  dx 4

ﬂ =2x
dx

b :
———sinx
Na? + b? )

a a
=] Andtana=— .. o =tan’! (—j
b b




Ex.5: Differentiate the following w. r. . x.

(i) sin‘l[ > J
1 +x?

(iv) tan™ ( 2¢ j
1-e*

e | BTx
(vii)tan (/3+xj

Solution :

(i) Let y=sin1( 2 j

1+x2
Put x=tan0 .. O =tan'x
. [ 2tan®
y=sin'| ——
1 +tan’0
y = sin!(sin 20) =260

y= 2tan'x

Differentiate w. r. t. x.

d

9 21 (tan"'x)
dx dx

d 2

dx 1+x°

1
iii) Lety = cosec™
(i) 4 (3x - 4x3J

y =sin"' (3x — 4x%)

Put x=sin0 .. O =sin'x
y=sin""(3 sin O — 4 sin’ 0)
y =sin"! (sin 30) = 30
y=3sin'x

Differentiate w. r. t. x.

1

3x — 453
2x — 2*x

vi) cos™!

obeost (222
2x+1

ix) sin™!

s [ 2]

(i) Lety=cos™! (2x \/1——x2)
Put x=sin06 .. 6 =sin"'x
y=cos™' (2 sin 0 \/m)
y=cos ' (2sin @ \/M)

(ii) cos'(2x V1—x?)

1 —9x?
(v) cos™! "
1+ 9x?

51— 2 — 12xj
13

(iii) cosec™ [

(viii) sin”! (

y=cos (2 sin 0 cos0) = cos™!(sin 20)

y=cos’! {cos (E - ZGH T 20
2 2

AP
=——2sin'x
)

Differentiate w. r. t. x.

dy d(m .
= =—(——2sm 1xJ
dx  dx\2

d 2x1
D_o-
dx V1 —x?
dy o 2
dx 1—x2
2 X
(iv) Let y=tan1( c j
_eZ,r

Put e'=tan 0 .. 0 =tan"' (¢)
[ 2tan®
y=tan'| —
1 +tan’0
y = tan!(tan 20) =20

y= 2tan' (¢
Differentiate w. r. t. x.

dy d . dy d »

= =3 — =2 |tan' (e

0 3dx (sin”'x) e dx[ ( )]

dy 3 dy 2 d (&)= 2¢e"

dx V1 — x2 de 1+ (e")2 dx 1—e*
4
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1 —9x?
(V) Lety=cos‘[ * j

1 +9x?
b= cos™ (ﬂj
1+ (3x)

Put 3x =tan 0 .. 0 = tan"' (3x)
| 1 —tan’0
y=cos!|—— —
1 +tan’0
y= cos '(cos 20) =20
y= 2tan'(3x)

Differentiate w. r. t. x.

dy d

— =2 |tan'(Bx

- =2 [tan" (3]
2

d_y :—zi(?yx)

dx 1+03x) dx

d_y B 6

dx 1+ 9%

3—x
vii) Let y = tan™'
(vii) Let y ( /3 HJ

1
Putx=3cos20 .. 0= ) cos™ (
— _ 112
e ta| 37300520 J3(1 cos20) | _ | [2sin*0
3+3cos26 3(1 + cos 20) 2 cos?0

y= tan’! (\/tan2 8) = tan! (tan 0)

0= eos”(5)
=0=—cos!'| —
Y 2 3

Differentiate w. r. . x.

dv 1 d _l(xj
— =—-—|cos'| —
dx 2 dx{ :|

1 1
= — — X 2)(_
2 oo 3
3
dy 1
dx 2V9 — x?

2x + 2*x

L [2 @2 =27 ... [Multiply &
= COS S EE—
Y (2 127 Devide by 27]

2 -1 - @)
y=cos! =cos ' |———
2%+ 1 1+ (2
Put2*=tan 0 .. 6 =tan'(2%)
| 1—tan’6
y=cos'|——— —
1 +tan’0
y= cos '[cos (m—20)]=n—20
y=n—2tan' (2

Differentiate w. r. t. x.

2x — 2*x
(vi) Lety=cos™ ( j

} = cos [~ cos 20]

dy d

—~ = |x—2tan ' (¥

dx dx[ ( )]

d 2 d 2-2%log 2
B _go_ 2 d g 22IE2
dx 1+ (29 dx 1 +2%
dy 27log 2

de  1+2%




(viii) Let y = sin”! L

5\1— - 12xj
13

Putx=sin0 .. O =sin"'x
e Sin_l[th— sin?0— 12 sinej _ Sin_l(S\/coszﬁ—IZ sinej _ Sin_l[s cos0—12 sine)

13 13 13

5 12
y=sin'| —cosO——sin O
13 13

. 12
Put—=smmoa, — =cosa
13

) 25 144
Also, sin> o +cos?’ oo = —+ —=1
169 169
5 5
Andtanoo=— .. ao=tan!| —
12 12

y= sin"! (sina cos 06— cosa sin ) = sin”! [sin (a0 — 0)] = (a0 — 0)
y= tan’! (iJ —sin'x
12

Differentiate w. r. . x.

5 1
d_y = i tan™! (—J —sin'x|=0-—
dx  dx 12 1—x2

. . 2x+1 . 22x
(ix) Lety =sin! =sin”' | ——
1+4~ 1+(29

y= sin’! [Ln?@} = sin"'(sin 20) =20 = 2 tan"' (2Y)
I + tan

Differentiate w. 7. t. x.
dy
dx
dy 27 1og 2
dx 1+ 4

2 Loy 2 (2v10g2)

o e 2
dx 1+(2% dx 1 +2*

Ex. 6 : Differentiate the following w. 7. ¢. x.

4x Tx
i) tan™ i1) tan™!
0 [1+21x2j (i1 (1—12x2j
(iif) cot ! bsinx—acosx (iv) tan"" Sx+1
v -
asinx+ b cosx 3 —x— 6x?

/
. O@O .
AN



Solution :

4x Tx
i) Lety=tan’! i) Lety=tan™!
0 Y (1+21x2) (i) Y (1—12x2j
- Tx — 3x - 3x +4x
=tan’!| ——— =tan’!| ——
[1 +(7x) (3x)J (1 —(3x) (4x)j
y=tan!'(7x) — tan"! (3x) y=tan ' (3x) + tan"! (4x)
Differentiate w. r. t. x. Differentiate w. r. t. x.
& _4d [tan™! (7x) — tan™' (3x)] & _d [tan™! (3x) + tan™! (4x)]
dx  dx dx  dx
_ 4 [tan™! (7x)] — 4 [tan! (3x)] _ 4 [tan”! (3x)] + 4 [tan™! (4x)]
dx dx X dx
1 1 1 1
:—2'1(7)6)——2'1(3)6) =—2'i(3x)+—2~i(4x)
1+(7x)" dx 1+@Bx) dx 1+@Bx) dx 1+ (4x)" dx
dy 7 3 ody 3 4
de  1+49x 1+9x2 Coodx 1492 1+ 162

( bsinx—acosx ~(asinx+bcosx - b Teotx
(iii) Let y = cot™ : = tan! : =tan'| ————
asinx + b cos x b sin x — a cos x 1 — (%) (cotx)

=tan’! ij + tan! (cot x) = tan™! [i) + tan™!| tan [E — xj
b b 2

y=tan"! a} + = -Xx
b 2

Differentiate w. r. . x.

dy d[ —1[") T }
— =—tan" | —| +t——Xx
dx  dx b 2

=0+0-1
d
Yoo
dx
Sx+1 Sx+1 Sx+1
(iv) Lety =tan™ T |~ tan * =tan! *
3—x—6x2 1 +2—x—6x2 I —(6x>+x—2)

5x+ 1 Sx+1
=tan’! =tan!
1 —(6x>+4x—3x—2) 1 —[2x(3x +2) — (3x +2)]
Sx+1 Bx+2)+(2x—1)
=tan’! =tan!

1-(Gx+2)2x— 1) - (Gx+2)2x— 1)

. .




y=tan'(Gx+2)ttan ' (2x — 1)
Differentiate w. r. t. x.

d_y = i [‘[an’1 (Bx+2)+tan! (2x — 1)]
dx  dx

d - d _

=_ [tan 'Gx + 2)] + — [tan '2x — 1)]
dx dx
1 d

1+Bx+2) dx
dy 3 n 2
dx 1+0Gx+2  1+@x-1)

)

d
L
T =1y ax >

g

(1)

)

3)

4)
)

N

~
| EXERCISE 1.2)

Find the derivative of the function y = f (x)
using the derivative of the inverse function

x=f"1(y) in the following

i) y=qx (i) y=+v2-x

(i) y=3x-2 (iv) y=log(2x—1)

(v) y=2x+3 (vi) y=e"—3

(vii) y =23 (viii) y = log (ij
22

Find the derivative of the inverse function of
the following

(i) y=x*e (i) y=xcosx
(i) y=x7 (iv) y=x*>+logx
(v) y=uxlogx

Find the derivative of the inverse of the
following functions, and also find their value

at the points indicated against them.

(1) y=x+2x*+3x, atx=1
(i) y=e+3x+2, atx=0
(i) y=3x’+2logx’, atx=1

(iv) y=sin(x—2)+x% atx=2
Iff(x) =x*+x—2, find () (0).

Using derivative prove

. T
(i) tan'x+cot'x= 5

T
(i) sec'x+cosec!'x =5 [for |x|>1]

(6)

(7)

Differentiate the following w. 7. ¢. x.
(i) tan'(logx) (i) cosec!(e™)
(iii) cot'(x?) (iv) cot ' (4%)

(v) tan'(\x) (vi) sin! ( /1 ;xzj

(vii) cos'(1—x%)  (viii) sin”' (")
(ix) cos’[cos™ (¥*)] (x) sin* [sin”' (\x)]
Differentiate the following w. 7 ¢. x.

(i) cot'[cot (e"z)]

. 5 1
(i1) cosec (cos (5")]

. 1 +cosx
(i11) cos T —
(iv) cos 1( /—1 — o8 (xz)j

1 —
(v) tan™! [ fan (3 )j
1 +tan(3)
1

4 cos’2x — 3 cos 2xj

1+ cos(g—‘)j
sin(3)

sin 3x
(viii) cot™!| ————
1+ cos 3x

(vi) cosec™ (

(vii) tan™! [




(ix) tan™ (ﬂj (iii) sin™! (1 _ xzj (iv) sin!(2x VT —x2)

1 +sin 7x 1 +x
0 tar| X () cos” Gx—4x) (i) cos? | S
I —cosx eter
1
- o 4
(xi) tan™'(cosec x + cot x) (vii) cos™ 1=9 (viii) sin™ :
1+9r I +2%

(xii) cot™!

\/1+sin(43—x)+\/l—sin(43—x) 1 — 2552 [
(ix) sin (x) sin™!
\/1+sin(4§)—\/1—sin(‘§—)‘) 1 +25x2
5
(8) Differentiate th.e following w. r. t. x. (xi) tan" X2 (xii) cot! \x
) ] 4sinx+5cosx 1 —x° + 4
(i) sin’!

+x3

(10) Differentiate the following w. r. ¢. x.

\3 cosx —sinx . . .. L[ 1+35x
i 1) tan 1) cot
(11) [ (1) 1~ 150 (i1) .
+ 2 2042
(iif) o8 V_ sin \x Giytan |2 (i) a2
1+ 3x 1 - 3(4Y
) 3 cos 3x 4 sin 3x - 2% ) | a*— 6x?
(iv) ( ] (v) tan ‘(Wj (vi) cot™ s j
©) (3 cos (e") + 2 sin (e”)j (vii) tan” ( a+ btanx j
b—atanx
5-
(vi) cosec’! (viii) tan™! >t
6 sin (2") — 8 cos (2Y) 6x>—5x—3
(9) Differentiate the following w. 7: £ x. . L[4 x 2%
X

(i) cosl(l_xzj (i) tan‘( > )
1 +x? 1 —x?

1.3.1 Logarithmic Differentiation

The complicated functions given by formulas that involve products, quotients and powers can often
be simplified more quickly by taking the natural logarithms on both the sides. This enables us to use
the laws of logarithms to simplify the functions and differentiate easily. Especially when the functions
are of the form y = [ f(x)]¥™ it is recommended to take logarithms on both the sides which simplifies to
log y = g(x). log [ f(x)], now it becomes convenient to find the derivative. This process of finding the

derivative is called logarithmic differentiation.

@ SOLVED EXAMPLES ]

Ex. 1: Differentiate the following w. . ¢ x.
O(wmﬁwﬁq o ltany)t
i

\/ (2x2 +1) ) (1 +x2)% cos’x

. .




3 E 2
(1) (x+1)2 (2x+3)> Bx +4)*forx>0 (iv) x*+x"+a (v) (sin x)fan~— xlogx

Solution :
( (3 f(w+ ) j
(1) Lety = .
(2x* +1)

Taking log of both the sides we get,

(w+3) e+ 5y J - Jerareersy
=log

(2 +1)’ (2 +1)

log y :log(

2 3

= log [(x“r 3) (3 + 5)3} —log (2x* +1)2
2 3
= log (x*+ 3)* + log (x*+ 5)3} —log (2x* +1)2

2 3
logy =2log (x*+ 3)+§10g (P + 5)—Elog (2x* +1)

Differentiate w. r. t. x.

2 3
i(logy) _ 4 2log (x¥*+3)+—log (x*+5) — —log (2x* + 1)
dx dx 3 2
1 dy d 2 d 3 d
Y 2. Nog 2+ 3)] + = log (x*+ 5)] — —— [log (2> + 1
S dx[og(x )] 3a,x[og(x )] 2a,x[og(x )]
2 d(2+3)+ 2 d(3+5) 3 d(z 24 1)
_ i s @ I R
43 de 308 +5) dx 200 + 1) dx
dy B .

=z = 2x) + (3x%) — (4
dx y{x2+3\ *) 3(x3+5) *) 202x2 + 1) x)}

dy (@37 J(c+3s) [ 4x 20 6x }

J’_ —
dx (2x2 +1) X+1 (P+5 2x*+1

e’ (tan x)

(ll) Lety = 3
(1 +x%)? cos’x

Taking log of both the sides we get,
e’ (tanx)3
3

(1 +x%)? (cosx)?

logy =log ( ] =log {e"z (tan x)ﬂ —log [(1 + xz)% (cos x)ﬂ

x 3
=log e + log (tan x)2 — [log (1+x*)?+1log (cosx)ﬂ
3
=x’loget % log (tan x) — 5 log (1 +x%) — 3 log (cosx)

3
logy =x*+ % log (tan x) — 5 log (1 +x%) — 3 log (cosx)

N




Differentiate w. r. t. x.

d 3
—(logy) = i X2+ * log (tan x) — — log (1 +x?) — 3 log (cosx)
dx dx 2

&% = E( %)+ —— [log (tan x)] + log (tan x) — (%J _%di [log (1 +x%)] - 3% [log (cosx)]
=2x + . i (tan x) + log (tan x) — — ;— (1+x*)— 3 ~— (cosx)
2 tanx dx 2 2(1+x?) dx cosx dx
=2x+ i~(cot x) (sec? x) + l log (tan x) — ;'(2x) - i (— sinx)
2 2 2(1 +x%) coS X
X cosx 1 1 3x
=2x+—x—x + — log (tan x) — + 3 tanx
2 sinx cos’x 2 1+x?
dy 1 3x
a_){zx 2sinxcosx+310g(tanx)_1+x2+3tanx}

dy_ e (tan e

dv (1 erz)2 cos’x

1 3x
{2x + x cosec 2x + — log (tan x) — +3 tanx}
2 + X2

3 s 2
(iii) Lety =(x+ 1)> 2x +3)2 3x +4)3
Taking log of both the sides we get,

3 5 2
logy = log |:(x+ 1)2 (2x+ 3)2 (3x+4)3:|
3 5 2
log y =510g(x+ 1)+310g(2x+3)+§10g(3x+4)

Differentiate w. r. t. x.

©togy) =12 tog (x4 1)+ log (2x + 3) + = log (3x + 4)
— (lo =— | —log (x — log (2x — log (3x
Pt RN [t 7 8 3 08

L& 3.4 sS4 2.4
; = "1 & [log (2x+1)]+2 o [log B3x +2)] + T [log Bx +4)]
5 2 d .,
) dx( Dt Gt dx( D sy Y
dy

5
E:y{2(2x+ DY 26 P 3619 C )}

—(+1%(2 +3§(3 +4)§ 3 + = + 2
g a T 3) O 2+1 2Bx+1) 3x+4

(iv) Lety =x*+x"+a*
Here the derivatives of x* and a* can be found directly but we can not find the derivative of x*

without the use of logarithm. So the given function is split in to two functions, find their derivatives
and then add them.

. SO .




Letu =x‘*+a*and v = x*

v =u+ v, where u and v are differentiable functions of x.

&y _du o M
dx dx dx
Now, u = x*+ a*
Differentiate w. r. . x.
du d d
= xa + ax
dx dx ( ) dx ( )
d
R loge ... (1)
dx
And, v = x*
Taking log of both the sides we get,
log v = log x*
logv =xlogx
Differentiate w. r. t. x.
 (togv) = L (x10gx)
J— V)= —\X X
dx 8 dx 8
1 dv d d
—— = x—(logx) +logx — (x
v dx dx( g%) & dx( )
d 1
Yooy {xx_Jr logx(l)]
dx X
d
D e [l+logx] ... (111
dx

Substituting (IT) and (IIT) in (I) we get,

d
Y+ a'loga+x'[1+ logx]
dx

(v) Let y = (sin x)an~— xlog~
Let u = (sin x)™~*and v = x'°¢~

vy =u—v, where u and v are differentiable functions of x.
dy du dv

dx dx dx
Now, u = (sin x)*"*, taking log of both the sides we get,
log u = log (sin x)*"* log u = tan x log (sin x)

Differentiate w. r. t. x.
d d
— (log u) = — [tan x log (sin x)]
dx dx
1 du

d d
— — =tanx — [log (sin x)] + log (sin x) — (tan x)
u dx dx dx

d . :
———(sin x) + log (sin x)-(sec?)
sin x dx

= tan x-

/,
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du

— =utan x*——(cos x) + sec? x-log (sin x)
dx sin x
du ) .
e = (sin x)™* [tan x-cot x + sec? x-log (sin x)]
X
du ) .
— =(sinx)™*[1 +sec’x-log (sinx)] ..... II)
dx
And, y = xlog ¥

Taking log on both the sides we get,
log v = log (')
log v = log xlog x = (log x)?

Differentiate w. r. t. x.

d d )
—(log V) =~ [(log x)

1 dv d

——_=21logx—(logx

v dx & dx ( & )

21 2xlogx |
D\ 2loex) 2Flogx (11D)
dx X X
Substituting (II) and (I1I) in (I) we get,

d 2 logxl
Y (sin x)®~[1 + sec? x*log (sin x)] — X oex
dx ¥

1.3.2 Implicit Functions

Functions can be represented in a variety of ways. Most of the functions we have dealt with so far
have been described by an equation of the form y = f'(x) that expresses y solely in terms of the variable
x. It is not always possible to solve for one variable explicitly in terms of another. Those cases where it
is possible to solve for one variable in terms of another to obtain y = f(x) or x = g (y) are said to be in

explicit form.

If an equation in x and y is given but x is not an explicit function of y and y is not an explicit function

of x then either of the variables is an Implicit function of the other.

1.3.3 Derivatives of Implicit Functions
1. Differentiate both sides of the equation with respect to x (independent variable), treating y as a

differentiable function of x.

d d
2. Collect the terms containing d_y on one side of the equation and solve for d_y
X X

. .



@) SOLVED EXAMPLES J

Ex.1: Find d_y if
dx

(O ey (ii) )’ +cos (xy) =x* —sin (x +y)
(iii) x* + e =) + log (x + )

Solution :

(1) Given that : x5 + xy3 + x2y +y4: 4

Differentiate w. 7. t. x.
4 (%) + < () + 4 (%) + < (¥)= <4 4)
dx dx dx dx dx
Seiex L )+ < (x) el ) +yi )+ 4y3i (»)=0
dx dx dx dx dx
5x*+x (3y%) @ +y (1) + xz@ +y(2x)+ 4y3@ =0
dx dx dx

dy
— 44y = =—5x=2xy —)?
dx dx ydx Y

d
(2 + 3xy? + 497) d—y == (5x* + 2xp +7)
X

dy S5x*+2xy +y7?

de X3 +4

(i) Given that : y* + cos (xy) = x* — sin (x + )

Differentiate w. r. t. x.

d 3+d d o d . N
E(y) E[cos(xy)]—a(x) E[Sm(x »)]

d d d
3y — (y) = sin (xy) — (xy) = 2x —cos (x +y) — (x + )
dx dx dx

2

dy
3 1+-—=
Y dx

ly . dy
— —sin (xy) |x—+y(1)| =2x —cos (x +y)
dx dx

2

ly dy . o B dy
3y? — —xsin (xy) — — y sin (xy) = 2x —cos (x + ) — cos (x +y) —
dx dx dx

o dy dy : B
3y — —x sin (xy) — + cos (x + y) — = 2x + y sin (xy) — cos (x + )
dx dx dx

d
[3) — x sin (xy) + cos (x + )] d_y =2x + y sin (xy) — cos (x t+y)
X

dy 2x+ty sin (xy) —cos (x + )

dx 3y —xsin (xy) + cos (x + )

/,
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(iii)

Ex.2:

Given that : x* + e¥ =y*+ log (x + )

d d
Recall that 8 (f(x)= g (f®)) —f(x)
x dx

Differentiate w. r. t. x.

d(2)+d[y] d(yz)+d[1 (x+ )]
—(x — eV |=— — |log (x

dx dx dx dx 5 ’

d dy
2x+eV—(xy)=2y —+
dx dx x+ydx

2x +ev

dy dy
4+ =2y =+
e )] v

dy dy
2x +xeV —+yeV =2y —+
dx dx x+y x+y dx

2x +ye™ —

2x + ye — = [2y—xexy+

x+ty 5
2y (x+y)—xe¥ (x+y)+1]dy
x+y dx

xty
2x(xty)tye”(x+y)—1

Xty -
dy  2x(x+y)+ye” (x+y)—1

S 2y(xt+ty)—xe¥(x+y) +1

dy 'y

Find x™y" = (x + y)”*", then prove that — = —

dx x

Solution : Given that : x"-y" = (x + y)"*"

Taking log on both the sides, we get
log [x":y"] =log [(x + y)"""]
mlogx +nlogy=(m+n)log(x+y)

Differentiate w. r. t. x.

dl + dl =(m+ dl +
m——(logx) +n——(logy)=(m+n)—[log (x +)]

m n dy m+n d
Eil 2B S ety
x y dx x+ty dx

d + d
myre_mrr Y
x y dx x+ty dx
m n.dy_m+n+m+n dy
X y dx_x+y x+y dx
ndy mtn dy mtn m
y dx x+ty dx_x+y X




‘n m-+n

LY
(nx+y)—(m+n)y

dy_m+tn _m

x+y dx x+ty x

dy [(m+n)x—m(x+y)
y(x+y) }5_[ X (x+y)

dx X

'nx+ny—my—ny} dy_mx+nx—mx—my

y

x — my] dy nx—my

Ly dx X
v_y
dx x
xm i n d
Ex.3: Ifsin Pa r, then show that “_ Z, where 7 is a constant.
px" +qy” dx x
xm _— 1
Solution : Given that : sin [Mj =r
px" +qy”
px" = gy” i
————=sin"'r
px" gy
xm —_ 1
u:t ...... [Lett=sin"'r]
px" T qy”
px" = qy"=pix" + qty”
px" = pix"=qy" + qtiy”
p=—nx"=q(l+1))y"
iz ? a-0).,
g1+
yi=sx" @O Lets = (
Differentiate w. r. t. x
d (") a (x™)
—(V")=85— (X"
dx Y dx
mym -1 @ = s-mx™" -1
dx
dy xmfl B
=g x"
dx ymfl
d m xm*l
@Yt [ From (I)]
dx xm ymfl
v_Y
dx x




X
Ex.4: Ifsec’! L S

? dy x*tan’a ,
S| = 2a , then show that — = — where a is a constant.

X =y dx y
3 3
Solution :  Given that : sec ! - |=2a ..... [We will not eliminate a, as answer contains a |
X7y
x3 — 1,3
cos™! Y |- 2a
x3 +y3
x3 — 1,3
=cos 2a
x3 +y3

x*—y*=x*cos 2a + y*cos 2a
x* —x*cos 2a=y*cos 2a + )*

x* (1 —cos 2a)=y*(1 + cos 2a)
1 —cos2a

)= P
1+ cos 2a

\ 2 sina X
= X
Y 2 cos’a

y=(fan’a)x* ... €))

Differentiate w. r. t. x
d d
— (%) = (tan? 3
dx(y) (tan® @) dx(x)

d
3y2d—y = (tan? a) 3x?
X

dy x’tan’a

2

dx y

d sec? x
Ex.5: Ify:\/tanx+\/tanx+w/tanx+...oo,thenshowthat—y:—.

dx 2y—1

Solution :  Given that: y = \/ tan x + \/tanx +4tanx+..00 L. D

Squaring both sides, we get

y:

<
I

2 =

tanx+\/tanx+\/tanx+...oo,which 1S same as
tanx+\/tanx+\/tanx+x/tanx+...oo

tanx+y ... [ From (1) ]

Differentiate w. r. t. x

d

09 =L (tanx) + 2
— =—(tanx) + —
dx Y dx dx




dy dy
2y ———=sec’x
dx dx

d
Q2y—1) & sec?x
dx

dy  sec’x
dx 2y-1

dx

d
Ex.6: If \/1—x2+\/l—y2=a(x—y),thenshowthat—y=

2

-y
dx 1—x

Solution :
Putx =sin a, y =sin
oa=sin'x,B=siny

Equation (I) becomes,

\/l—sinzoch\/l—sinZB:

Giventhat:\/1—x2+\/1—y2=a(x—y)

a(sin o, — sin B)

cos o+ cos B =a (sin o — sin B)

o+
2cos(
2

(0, -
oS
2

o-p

CcoS
2

=cotla

sin!x—sin'y=2cot!a

Differentiate w. r. t. x

Bj=2acos(a+
2
B] . (ws
=g sin
2

el

ol

oa—pB=2cotla

. (sin”! x) — e (sin”' y) = . (2 cot™! a)

1 1 dy
\V1-x \/1—y2 dx
dy [1-)
de \V1—-x

=0

(

(1) Differentiate the following w. r. t. x
: (x+1)°
(@) : :
x+2yY(x+3)

. j 4x — 1
(1) N
(2x + 3) (5 — 2x)’

(ifi) (3 + 3)2-sin’ 2x-27

\
LEXERCISE 1.3 )

(> + 2x + 2)%

(iv)
(\/x +3)*(cos x)*

x>-tan® 4x N
V) — (vi) x
sin® 3x

(vil) (sin x)*

(viii) sin x*

4

4




2)

3)

4)

Differentiate the following w. 7. ¢. x.

(i) x*+x*+e't+es (i) x7 +e"

(111) (log x)* — (cos x)t~

(iv) x¢ + (logx)s™* (v) e~ + (log x)=*
(vi) (sin x)®* + (cos x)®~

(vii) 10" + x4 x'0*

T
(viii) [(tan x)=*] """ at x = 7

Find Q if
dx

) x+\y=+a
(i) x+\xy+y=1
(iv) ¥+ x2y+x? +* =81

(v) X2y —tan' 2 + )2 = cot ' \x2 + )2
(vi) xe?+ye =1

(ii) x\x + Ny = ava

(vil) e*™7=cos (x —y)
(viii) cos () =x +y (ix)e” "= 2
(x) x+sin(x+y)=y—-cos(x—y)

d
Show that & = Y in the following,

dx x
where a and p are constants.

(i) X'y =@+y)?

(i) x?y* =(x+y)’**, peN

xS + 5
(ii1) sec( ys j =a’

X =y
3x*—4y?
; -1 — 2
(iv) tan (3x2 n 4y2j a
. Txt+ 5y .
(v) cos!'|=————|=tan'a
Tx*— 5y

20— 320
(vi) log (x20+ yzoj =20

(vil) e V=a

x3 — y3
(viii) sin el a

‘

(5) (@)

If log (x +y) = log (xy) + p, where p is

d 2
constant then prove that & y_
dx x>

x3 _y3
(i) Iflog, [x3 +y3j =2,

d 99x?
show that—y:— * .
dx 101y?
xt
(iii) Iflog, oy =2,
d 12x3
show that—y:— * .
dx 13y°

(iv) Ife* +e’=e*"”, then

d
show that A e’ -,

dx
XS_ 5
(v) Ifsin’ ( ; Y j =£,
X+y) 6
4
show that 9 x_
dx 3
(vi) Ifx’ =e*77, then
dy log x

show that —=— =~ |
dx (1+logx)?

(vii) Ify=\/cosx+\/cosx+\/cosx+...oo,

sin x

then show that Q = .
dx 1-2y

(viii) If y = J log x + \/log x++Togx +...,

d 1
then show that Y _
dx  x(2y—1)
(ix) Ify=x" ,then

2

show that d_y = y—‘
dx x(1- logy)

(x) Ife’=y"~, then

d log y)?
show that Y ﬂ

dx logy—l'




1.4.1 Derivatives of Parametric Functions
Consider the equations x = f(¢), y= g (¢). These equations may imply a functional relation between
the variables x and y. Given the value of 7 in some domain [a, b], we can find x and y.

For example x = a cos ¢ and y = a sin ¢. The functional relation between these two functions is that,
xX*+y*=a*cos? t + a’ sin® t = a* (cos® ¢ + sin® ¢ ) = a® represents the equation of a circle of radius a with
center at the origin. And the domain of ¢ is [0, 2rt]. We can find x and y for any ¢ € [0, 27].

If two variables x and y are defined separately as functions by an inter mediating varibale 7, then that

inter mediating variable is known as parameter. Let us discuss the derivatives of parametric functions.

1.4.2 Theorem : If x = f(¢) and y = g (¢) are differentiable functions of ¢ so that y is a differentiable

d dy ¥
function of x and if @ # 0 then @ %.
dt dx 7);

Proof : Given that x =f(¢) and y = g (¢).
Let there be a small increment in the value of # say 67 then dx and 0y are the corresponding increments
in x and y respectively.
As 8¢, ox, dy are small increments in ¢, x and y respectively such that 6z # 0 and 6x # 0.

. ) )
Consider, the incrementary ratio S_y , and note that 6x - 0 = ot —> 0.

Sy X
. 8)/ N . X
Le. —=—5-— , since — # 0
ox 5 ot

Taking the limit as 8¢ — 0 on both sides we get,

)
lim (S_y) _lim (Sij
X—> Sx 5t—0 =

Asdt—>0,0x >0

s lim (S_y]
lim ( yj 30\ 81 )
x—0| < | T li STN e

ox 5}210(5]

Since x and y are differentiable function of ¢. we have,
lim (ﬁ} = ﬂ and lim (6—);) = @ exist and are finite ..... (I1)
5t—0 St dt 8t—0 St dt
From (I) and (II), we get

_ di

lim (gj =5 e (TI1)

di
The R.H.S. of (III) exists and is finite, implies L.H.S.of (III) also exist and finite
lim (S_y) _Y
dx—0 ox dx
Thus the equation (I1I) becomes,

dy ¥ d
Y % where @ =0
dx 7 dt




@) SOLVED EXAMPLES J

Ex.1: Findﬂ if
dx

(1) x=at*, y=2at?

(ii1) x = cos (log t), y =1log (cos t)
(v) x=~N1-¢, y=sin'¢t

Solution :

G)) x=t—-Vt,y=t+Nr

(iv) x=a(0+sin0),y=a (1 —cos 0)

(i) Given, y =2at> (ii) Given,y=t+r
Differentiate w. r. z. t Differentiate w. r. t. t
d d d 1
—y:2a—(12)=2a(21):4at ..... ) ﬂ:—(t+\/7):1+—
dt dt dt dt 24t
And, x = at* dy 2\ t+1
Differentiate w. r. ¢. ¢ dr - N (D
d d
e a Sy =a@r)=4ar. ... ) And,x=1-r
dt dt " Differentiate w. r. ¢. ¢
dy = Adat d d 1
Now, —=-9 = ...[From (I) and (II)] -y =1-
dx g 4ar a a 21
dy 1 dx 24t—1
Y_Z de _Weo Lo (1)
dx P dt 24t
2\/t—+1
d @
Now, P % _ ...[From (I) and (II)]
dx 7 24/t -1
g
dy 2\t+1
dx 24[t—1
(i11) Given, y =log (cos t)
Differentiate w. r. t. t
dy d 1 d 1 . dy
— =—7/log(cost)]=———(cost)=——(—sin ¢ L —=—tant = ..... I
dt dt[ el )l cott dt( ) cott( ) dt @
And, x = cos (log ¢)
Differentiate w. r. ¢. ¢
dx d . d sin (log ¢) dx sin (log ¢)
—= —/[cos(logt)]=—sin(logt)— (logt)=———— S—=m— ... II
— = - [oos (log 1)] =~ sin (log 1) (log 1) =~ —— = t (1
Now, Yo g _ WML o Damd(
ow, E—g—m...[ rom (I) and (I)]
- t
dy _ r-tant
dx sin (logt)
o S



(iv) Given, y=a (1 —cos 0)

Differentiate w. r. t. 0

dy i _ _ (=
d_e_adG[(l cos0)] =a [0 — (= sin 0)]

dy

—=gsmn0 ... 1))

dt
And, x =a (0 + sin 0)

Differentiate w. r. t. 0

dx d .
—=a—(0+sinO)=a(1+cos )
dt  do

dx

—=a(l+cos® ... (IT)
dt
dy .
dy = 0
Now, =i T [from (1) and
dx % a(l+cos6)
dt 19)

dy 2sin(3) - cos(3) 0
—= =tan (—j
dx 2 cos’(9)

CoLdy T 1
Ex.2: Flndd—lf(l)x:secze,y:tan39,at0:?(11) x:t+?y=

X

v)

Now,

Given, y =sin' ¢
Differentiate w. r. t. ¢
dy

—=—(sin'¢t)=

dt dt 1 -
dy 1

dt N1-7
And,x=V1-¢

Differentiate w. r. t. ¢

&4 TR
dt dt

1 d
= (-7
21 =2 dl( )

a1t 11
a0 =g ™
1

o U VF
Z_dt _ 7 ...[From (I) and (II)]

d_@__ 2
o dt Ni-7
dy 1

1

. . T
(ili)x =3 cost —2 cos’t, y = 3 sint — 2 sin’¢, att=g

Solution :

(i) Given,y=tan’0

Differentiate w. r. t. O

dy d d
Y % (tan 0)* = 3 tan? 6 — (tan 6)
do dob do

And, x = sec’ 0

Differentiate w. . t. 0

dx d d
B2 (sec?0) =2 sec 0 — (sec 0)
do do do

d—2:2se09'sec@tan@zZsecZG‘tanG

ﬁ_ % B 3 tan’ 0 - sec’* O

Now, ==
dx 5 2sec’0 - tan O
dyv 3
4 =—tan 0
dx

T
At 6=—, we get

(ﬂj ej%: i tan (;) _ ﬂ

dx 2 2

‘

s

3 tan’ 6 - sec? 0

... [From (I) and (II)]




(i) Given,y= =

Differentiate w. r. t. ¢

dy_ d(lj
dar dt\e

E = ? ..... (I)
1

And, xX=t+ 7

Differentiate w. r. t. ¢

dc d 1 1

___p J:Lu_

dt dt t I

dx £—-1

E = - tz ..... (II)

dy Y -
Y _ i __ " From(I)and (I)]

A ((A-1)

1
At t=—, we get
) g

o2
T

(iii) Given, y =3 sint— 2 sin’¢

Differentiate w. r. t. ¢

dy d
—y:—(3sint—25in3t)
dt dt
36ll(' 1) —2(sinz)’
=3 —(sint) — 2 (sin
dt
L,od

=3 cost—2(3) smztE (sint)

=3 cost— 6 sin’z(cost)

=3 cost(1 —2sin’?)
d
Y 3costcos2t ... 1))
dt

And, x =3 cost— 2 cos’t

Differentiate w. r. t. ¢

de d
_x:_(3 cost — 2 cos’t)
dt dt

3 d (cost)—2 d (cos®?)
=3 —(COST7) — 2—(COS
dt dt

d
=3(—sint) — 2 (3) cosztE (cost)

=—23sint— 6 cos’t (— sin¥)
=6 cos’tsint — 3 sint

=3sint (2 cos*t— 1)

dx .
— =3 sintcos 2t

..... 11
g (I1)
dy % 3 cos ¢ cos 2¢
Now, —=—r=—7"—"—"— ..... [From (I)
dx T 3 sin ¢ cos 2¢
and (I1)]
_y =—cot?t
dx




Ex.3:

Solution :

1
Given that, x*+y*=£+— ... (D)

And
Squaring both sides,

(2+y7) = (z + %jz

1
x4+2x2y2+y4:t2+2+_2

Ifx*+)y*=t+

d
show that x*y Yo

1 1
7andx“+y4 = tz+?, then

dx

t2

1
xz—l—yz:t—i—?

r

1 1
Ex.4: Ifx=a (t_TJ and y=» (z‘+ 7),
2

b
then show that Q = o .
dx a%

Solution :

1 1
Given that, x=a (z‘— TJ and y=»>b (H 7)

X 1
te.—=t——...(I)and E =t+—... (D)

Square of (I) — Square of (II) gives,

xr )P 1\ 1\
T === = t+=
5 (7))

X*+2xH2+yt=x*+y*+2 .. [From(I)] £ £
2:32=2 . =1 ... Y o__,
a @
Differentiate w. r. t. x
d, ., _d Differentiate w. r. t. x
a7 @ =L
—  — X _— — =
xzd(z)+ 2i(x2)_0 a* dx b* dx Y
w " L0 o=
(2 ——(2y) —=
X (Zy) + ¥ (2x)=0 a? b? dx
1 1 dy
232 —(2x) ——(2y) ==
2xyﬂz—2xy b__ xi} az(x) bz(y) dx
dx dx 2x y 2y dyv 2x dy bx
—_ = :> =
dy X (— ):—zj b* dx & dx a%y
—=- ... [ From (II)] )
dx xzy @:bTx
dy 1 dy dx avy
—=— . Xy—==1
dx x’ dx
. -1 —1 d
Ex.5: Ifx=Va* “and y=Na* ’, then show tha d—:—Z
X X
Solution :  Given that, x=7Va"™ “and y="Va® '
ie.x=Va' . (I)and y=Na= .0
Differentiate (I) w. r. . ¢
d d I 1 d s =1
_x:—(\'asm f] — ._(asm t)
de dt N di
L d
- loga (sin')
asm
.
N



asinflt . log a 1

de _da© tloga_ YOBT (... From )
E p— 2 1 _xz -_ 2’\/@ .« e . DY

Now y = Vg

Differentiate (II) w. . z. ¢

d ( —- IR A
d_y:_[ acos tj: ._(acos t)
dt dt 24 [acosflt dt

L log a -t (cos 1)
-a* '-log a— (cos”
S

2Na=
_a“’sl’ -loga 1
- =)
Q - W. log a =— % (Iv) [From (II)]
" N —0 ce

yloga
dy [2} N -x?
Now, T S Sl [From (I1T) and (IV)]
E N
v_y
dx X

1.4.3 Differentiation of one function with respect to another function :

. : . : )
If y is differentiable function of x, then the derivative of y with respect to x is d_y
X

d d

Similarly, if « = f(x), v = g (x) differentiable function of x, such that d_” — £ (x) and d_v - ¢’ (%)
X X

T W

u
then the derivative of u with respect to v is — = —

e
@) SOLVED EXAMPLES ]

Ex. 1: Find the derivative of 7* w. r. 1. X'.

du
Solution : Let : u = 7 and v = x’, then we have to find —.

dv
du ™ And, v= X’
— =% (D . .
dv Y Differentiate w. 7. t. x
dx
dv d
Now, u =7~ — =— () =Tx$ ... (1ID)
. . dx  dx
Differentiate w. r. . x o .
du d Substituting (I1) and (III) in (I) we get,
= =E(7x)=7x10g7 ... (ID . du_ Tlog7
Todv xS

. .



Ex.2:

du
Solution : Let u = cos'x and v = 1 —x?, then we have to find =

Ex.3:

Find the derivative of cos™ x w. r. t. 1 —x2.

P y
du “

. dx
1.e. —= (1
dv Z—; M

Now, u =cos 'x

Differentiate w. r. . x
du
— =—(cos'x)=—
dx  dx 1—x?
And, v= \1—x?
Differentiate w. r. . x
dv —d(\/l—_)— 1 d(l— ) 1 - 20)
& de TN o ) T
dv X
— == ... (IID)
dx V1 —x2
Substituting (I1) and (III) in (I) we get,

1

du = _ du B 1
dv __* Y v x
1-x2
W_ 1 2x
Find the derivative of tan™!| ———— |w. r. 1. sin“[ )
X 1+x?
NT+x2-1 2x du
Solution: Letu=tan!|— |and v = sin™' , then we have to find —.
X 1+x2 dv
du
. dx
l.e. —=—7- (T

dx
Now, u = tan™!

(\/lsz—lj

Putx=tan0 .. O=tan' x

1
L (VI+tan’6-1 [secb-1 e [1-cos®

= tan tan 0 S e || W ((: = tan sin 6

2 sin? \%\ 0

=tan!|—————|=tan'|tan | T
in 5 cos 3 2
| 28in 5] cos |7 |
6 1 .

u= > = > tan " x
Differentiate w. r. £. x
du 1 d 1 1 I
— == —(t = o
dx 2 dx(an ) 2(1+x?) {an




2 tan O

And,

sin’! 2 = sin
1+x?

y = 2tan'x

Differentiate w. r. t. x
dv

dx 1 +x?
Substituting (I1) and (III) in (I) we get,

1
du  30-e 1

d
=2— (tan'x) = ... (1)
dx

-1
( 1+tan* 0

j =sin' ( sin 20) =20

dv 24
( )
LEXERCISE 14 )
0 Findd—y " (3) (i) Ifx=a~/secO—tan0,y=a~/secO +tan0,
dx dy __y
(i) x=af, y =2at then show tha a =— ;
(i) x=acotB,y=>bcosecO (ii) If x = e, y = ¢, then
(i) x=+a*+m* y=1log (a*+ m?) how ¢h dy ylog x
. . show that — = — )
(iv) x=sinB,y=tan O dx xlogy
(v) x=a(l —cos9),y=>5b(0—sin0) +1 —1
1)¢ 1 (i)Ifx = , V= , then
(vi) x:(t-lr—j ,y=a"7, t—1 t+1
4 d
Y
where a>0,a# 1 andt=0. Showthaty“ra:O.
(vii) x=cos (%} y=sec'(N1+7) (iv)Ifx =a cos’ t, y = a sin’ ¢, then
+£ !
) dy Y3
(viii) x =cos™' (4 — 3t), y = tan™ (_V 1-¢ j show tha o =— [—j .
; X X
(2) Find d_y if (v) Ifx=2cos* (¢ +3), y=3 sin* (¢ + 3),
“ T show that v__ 3_y
(1) x=cosec’0,y=cot’0, atezg e 2
T (vi)Ifx=log (1 +#),y=t—tan'¢,
(i) x=acos’0,y=asin’0,at0=—
& A —1
ot 3nt showthatd—yz ¢ 1.
. 2
(iii) x:t2+t+l,y:sm[—j+cos(—j, *
ati=1 2 2 (vii) If x =sin”! (e’), y =1 — &%,
. 'y
(iv) x=2cost+cos2t,y=2sint—sin2t, show that sin x + i 0.
T
att=— 2bt -7
(viii) If x = ,y=a[ }
(V) x=t+2sin(nt), y =3t — cos(nt), 1+7 1+7
1 dx b*y
att=— show that — =———.
2 dy a’x
o S




(4) (1) Differentiate x sin x w. 7. ¢. tan x.

2x
(i1) Differentiate sin! ( j
1+ x?

1—x?
w. . t. cos™! )
1+ x?

(v) Differentiate 3* w. . ¢. log_3.

COS X
(vi) Differentiate tan™' | ————
l+sinx

w. . t. sec”! x.

(vii) Differentiate x* w. 7. z. x*"~.

X
(iii) Differentiate tan™
1—x?

1
w, 7. t. sec”! .
2x2—1

1—x2
S|lwort tan™! x.

V1+x2— 1j

X

1—2x?

(viii) Differentiate tan™' (

W, I L. tanl(

(iv) Differentiate cos™! [
I+x
1.5.1 Higher order derivatives :

If £ (x) is differentiable function of x on an open interval 7, then its derivative f” (x) is also a function
on /, so ' (x) may have a derivative of its own, denoted as ( 1 (x))’ = f""(x). This new function /"' (x) is
called the second derivative of f(x). By Leibniz notation, we write the second detivative of
a5

y=f)asy"=f"(x)= )T e

By method of first prmmple

) h)— d
f'(X)=£%(MJ=d—iand

1) = %%(f (o + hz —f’(X)j _dy

Further if /"’ (x) is a differentiable function of x then its derivative is denoted as d_[ ] =" (x).
X

Now the new function /" (x) is called the third derivative of f (x). We write the third of y = f(x) as

& &
y"=f"(x)= (d yj = Y The fourth derivative, is usually denoted by f'® (x). Therefore
X2 X

(4) :_
fowW==2

In general, the n™ derivative of f(x), is denoted by /™ (x) and it obtained by differentiating f (x),

d
n times. So, we can write the n™ derivative of y = f(x) as y" =™ (x) = g Y These are called higher order
xl’l

derivatives.

Note : The higher order derivatives may also be denoted by y,, y,, ..., .

= &




For example: Consider f'(x) =x*—x
Differentiate w. r. t. x
d
S ) = [f(0)] =3x"—1
x
Differentiate w. r. . x
" d !
S (X)=d— [f'(x)] = 6x
X

Differentiate w. r. t. x
"’ d n
f (x)=d— [f (x)] =6
X

Which is the slope of the line represented by "' (x). Hence forth all its next derivatives are zero.

Note : From the above example we can deduce one important result that, if /' (x) is a polynomial of

degree n, then its n™ order derivative is a constant and all the onward detivatives are zeros.

@) SOLVED EXAMPLES ]

Ex. 1: Find the second order derivative of the following :

(i) ¥*+7x*=2x—-9 (i) x?e (iii) e*sin 3x
(iv) x* log x (v) sin (logx)
Solution :
(1) Lety=x*+7x*-2x-9 (i) Lety=x%¢"
Differentiate w. r. t. x Differentiate w. r. t. x
dy d dy d
—=—+7x*—2x—9) —=— (%)
dx dx dx dx
d d d d
P 3t 14x -2 Y el eyt el )
dx dx dx dx
Differentiate w. r. t. x

d
—y:xze‘+2xex=e‘(x2+ 2x)

d(dyy d _ | dx

E E - E (3x* + 14x = 2) Differentiate w. r. t. x

d*y d (dyj d ,

—== — | = |=—[e" (*+2

dx? Gxx 14 dx \dx dx[ (x )]
dy

d d
— = (24 2x) + (2 + 2x) — (&'
ki O+ 20) + (6 2x) — - ()

= ' (2x+2) + (2 + 2%) (¢9)
=(*+4x+2)e
d’y

X




(iii) Let y = e**sin 3x

(iv)

Differentiate w. 7. t. x
dy

dx dx

dy )
— =¢e*(cos 3x) (3) + sin 3x (e*) (2)
dx

Y_ e” (3 cos 3x + 2 sin 3x)
dx

Differentiate w. . t. x
d (dy
dx (dx
A’y

— L=
dx? dx

d
j — [e*(3 cos 3x + 2 sin 3x)]
dx

d(2’3) 2d('3)+'3d(2)
— =—(e”"s1n 3x) = e~*— (s1n 3x sin 3x — (e™
d dx dx

d
— (3 cos 3x + 2 sin 3x) + (3 cos 3x + 2 sin 3x) = (e”)
X

= e*[3 (— sin 3x) (3) + 2 (cos 3x)(3)] + (3 cos 3x + 2 sin 3x) e*(2)

= e*[~ 9 sin 3x + 6 cos 3x + 6 cos 3x + 4 sin 3x]

&’y

= e*[12 cos 3x — 5 sin 3x]
dx?

Lety =x?logx

Differentiate w. r. t. x
dy d

R |

o (x 0g x)

dy d
(log x) + log x — (xz)

dx

dy

— =x?

1
—+1 2
o og x (2x)

dy
—=x(1+2logx)
dx

Differentiate w. r. t. x
d dyj d

— = |=— 1+21

dx (dx [x( °2 x)]
d’y

d
d——x—(l +2logx)+(1 +2logx)—(x)
X2

2
=x-—+(1+2logx) (1)
X

d*
342 log x
dx?

(v) Lety=sin (logx)

Differentiate w. r. f. x

dy_d in (log )
i [sin (log x)]

Y _ cos (log )2 (log )
—=cos (lo —(lo

dx gx dx 8t
dy  cos (log x)

dx X

Differentiate w. r. t. x

d (dyj d [cos (logx)}

dx \dx) dx X
dly X o [cos (log x)] = cos (log x) -~ (x)
x> 2

x [~ sin (log x)] - (log x) — cos(log x)(1)

2

X
— xsmllogx) _ cos(log x)
= .
d’y  sin(logx) + cos (log x)
dx? X




d* N1-7 1+7 T
Ex.2: Find d_); if, (i) x =cot™! [#J and x = cosec‘l( 3 j (i) x=acos’0,y=>bsin’Oat O = 1
X t

t
Solution :
) N 1+7 1+7 ) 2t
(i) x=cot’! N=2 and x = cosec”' | —— y =cosec! =sin’!
t 2t 2t 1+7
Putf=sin® .. 0=sin't Putf=tan® .. O=tan!¢
4[ — qin2 12 2 tan O
x = cot™! [l—smGJ =cot™! (Mj y=sin"! [Lj =sin”' (sin 20) = 20
sin 0 sin 6 1 + tan’0
x=cot'(cot0) =0 Sox=sin't S y=2tan't¢
Differentiate w. 7. t. t Differentiate w. 7. t. t
dx d 1 dy d 2
= (sin’'f) = (1 —=2—(tan')=— ... (I
il CLIL) [/—I_tz) D a2 1+7 W
We know that,
2
d @ ) d _ 2
Y@ 1 [Fromand (D] - = [2— “tj
dx — dx 1+2
Differentiate w. r. t. x
ddy_d (271-¢
dx dx  dx 1+2
@ —21. Nl-2 Xﬁ
dx? dt | 1+p dx
A+ L= -NT-74a+p)]| 1
t dt
:2 X 2 X 7
i (1+7) @
A+ L d\T=A-~NT-£@n| 1
=2 x SN dt(l v x —— [From (I)]
L 1-7
A1+2)—_(=2n-2t(\1-7)
— 241-7 )
2 % _ 0 t2)2 x\1l—t¢
(1 +2) 2t (NT—7)
=2 x ( )2\'1*’2 ( x Al —¢
I (1+2)
[ =t (1+2)—2t(1 -7 —t—P—2t+2F
gl (1+7) (1+p)
[ £—3t
=2 x _(1 4 t2)2:|
dy  2t(£-3)

e (1+£)

. SO .




(ii) x=acos'0,y=bsin’0 atezg

Solution :
Given that : x = a cos*0

Differentiate w. r. 7. 0
dcx d

do do

dx )
—=-3a cos?0 sin0
do

(a cos*0) = a (3) (cos?0) % (cos0)

y=>bsin’0
Differentiate w. r. 1. 0
dy

do
dy .
—=3bsin’0 cos O
do

—db'39—b3 '26d in©
—%( sin’0) = b (3) (sin )%(sm)

() ... (D)

We know that,

dy
do

dy_

dx %
d b
Y —tan©
dx a

3b sin’0 cos O

—3a cos?0 sin O

... [From (I) and (II)]

Differentiate w. r. 1. x

d(dy b d
—| —|= ———(tan9)
dx\ dx a dx

&y
dx?

b d do
=———— (tan0) x —
a do dx

1
——(sec’0) x ——
a &

1

—3a cos?*0 sin0

b
—— (sec’0) x ... [From (D]
a
B b y sec’ 0
3a’> cos?0sin0
b sec* 0
3a?sin0

T
When 0 =
4

((ﬁyJ _bsect(4)  b(\2)'

d)o=5  3a&sin(f] 3 ()

(C[Zy J - \2b
dx*) e =%

 3a?

SOS



Ex.3: Ifax?+ 2hxy + by*= 0 then show that @ =0.

Solution :

Ex.4: Ify=cos (m cos! x) then show that (1 —x?) —— —x—+m

Solution :

dx?
Given that ax? + 2hxy + by?=0 ...(D
ax* + hxy + hxy + by*=0
x(ax + hy) + y(hx + by)=0
y(hx + by)=—x(ax + hy)

y:_ax+hy an
X hx + by

Differentiate (I) w. r. t. x

d (%) + 2h d( )+ b d M) =0
adxx dx 4 dx B

dy dy
a2x)+2h|a—+y(1)|+b2y)—=0
dx dx
d d
2 ax+hx—y+hy+by—y =0
dx dx

dy
(hx +by) —=—ax—hy
dx

dy _ax+hy

dx  hx+ by

From (II), we get

dy 'y

dx x
Differentiate (III), w. r. t. x

d(dyy dfy
dx \dx]  dxl x

xg -y x(g)-y

X

... (1)

d*y
E - X2 X2
@y

dx? x?

... [From (II) ]

4y _ b 2y =0.
dx* dx
Given that y = cos (m cos ™' x)
cos'y=mcos'x

Differentiate (I) w. . t. x

= (cos'y)=m = (cos'x)




Squaring both sides
dy\’
(-2 [ L] = (-59)
dx

Differentiate w. r. t. x

(=) 2 <2 S S

d d (d d
(l—xz)-2[d—ij~a-(d—i}j (dic)) (—2x) =m? (— 2y)—

dy & dy\* d
2(1-2) L2 [P gy &
dx dx dx

d
Dividing throughout by 2d—y we get,
X

: Ly dy
Ex.5: Ifx=sint, y =™ then show that (I — x?) — —x— —m?*y =0.
dx*  dx
Solution :  Giventhatx=sin¢ .. t=sin!x
andy=e" .. y=emmr (D)
Differentiate w. r. t. x
dy d
dx  dx
dy m-e" sin”'x

e sin'x) — e sinlx m— Sinfl X
) oo (s )

EZ 1 —x2

1 —x*—=my ... [From (I)]

dx
Squaring both sides

dy .
(1_x2). - :mzyz
dx

Differentiate w. r. ¢. x

“‘”LQZ@J4P%— 0
(= 2)2(dxj %'[%j*(%)z<—2x)=m2(2y)%

/,
. SOe
AN



dy & &\ d
2(1—x2)'—y'—y—2x(dy) Y
X

:2 2y L
dx dx? mydx

d
Dividing throughout by 2d_y we get,
X

&y dy
1= )2 x = = 2
(1-2) dx? xdx "y
dy dy
(l—xz)-ﬁ—xa—mzyzo

1.5.2 Successive differentiation (or n™ order derivative) of some standard functions :

Successive Differentiation is the process of differentiating a given function successively for n times
and the results of such differentiation are called successive derivatives. The higher order derivatives are
of utmost importance in scientific and engineering applications.

There is no general formula to find n™ derivative of a function. Because each and every function has
it's own specific general formula for it's ™ derivative. But there are algorithms to find it.

So, here is the algorithm, for some standard functions.

Let us use the method of mathematical induction whereever applicable.

Step 1 :- Use simple differentiation to get 1%, 2" and 3™ order derivatives.

Step 2 :- Observe the changes in the coefficients, the angles, the power of the function and the signs of
each term etc.

Step 3 :- Express the n™ derivative with the help of the patterns of changes that you have observed.

This will be your general formula for the n™ derivative of the given standard function.

@) SOLVED EXAMPLES J

Ex.1: Find the n™ derivative of the following :

1
(1 x (i1) (iii) logx
ax+b
(1v) sin x (v) cos(ax+b) (vi) e*sin (bx +¢)
Solution :
(1) Lety=x" Differentiate w. r. t. x
i i d (& d
Differentiate w. . t. x a(ay)_ me(m — 1)~ (xn-2)
dy d B dx | dx? dx
- (xm) = mx™ 1
dx dx y
o == m(m = 1)(m —2) 2"

Differentiate w. r. t. x dx?
d (dy d In general n™ order derivative will be
— | —|=m —Xx" 1 dn
dx (dxj dx )::m'(m— Iy m—2)..m—(m—1)]x""
dzy dx
——=m(m—1)x"? dvy
dx y =m-(m—1)(m=2)..[m—n+1]x""

x}’l

. .



case (i) :- If m > 0 and m > n, then
d'y _m(m—=1)ym=2)...[m—(m—1)] (m—n)..21

xm*n
dx" (m—n) - [m—n—1]..21
dy  ml.x""
dx" (m —n)!
case (ii) :- If m > 0 and m = n, then case (iii) :- If m > 0and m < n, then
dy nl.x""  nlx° d'y
dx"  (n—n)! 0! dx"
(i) Lety= (ii1) Lety =log x
ax+b

. . Differentiate w. r. t. x
Differentiate w. r. . x

dy d | 1
dy d( | J -1 ( b o e dog0=—
dx  dx ax+b) (ax+by dx Differentiate w. r. t. x

Q: (—1)a d(dyy d (1
dx (ax+b) E(aj_a(;j

Differentiate w. r. t. x

Py -1 (-1
d (dy 1 27 2 2
: ( j - )a )d_( 2) dx*  x x
X x \(ax + b) Differentiate w. r. . x
d*y -2 & 1
—5 =1 —( b) 2=y
& @by de dx(dxj OO (x)
Fy_ (Cp2la Py —2) (- 112
dx? (ax + b)’ P ( x j: x?

Differentiate w. 7. £. x In general n™ order derivative will be

dzy - 2 21 d ! dn n—1
dx [dx ) Ch @ E((ax+b)3j Y _ =123 (n—-1)
dx" X"
e L= (12l @by dx( x + b) dy _(-1y '(n—1)!
dx" x"

&y (-1y-32:1a
d (ax+ b

In general n™ order derivative will be

dy (—1ynm—1)..21a
dx" (ax + by !

dy (—1)yn!a"

dx"  (ax +b)"*!

/
. O@O .
AN




(iv) Lety=sinx
Differentiate w. r. . x

dy d
—=—(sinx) = cos x
dx dx

d 8

& sin (— + xj

dx 2

Differentiate w. r. t. x

)G )

d* T d (m
—y=cos(—+xj—(—+xj

dx? 2 dx \2
dly_ i (E+E+ ) 1
ﬁ—sm 2 2 X ()
dy . [2n

—= — +

P Slll(2 xj

Differentiate w. r. . x

d a’zy d { 2n }
— sin| —+x
dx dx dx 2

T
%—COS 2 X a 2 X
(n 2
= sin 2+2+x (1)
dy . (3n
%=Sln(2+)€j

In general n™ order derivative will be

ar nmw
Y =sin (7 + xj

dx"

™)

Let y =cos (ax + b)
Differentiate w. r. t. x
Q = i [cos (ax + b)]
dx  dx

d
=—sin (ax + b) — (ax + b)
dx

s
=Cos (E+ax+bJ (a)
— =aqacos|Ztax+b
dx 2

Differentiate w. r. . x

d dy d (n j
— acos|-+ax+b
dx | dx dx 2

d (dy d{ [TC ﬂ
—|—|=a—|cos|Z+ax+b
dx | dx dx 2

Ly (T d(m
——=q|—sin|Z+tax+b||—|+tax+b
dx? 2 dx \2
T T
=acos(2+2+ax+bj(a)

ch 21
——=a?cos (—+ax+bj
dx® 2

Differentiate w. r. t. x

d (dy d[ (27: ﬂ
a*cos|——+ax+b
dx dx® Cdx 2

dzy d 21
=a*—|cos|—+ax+b
dx | d dx 2

ch i 27 d(2m
—— =¢g%| —sin (— +ax+ bj —(—Jr ax +bj
dx? i 2 dx\ 2
, ( 27 bj
= —+—+ax+
a‘* cos Sty Tax (a)
d’y

2

3n
—=a3cos[—+ax+bj

dx?
In general n™ order derivative will be
dy

nmw
=a"cos|—tax+b
dx"

2




(vi) Lety =e“sin (bx + ¢)

Differentiate w. r. t. x

dy d . d . . d
— =—[e*sin (bx + ¢)] = e*— [sin (bx + ¢)] + [sin (bx + ¢)] — (e‘”“)
dx  dx J dx p dx

=e™cos (bx + c)— (bx + ¢) +sin (bx + ¢) - e — (ax)

dx dx
=e™[ b cos (bx + ¢) +asin (bx + ¢)]
b a

— pax 2 2 1

=e*\a®+b \/mcos(bHCHW sm(bx+c)}
L b _ b (b .

et =sino, ————=cos o, a=tan' |— .
Jair o E (aj M

d

d_y =e*\a*+ b*[sina - cos (bx +¢) + sin (bx + ¢) - cos o]
X

dy L

—=e"(a*+b*)?2 -sin(bx+cta)

dx

Differentiate w. r. t. x

d(dy\ d B
—|=|=—|e*(a®>+b*)? -sin(bx+c+a)
dx\dx) dx

1
=(2+ D)2 - o [e= - sin (bx + ¢ + )]

1
— (@ + )2 [eﬂi [sin (bx + ¢ + o0)] + [sin (bx + ¢ + @)] - [e”x]}
dx dx

L d d
=(a*+b?*)? {e‘”‘cos (bx +c+ ) = (bx + ¢+ )+ sin (bx + ¢ + o) e“xd— (ax)}
X X

1
=e™(a®+b*)2 [bcos (bx+c+ o)+ asin (bx + ¢+ a)]

1
=e™ (a2 + b2 \/a7+b{ cos (bx+c+a)+

b a
sin (bx +c¢c+ o
NrEa Jarp o )}

2

d_)z} =e“(a*+ b2 [sinacos (bx+c+a)+sin(bx+c+a)cosa] ...[from(I)]
x
y 24 VT
——=e"(a*+ b*) 2 sin (bx+ c+2a)
dx?
Similarly,

3

Y (@ + b7 sin (bx+ ¢ + 3a)
dx?

In general n™ order derivative will be

dx" a

= &

n l b
=e*(a’>+ b*) 2 sin (bx + ¢ + na) where oo = tan™! (—j




-(EXERCISE 1.5 )

N Y,
(1) Find the second order derivative of the (vil) If2y=x+1++x—1,
following : 5 show that 4(x* = 1) y,+4xy, —y =0.
(1) 2x°—4x° - o 9 (il) e* - tanx (viii) If y = log (x +2+ az’)m’
Qi) e* - cos 5x (iv) x° log x show that (2 + @)+ 2 ¥ _ ¢
dx? dx
(v) log (log x) (iv) x* (ix) Ify=sin (m cos™'x) then show that
P d*y dy B
(2) Find d_xyz of the following : (=2 —x—+my=0
(i) x=a(®—sinb),y=a(l—cos0) (x) Ify=log (log 2x), show that
(i) x=2af, y=4at xy, Ty, (1 +xy)=0.
T
(iii) x=sin 6, y =sin’ 6 when 6 = 5 (xi) Ifx?+ 6xy +)? = 10, show that
i 0 bsin O at 0 z &y __ 80
(iv) x=acosB,y=bsinBatd= 1 & Gty
(3) (i) Ifx=af and y =2at then show that (xii) Ifx=asinz—bcost,y=acos+bsint,
_y — a2 2 44,2
xydx2+a—0 showthat—y:—x .
dx? Vv

(i) Ify=emw ', show that

dy (4) Find the n™ derivative of the following :

dy
A+x)—5+@2x-m)—=0 1
dx dx (i) (ax+b)" (i) —
X
(i) Ifx=cost, y=e™ show that
dy dy (iii) e®*? (iv) am+4
1-x)——-x—-m*y=0
(1=x) dx? * dx "y )
(v) log (ax+b) (vi) cos x
(iv) Ify=x+ tan x, show that
(vii) sin (ax + b) (viii) cos (3 — 2x)

cos® x - @—2 +2x=0
dx? Y
(ix) log (2x+3)

(v) Ify=e™ - sin (bx), show that |

X
Y, = 2ay,+(a®+b)y=0 ®) 3x—5
) L[ =5y ‘
(Vl) If sec 'ZxTS);} =m, (Xl) y=e‘”"cos (bX+C)
Clrzy s _ 8. 6 _|_7
showthat?:O. (xii) y=e"" cos (6x +7)
x

. .



/—ﬁﬁ Let us Remember

% If a function f'(x) is differentiable at x = @ then it is continuous at x = a, but the converse is not

true.

&% Chain Rule : If y is differerentiable function of # and u is differerentiable function of x then y

L . . dy dy du
is differerentiable function of x and —=——
dx du dx
% Ify=f(x)is a differentiable of x such that the inverse function x = ~!( y) exists then
1
dy dy
_—=—, where — #0
dx dy dx 7
dx
&% Derivatives of Inverse Trigonometric functions :
f(x) sin ' x cos 'x tan ' x cot 'x sec 'x cosec 'x
1 1 1 1 1 1
') 1-x° N 1 +x2 1 +x2 xVx?—1 xxi—1
| <1 x| <1 xeR x€R x| <1 x| <1

% This is a simple shortcut to find the derivative of (function) (function

d
- fg=f{—g 7+ (log f)-g'}
X

f
&% Ify=f(t)and y=g(¢)is a differentiable of ¢ such that y is a function of x then
dy
dy  dr dx
—=— here — # 0
T
dt
&% Implict function of the form x™ y"= (x + y) """, m, n € R always have the first order derivative
d &
F_r and second order derivative S 0
dx x dx?
AN
r !
-L\MISCELLANEOUS EXERCISE 1 |

(I) Choose the correct option from the given alternatives :

1 8
(1) Letf(1)=3,f'(1)= 38 (1)=—4andg'(1) = B The derivative of\/[f(x)]2 +g )]

wrtxatx=11s

29
A~ 715

= &

7 31 29
(B) 3 ©) T (D) T




)

3)

4

)

(6)

(7

®)

)

(10)

d
If y = sec (tan™' x) then d_y atx=1,is equal to:
1 ’ 1
(4 (B) 1 © 7 (D) 2

1
45ty

If f(x) =sin™! ( 142 j, which of the following is not the derivative of f(x)

4x

2-4"log 4 4+1]og?2 4*og 4 22+ Jog 2
(A) T2 B) 2% © 8% D) 2
1 +4* 1+ 4> 1 + 4% 1 4+2%
dy
Ifx =y~ then — = ...
dx
x (xlogy—y) y (ylogx —x) . »* (1~ logx) y(1 - logx)
A) B) — 0 O
ANy oner-n P iciegy-yn QO ea-en P v oey)
: : dy
If y=sin (2 sin”! x), then — = ...
dx
2 —4x? 2 +4x? 45> — 1 1—2x?
A B C D
W == ® == © == D ==
e tan | — |+ sin | 2 tan | P then & —
y=tan l+m sin | 2 tan | +x , t ena =..
X 1 —2x 1 —2x 1—2x?
A B C) —/——— D
B e ()W © == P ==
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) =...
(A) 2 (B) 0 ©) -1 (D) 1
If g is the inverse of a function fand /' (x) = —t then the value of g’ (x) is equal to :
+x
1
(A) 1+x7 (B) ——— (©) 1+[g0] (D) 7
1+ [g(x)]

d
Ifx\/y+1+y\/x+1:Oandx¢ythend—y:...
x

X
(A) (1 +x)2 (B) _(1 +x)2 (C) (1 +x) (D) _ﬁ
( a—xj dy
Ify =tan™ , where —a<x<athen— =..
atx dx
A - B a c 1 . 1
()\/m ()\/m ©) N ()ZW

. .



&
(1) Ifx=a(cos®+6 sin@),y:a(sine—ecosG)then[ y}e_n:...

&
(12) Ify=acos (logx)and A_y +
dx?

(A)

82
T

a

(A) x*, —x, —y

(I) Solve the following :
(D f&x)=—x,
=2x,

2)

3)

18 —x
4 b

(B)

8V
T

a

B) x*,x,y

for 2<x<0

for0<x<2

for2<x<7

d
Bd—y + C =0, then the values of 4, B, C are ...
X

dx?
am 4 \/5
©) D)
82 an
(©) %, x,~y (D) x%, —x,y
g(x)=6—3x, for0<x<2
2x—4
== for2<x<7

Let u(x) = /[ g()], v(x) = g [ f (x)] and w(x) = g [ g(x)].

Find each derivative at x = 1, if it exists i.e. find ' (1), v' (1) and w' (1). if it doesn't exist then

explain why ?

The values of f(x), g(x), /' (x) and g’ (x) are given in the following table.

X S [ g [ [ | g
-1 3 2 -3 4
2 2 -1 -5 —4
Match the following.

A Group - Function

B Group - Derivative

d

(A)d—[f(g(X))] atx=-1
X
d

(B)d—[g(f(x)— D]atx=-1
X
d

(C)d—[f(f(X)—3)] atx=2
X

d
(D)d—[g(g(x))] atx =2
X

1.

2.

3.

4,

5.

—-16

20

—20

15

12

Suppose that the functions f'and g and their derivatives with respect to x have the following

valuesatx=0and x = 1.

x [ /)| g |f'(x)]|g' %)
0] 1 1 s | L
3

T I L )
3| 3

(1) The derivative of f[ g(x)]w. . t. x atx=01s
(i1) The derivative of g [ f(x)]w. . . x atx =0 is

xX=

(iii) The value of {i [x!0+ f (x)]‘z} is ......
dx 1

(iv) The derivative of f[(x +g(x)]w. r t. xatx=01s ......

4




(4) Differentiate the following w. 7. ¢. x

. . 1 1 _x .o 2 —1 1 +x
(1) sin|2 tan L+ x (i1) sin?| cot |«

X (3—x) VI+x—+1-x
1 —3x 2

(ii1) tan™!

(iv) cos™! (

1 - 1022 N1+ +
(v) tan’! a j+ cot‘l[ Xj (vi) tan‘[ #}
V1 +x2—x

X

d 2
5) () If\/yTx+\/yTx:c,thenshowthatd—zZL—\/;'

2

d 1-
(ii) If x \/1_—),24_), ﬂ: 1, then show thatd—zZ— 1—; :

I ) 0. then show ¢h dy sin’(a+y)
+y)+ +y) = —=—"
(iil) Ifx sin (a +y) + sin a cos (a +y) = 0, then show that o 0 g

. . . dy sin’(a+y)
(iv) If sin y = x sin (a + y), then show that — = ————.

dx sin a
x dy x-y
(v) Ifx=e> ,then show that —= .
dx xlogx
: L . . d*x dy\? &Py
(vi) If y =f(x) is a differentiable function then show that —=—|—| -——.
dy? dx | dx?
V1 +x2-1 2x N1 —x?
(6) (i) Differentiate tan! (—xj w. r t. tan™! (%j
X —2x

V1I+x2+x
VI +x2—x

\/1+x2—1j ( 1+\/1+x2j
—_— |W. I L. COS71 _— |.

(i) Differentiate log( jw. 7. t. cos (log x).

(ii1) Differentiate tan™! (

X 291+
a*bh?
(7) (1) Ify*=a*cos®’x+ b*sin’*x, show that y + — =
o2 3

& d
(ii) Tflog y = log (sin x) — x*, show that —> + dx -2 + (4x> + 3) y = 0.
dx? dx

. d*y (dyY
(iii) If x =a cos 0, y = b sin 0, show that a*| y——+|—| |+ b*=0.
dx*  |dx
(iv) If y = 4 cos (log x) + B sin (log x), show that x>y, +xy, +y=0.
(v) Ify=4e™+Be™, show thaty, — (m +n)y + (mn) y=0.

\/ /7 /7
0’0 0.0 0’0

‘
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2. APPLICATIONS OF DERIVATIVES

Let us Study J

e Applications of Drivatives to Tangents and Normals e  Derivative as a rate measure
e Approximations
e Rolle's Theorem and Lagrange's Mean Value Theorem. ¢  Increasing and Decreasing Functions

e Maxima and Minima

% Let us Recall J

e Continuous functions.

e Derivatives of Composite, Inverse Trigonometric, Logarithmic, Parametric functions.
e Relation between derivative and slope.

e Higher Order Derivatives.

2.1.1 Introduction :

In the previous chapter we have studied the derivatives of various functions such as composite
functions, Inverse Trigonometric functions, Logarithmic functions etc. and also the relation between
Derivative and slope of the tangent. In this chapter we are going to study various applications of
differentiation such as application to (i) Geometry, (ii) Rate measure (iii) Approximations (iv) Rolle's
Theorem and Lagrange's Mean Value Therorem (v) Increasing and Decreasing functions and (vi)
Maxima and Minima.

%‘@; Let us Learn ]

2.1.2 Application of Derivative in Geometry :
In the previous chapter we have studied the relation between derivative and slope of a line or slope
of a tangent to the curve at a given point on it.

Let y = f(x) be a continuous function of x representing a curve in XY- plane and P (x,, y,) be any

point on the curve.

d
Then {_y} =[f"(x)] v,y TEPTESENLS slope, also called gradient, of the tangent to the curve at
[CS]

P(x,,y,). The normalis perpendicular to the tangent. Hence, the slope of the normal at P will be the negative

of reciprocal of the slope of tangent at P. Let m and m'be the slopes of tangent and normal respectively,

= 2




d
then m = {_y} and m'=—
(o0 dx

i

Equation of tangent at P (x, y,) is given by

(xpyl)

and equation of normal at P (x, y,) is given by

1

&

(Xpyl)
@ SOLVED EXAMPLES |

y—y,=m'(x—x)where m'=—

d
L i {—y} £0.
(x, )

y -

) dy
=m(x—x)le.y—y = {E} (x—x)
)

Ex. 1 : Find the equations of tangent and normal to the curve at the given point on it.

1
(1) y:2x3—x2+2at[3, 2)

T
(iii) x=2sin*0, y =3 cos’0 at9=Z
Solution :

(i) Giventhat:y=2x*—x>+2

Differentiate WL oX

d
B4 o6 -2
dx  dx 1 12
Slope of tangent at (E’ 2) =m=06 (Ej -2 (—
1
"=

1
Slope of normal at (7, 2) =m'=-2

Equation of tangent is given by
2x—1

1 1
> x—2 =>2y—4= >
4y—-8=2x—-1=>2x—4y+7=0

Equation of normal is given by

y-2=

1
y—2:—2(x—5):>y—2=—2x+1

2x+y—3=0

1
2

|

(i) x¥*+2x’y—-9xy=0at(2,1)

(i) Giventhat:x*+2x*y —9xy=0

Differentiate w. 7. t. x

,dy dy d
3x2+2 x—+ X2 X—+y—(x)|=0
( RO ()j [dx ydx()j

X

,dy
dx

dy
3x% +2x° — + 4xy — ox — 9 =0
dx

dy 9y — 4xy — 3x?

2 9—:9 4 3
(2 -9%) Y4y =35 dx 2x? — 9x

Slope of tangent at (2, 1)
dy ) -4 -34) 9-8-12
(EJ oy T 2@ -91)  8-9
—11
m=—— ..
-1

Slope of normal at (2, 1) =

m=11

m=—-—
11
Equation of tangent is given by

y=1=11x—-2)=1lx—y—-21=0
Equation of normal is given by

1
y—lz—ﬁ(x—2):>lly—11:—x+2

x+1ly—13=0




(iii) Giventhat: y=3cos’0 Now, x =2 sin’*0
Diﬂerentiate wrt® Differentiate wrt0
d dx
dJé 3 — (cos 0)> =9 cos? 6 — (cos 0) 20 2 — (sm 0)’ = 6 sin® 6 — (sm 0)
;j—}é=—9coszesin9 £=6sin290059
We know that
dy Z—ye 9 cos?0 sin 6 3

=———=—_—_cot0

E_Z—’; 6sm 0 cosO 2

T
Slope of tangent at 6 = 1 is

() i)
- . =m=——cot| 7 |=—
dx 927 2 4

2
T 2
Slope of normal at (9=—j=m’=_
4 3
When, 0 z
en, 0="7

x=2sin3(§J=2[%) =%
n 1Y 3
y=3cos3(zj=3($j :Wf

1 3
The point is P = ( j
A ’ 2,, ’

Equation of tangent at P is given by

3 3 ( 1) 3 3x1L 3
——=— | —= |2y ==t —
Yor 20 wm)T e 2 v
3 3
Ty 20 de 3x+2y-3\2=0

272

Equation of normal is given by

3 2[ 1] 3 2 2

o 30 2 22 2 2

2x 2 3

- —y——t —— =

3 7 342 242

fe. 4\2x—6\2y+5=0 ... [ Multiply by 64/2 ]




Ex. 2 :Find points on the curve given by y = x*> — 6x* + x + 3 where the tangents are parallel to the line
y=x+35.
Solution : Equation of curve is y =x* — 6x* + x + 3

Differentiate w. 7. 7. x

d d
YL - +x+3)=32—12x+1
dx dx

Given that the tangent is parallel to y = x + 5 whose slope is 1.

d
Slope 0ftangent=d—y= =3 12x+1=1
X

3Ax(x—4)=0 so,x=0orx=4
Whenx =0, y=(0)*—6(0)>+(0)+3=3
Whenx=4,y=(4)>°—-6(4)+(4)+3=-25
So the required points on the curve are (0, 3) and (4, —25).

2.1.3 Derivative as a Rate measure :

If y = f (x) is the given function then a change in x from x, to x, is generally denoted by
dx = x, — x, and the corresponding change in y is denoted by 6y = (x,) — f'(x,). The difference quotient
By S0)—fx)

5 is called the average rate of change with respect to x. This can also be interpreted
X X, =X,

geometrically as the slope of the secant line joining the points P (x,, f(x,)) and O (x,, f(x,)) on the graph
of function y = f(x).

Consider the average rate of change over smaller and smaller intervals by letting x, to approach x and
therefore letting 6x to approach 0. The limit of these average rates of change is called the instantaneous
rate of change of y with respect to x at x = x , which is interpreted as the slope of the tangent to the curve
y= f(x)at P (x,f(x,)). Therefore instantaneous rate of change is given by

lim (S_yj _lim (Mj

Sr—>0( §y | 1o, X, x,

We recognize this limit as being the derivative of /' (x) at x = x, i.e. /' (x,). We know that one
interpretation of the derivative /' (a) is the instantaneous rate of change of y = f(x) with respect x when

x = a. The other interpretation is f'(x) at /' (a) is the slope of the tangent to y = f'(x) at (a, f (a)).
@) SOLVED EXAMPLES |

Ex. 1 : A stone is dropped in to a quiet lake and waves in the form of circles are generated, radius of the

circular wave increases at the rate of 5 cm/ sec. At the instant when the radius of the circular
wave is 8 cm, how fast the area enclosed is increasing ?

Solution : Let R be the radius and 4 be the area of the circular wave.

. .




A=mnR?

Differentiate w. 7. ¢. ¢

dA d
= = ®)

dt dt

A R
d— =27nR d— ... (D
dt dt
Given that C;—R =5 cm/sec.

t

Thus when R = 8 cm, from (I) we get,
dA
— =2n(8) (5) =80m
dt
Hence when the radius of the circular wave is 8 cm, the area of the circular wave is increasing at

the rate of 80w cm?/ sec.

Ex. 2 : The volume of the spherical ball is increasing at the rate of 4w cc/sec. Find the rate at which the
radius and the surface area are changing when the volume is 2887 cc.

Solution : Let R be the radius, S be the surface area and V' be the volume of the spherical ball.

4
V=—nR (D)
3
Differentiate w. 7. ¢. ¢
av 4 d
av. _°m da (R%)
dt 3 dt
4 dR av
4 = Tt ... [Given — = 4m cc/sec |
3 dt dt
dR 1
- =— (I
dt R? (I
When volume is 2887 cc.
4
ie. 3 T R*=288n  weget, R°=216 > R=6 ...[From (I)]

drR 1
From (II) we get, — = —
(hweg dt 36

1
So, the radius of the spherical ball is increasing at the rate of — cc/sec.

Now, S = 4nR?
Differentiate w. r: ¢. .
das dR

d
— =4n1— (R*>)=8nR —
dt dt dt

So, when R = 6 cm

ds 1 4
{_} = 8n(6) — = o
dt |R=6 36 3

4n
Surface area is increasing at the rate of 3 cm?/ sec.

= 2




Ex. 3 : Water is being poured at the rate of 36 m’/sec in to a cylindrical vessel of base radius 3 meters.
Find the rate at which water level is rising.
Solution : Let R be the radius of the base, H be the height and /" be the volume of the cylindrical vessel

at any time 7. R, V and H are functions of 7.

V=nR*H
V=n(3YH=9nH ...[Given:R=3]
Differentiate w. . ¢. t
dv dH
dt dt
dH 1 dV
e ()
dt  9m dt
Given that,
d
ar_ 36 m¥/sec ... (ID
dt
dH 1 4
From (I) we get, —=—36)=—
dt 9m T

o 4
Water level is rising at the rate of — meter/sec.
T

Ex. 4 : A man of height 180 cm is moving away from a lamp post at the rate of 1.2 meters per second.
If the height of the lamp post is 4.5 meters, find the rate at which (i) his shadow is lengthening.

(i1) the tip of the shadow is moving.
Solution : Let OA4 be the lamp post, MN be the man, MB = x be the length of shadow and OM =y be
the distance of the man from the lamp post at time ¢z. Given that man is moving away from

the lamp post at the rate of 1.2 meter/sec. x and y are functions of .

d d.
Hence zy = 1.2. The rate at which shadow is lengthening = Ex
t t

B is the tip of the shadow and it is at a distance of (x + y) from the post.
X x+y

1.8 45

i.e. 45x = 18x + 18y re. 27x =18y

2y
x:_

3
Differentiate w. 7. t. ¢ lamp

d 2 d 2 post
_x:_x_y:—x 1.2 = 0.8 meter/sec. \

dt 3 dt 3 man
rate at which the tip of the shadow is moving is given by
d dx d
_ (x + y) = _x + _y
dt dt dt

d
0 (x +y)=0.8 + 1.2 = 2 meter/sec.
t

Shadow is lengthening at the rate of 0.8 meter/ sec. and its tip is moving at the rate of 2 meters/sec.

. .




2.1.4 Velocity, Acceleration and Jerk :

If s = f(¢) 1s the desplacement function of a particle that moves along a straight line, then /' (¢) is
the rate of change of the displacement s with respect to the time ¢. In other words, /"' (¢) is the velocity
of the particle. The speed of the particle is the absolute value of the velocity, that is, | £ (¢)|.

The rate of change of velocity with respect to time is valled the acceleration of the particle denoted
by a (¢). Thus the acceleration function is the derivative of the velocity function and is therefore the

second derivative of the position function s = f(¢).

dy &
Thus,a=2 =22 e a(t)=v'(t)=5" ().

dt dr
Let us consider the third derivative of the position function s = f(¢) of an object that moves along a

straight line. s"' (¢) =v" (¢) = a’ (¢) is derivative of the acceleration function and is called the Jerk ( ;).

da d°
Thus, j= 761 = —f Hence the jerk j is the rate of change of acceleration. It is aptly named because
t t

a jerk means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

@) SOLVED EXAMPLES |

Ex.1: A car is moving in such a way that the | Ex.2: The displacement of a particle at time ¢
is given by s = 28 — 5/ + 4t — 3. Find the

distance it covers, is given by the equation
s = 4+ 3t where s is in meters and 7 is in time when the acceleration is 14 ft/ sec?, the
seconds. What would be the velocity and the velocity and the displacement at that time.
acceleration of the car at time =20 second ? | Solution : Displacement of a particle is given by
§s=20—-5f+4t—3 ..(D

Differentiate w. 7. ¢. t.

Solution : Let v be the velocity and a be the
acceleration of the car.
Distance traveled by the car is given by
s=4£+ 3t

Differentiate w. r: t. .

ds d

Velocity, v=""=2 (27— 52+ 41— 3)
di di

v=6£— 101+ 4 ...

Velocity of the car is given by Acceleration, a = ﬂ = i (622 — 10t + 4)

ds d dt dt
VZE=E(4tZ+3t)=8t+3 .. (D soa=12t-10 ... (1)
and Acceleration of the car is given by Given : Acceleration = 14 ft/ sec”.

d(d d 12t—10=14= 12t=24 = t=2
a=2 =L g+3)=8 ... _ .

de \ dt dt So, the particle reaches an acceleration of

Put =20 in (1),
Velocity ofthecar,v,_, =8(20)+3=163m/sec.
Put # =20 in (II),

Acceleration of the car, a,_, = 8 m/sec’.

Note : In this problem, the acceleration is

independent of time. Such a motion is said

to be uniformly accelerated motion.

/,
o G
AN

14 ft/ sec? in 2 seconds.

Velocity, when ¢ =2 is

v,_,=6(2)—10(2) + 4 = 8 ft/ sec.
Displacement when ¢ =2 is

s_,=2(2) =5(@2) +4(2) -3 =1 foot.
Hence the velocity is 8 ft/ sec and the

displacement is 1 foot after 2 seconds.

4
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. EXERCISE 2.1 |

5

J

(1) Find the equations of tangents and normals
to the curve at the point on it.
(1) y=x*+2e*+2at(0,4)
(i) x¥*+y —9%xy=0at(2,4)
(iii) x2—+3xy+2*=5at(y3,2)

T
(iv) 2xy+msiny=2mat (1, Ej

- 5 T
(v) xsin2y=ycos xat[4,2j

T

(vi) x=sineandy=cos26at9=g
1

(vii) x:\/T,th—\/—Yatt:4.

(2) Find the point on the curve y = Vx — 3 where
the tangent is perpendicular to the line
6x +3y—5=0.

(3) Find the points on the curve y = x> — 2x* — x

where the tangents are parallel to 3x—y+1=0.

(4) Find the equations of the tangents to the
curve x* + y* — 2x — 4y + 1= 0 which are
parallel to the X-axis.

(5) Find the equations of the normals to the

curve 3x* — y* = 8, which are parallel to the

line x + 3y =4.
(6) If the line y = 4x — 5 touches the curve
y* = ax® + b at the point (2, 3) find @ and b.
(7) A particle moves along the curve 6y =x* + 2.

Find the points on the curve at which
y-coordinate is changing 8 times as fast as

the X-coordinate.

(8) A spherical soap bubble is expanding so
that its radius is increasing at the rate of
0.02 cm/sec. At what rate is the surface

area is increasing, when its radius is 5 cm?

(9) The surface area of a spherical balloon is
increasing at the rate of 2 cm?/ sec. At what
rate the volume of the balloon is increasing

when radius of the balloon is 6 cm?

(10)If each side of an equilateral triangle
increases at the rate of \2 cm/ sec, find the
rate of increase of its area when its side of
length 3 cm .

(11) The volume of a sphere increase at the rate
of 20 cm?¥/ sec. Find the rate of change of its

surface area when its radius is 5 cm.

(12) The edge of a cube is decreasing at the rate of
0.6 cm/sec. Find the rate at which its volume is
decreasing when the edge of the cube is 2 cm.

(13) A man of height 2 meters walks at a uniform
speed of 6 km/hr away from a lamp post of 6
meters high. Find the rate at which the length

of the shadow is increasing.

(14) A man of height 1.5 meters walks toward a

of

lamp post of height 4.5 meters, at the rate
{—j meter/sec. Find the rate at which

(1) his shadow is shortening. (ii) the tip of the

shadow is moving.

(15) A ladder 10 meter long is leaning against a
vertical wall. If the bottom of the ladder is
pulled horizontally away from the wall at the
rate of 1.2 meters per second, find how fast the
top of the ladder is sliding down the wall when
the bottom is 6 meters away from the wall.

(16) If water is poured into an inverted hollow
cone whose semi-vertical angel is 30°, so
that its depth (measured along the axis)
increases at the rate of 1 cm/ sec. Find the
rate at which the volume of water increasing

when the depth is 2 cm.

. SO0 .



2.2.1 Approximations

If f(x) is a differentiable function of x, then its derivative at x = a is given by

£ (@)=lim {f(a + f;) —f(a)}

Here we use = sign for approximation.

For a sufficiently small # we have,

flath—f (a)}

h

hf'(a) = fla+h)—f(a)
flath)= fl@+hf (a)

f’(@*{

i.e.

This is the formula to find the approximate value of the function at x = a + /4, when f” (a) exists.

Let us solve some problems by using this formula.

@) SOLVED EXAMPLES |

Ex.1: Find the approximate value of V 64.1.

Solution :
Letf(x) = \Vx

Differentiate w. r. t. x.

1
S (x):ﬁ

Leta=64,h=0.1
For x = a = 64, from (I) we get
fa)=f(64)=\64=38

For x = a = 64, from (II) we get

1
F@=f 6 =5 o=

(D)

.0

... (1)

f'(a) =0.0625 . (IV)
We have, f(a + h) = f(a) +hf' (a)
f(64+0.1) = f(64) +(0.1): f'(64)

f(64.1)=8+(0.1):(0.0625) . . .
[From (III) and (IV)]

= 8+0.00625

£(64.1)= V641 = 8.00625

SO

Ex. 2 : Find the approximate value of (3.98)’.

Solution :
Let f(x) = x3 (D
Differentiate w. r. ¢. x.
f'(x)=3x* (1))
Leta=4,h=-0.02
For x = a =4, from (I) we get
fla)=f(4)=(4) =064 ... (1ID)
For x = a =4, from (II) we get
f(@)=f"(4)=3(4) =48 (V)

We have, f(a + h) = f(a) + hf'(a)

f[4+(=0.02)] = f(4)+(—0.02): " (4)
£(3.98) = 64 + (— 0.02).(48)
[From (III) and (IV)]
f(3.98) =64 —-0.96
f(3.98) =(3.98)° = 63.04




Ex. 3 : Find the approximate value of
sin (30° 30" ). Given that 1° = 0.0175¢
and cos 30° = 0.866.
Solution : Let f(x) = sin x ...
Differentiate w. r. t. x.
f'(x)=cosx
Now, 30° 30" = 30° + 30" = 30° + GJ
n, 0.1750¢
"6 2
T

30°30" = ‘ +0.00875 RN (1))

Leta = g, B = 0.00875

Forx=a= g, from (I) we get

f(a) =f(gj = sin (gj - % ~0.5... (Il

Forx=a= g, from (IT) we get

@) =/" (gj = cos [EJ = 0.866 . .. (IV)

We have, f(a + h) = f(a) +hf'(a)
f(g + 0.00875f) = f(g) +(0.00875) 1 (gj

£(30°30") =0.5+(0.00875)-(0.866) ...
... [From (IIT) and (IV)]
=0.5+0.075775

. £(30°30") =sin (30° 30") = 0.575775

Ex. 4 : Findtheapproximate value oftan'(0.99),
Given that t = 3.1416.
Solution : Let f(x) =tan"'x ... (D
Differentiate w. r. t. x.
1
"x)= oo
S =15 (1)
Leta=1,h=-0.01
For x =a =1, from (I) we get
f(a) :f(l):tan’l(l):g ... (IID)
Forx=a=1, from (II) we get
1
! =71 1 = = 05 . I
fl@=f = av)

We have, f(a + h) = f(a)+ hf'(a)
ST+ (0.0D)] = (1) +(=0.01)- /" (1)

£(0.99) = g— (0.01)(0.5) . . . [From
(I11) and (IV)]

=T 0.005
4

n 3.1416 0.005

= 0.7854 — 0.005 = 0.7804

-~ £(0.99) = tan™(0.99) = 0.7804

We have, f(a + h) = f(a)+ hf'(a)

£(1+0.005) = £(1)+(0.005) 7" (1)

£(1.005) =2.7183 + (0.005) (2.7183) ...
... [From (III) and (I1V)]

£(1.005) = 2.7183 + 0.0135915
=2.7318915

Ex.5: Find the approximate value of e'%%. Given that e = 2.7183.
Solution : Let f(x) = e* ...(D

Differentiate w. r. t. x.

f'(x)=e" ...(ID

Leta=1, h=0.005

Forx=a=1, from (I) we get

fl@)=f(1)=¢e"=2.7183 ... (1D

Forx =a =1, from (II) we get

f'@)=f"(1)=e"=2.7183 (V)

£(1.005) = &5 = 2.73189

. .



Ex. 6 : Find the approximate value of
log,, (998). Given that log, e = 0.4343.
Solution : Let f(x) = log ,x = 1:)(;51)60
S (x)=(log,e)logx ... (D

Differentiate w. r. . x.

log. e 0.4343
[1@)=——=

Leta=1000, /7 =-2
For x = a = 1000, from (I) we get
f(a) =£(1000) = log 1000
. f(a)=3log 10=3 ... (1)
For x = a = 1000, from (II) we get
(@) =£" (1000) = 0.4343
1000
. f"(a)=0.0004343 (V)
We have, f(a + h) = f(a)+ hf'(a)
f11000 + (=2)] = £(1000) + (=2) f” (1000)
£(998) =3—(2)(0.0004343). ..
[From (III) and (IV)]

=3 - 0.0008686
£(998) = log (998 ) = 2.9991314

)

X

Ex. 7 : Find the approximate value of
f(x)=x>+5x*—2x+ 3 atx=1.98.
Solution : Let f(x) =x* + 5x* = 2x + 3 ...(D
Differentiate w. r. ¢. x.
f1(x)=3x*+10x—2
Leta=2,h=—-0.02
For x = a =2, from (I) we get
f@=/(2)= Q) +527-22)+3
 fla)=27 ... (1)

For x = a =2, from (II) we get
f(@)=/"(2) =32y +10(2) -2
. f"(a)=30 .. (IV)
We have, f(a + h) = f(a)+hf'(a)
fI2) +(=0.02)] = f(2) +(=0.02) /" (2)
f(1.98) =27-(0.02)(30) ... [From
(IIT) and (IV)]

)

=27-06
£(1.98) =264

e

N

~
. EXERCISE 2.2)

(1) Find the approximate value of given

functions, at required points.

G) V895 (i) V28 (i) V31.98
(v) 397  (v) (401y

(2) Find the approximate value of

(i) sin (61°) given that 1°=0.0174¢,
V3=1.732

(i) sin (29°30") given that 1°=0.0175¢,
V3=1.732

(111) cos (60° 30") given that 1° =0.0175¢,
V3=1.732

(iv) tan (45°40") given that 1°=0.0175<.

(3) Find the approximate value of
(1) tan’' (0.999) (i) cot™(0.999)
(iii) tan’' (1.001)

(4) Find the approximate value of
(1) e™» (i) e*! given that ¢ = 7.389
(iii) 3% given that log 3 = 1.0986

(5) Find the approximate value of
(i) log,(101) given that log, 10 = 2.3026
(i) log,(9.01) given that log 3 = 1.0986
iii) log, (1016) given that log e =0.4343

glO g 10

(6) Find the approximate value of
1) fx)=x-3x+t5atx=1.99
(1) f(x)=x*+5x>—Tx+10atx=1.12

AN



2.3.1 Rolle's Theorem or Rolle's Lemma :

If a real-valued function f'is continous on [a, b], differentiable on the open interval (a, b) and f (@)
= f(b), then there exists at least one ¢ in the open interval (a, b) such that /' (¢) = 0.

Rolle's Theorem essentially states that any real-valued differentiable function that attains equal
values at two distinct points on it, must have at least one stationary point somewhere in between them,
that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero.

Geometrical Significance :

Let f'(x) be a real valued
function defined on [a, b] A B

YA YA

and it is continuous on [a, b].

This means that we can ! f(a C f(©b)
draw the graph f (x) between f(ay UL )
the values x = a and x = b. | X'+ —— b »X X' < T : A >X
Also f (x) is differentiable v v

on (a, b) which means the Fig. 2.3.1

graph of f (x) has a tangent
at each point of (a, ). Now the existence of real number ¢ € (a, b) such that /' (¢) = 0 shows that

the tangent to the curve at x = ¢ has slope zero, that is, tangent is parallel to X-axis since f'(a) = f (D)

@ SOLVED EXAMPLES |

Ex.1: Check whether conditions of Rolle's theorem are satisfied by the following functions.

(1) f(x)=2x*—-5x>+3x+2,x € {O,%} (i) f(x)=x>—2x+3,x e [l,4]
Solution :

(i) Given that f(x)=2x"—5x*+3x+2 ..
f(x) is a polynomial which is continuous on {0, ﬂ and it is differentiable on (O, %)
LetaZO,ande%,

For x =a =0 from (I) we get,
f@=f(0)=20)y-50y +30)+2=2
Forx=5b= (%) from (I) we get,

10 =1(3)-2(3) s (3] +3(3)e2 - 22420

2 2 2 2 8
oy = (3) -3 1y

So, here f(a) =f(b)i.e. f(0)=f [%j =2

Hence conditions of Rolle's Theorem are satified.

. .




(i) Given that fx)=x*—2x+3

()

f(x) is a polynomial which is continuous on [1, 4] and it is differentiable on (1, 4).

Leta=1,and b =4

Forx=a =1 from (I) we get,
fl@=f)=@1y-2(1)+3=2
For x = b =4 from (I) we get,

FB) =1 (@)= @ -24)+3=11
So, here f'(a) #f(b)i.e. f (1) £f (4)

Hence conditions of Rolle's theorem are not satisfied.

Ex. 2 : Verify Rolle's theorem for the function

F(x)=x>—4x+ 10 on [0, 4].

Solution :

Giventhat f(x)=x*—4x+10 ... (D

f(x) is a polynomial which is continuous on
[0, 4] and it is differentiable on (0, 4).

Leta=0,and b=4

For x =a =0 from (I) we get,
f(@)=f(0)=(0)*—4(0)+10=10

For x = b =4 from (I) we get,
FB)=1#)= @~ 44 +10=10

So, here f(a) =f(b) 1ie.f(0)=f(4)=10

All the conditions of Rolle's theorem are

satisfied.

To get the value of ¢, we should have
f'(c) =0 for some c € (0, 4)
Differentiate (I) w. 7. ¢. x.

f'(x) =2x—4=2(x—4)

Now, for x =c,

f'(c) =0=>2(c—2)=0=>c=2
Alsoc=2 € (0,4)

Thus Rolle's theorem is verified.

Ex.3: Given an interval [a, b] that satisfies
hypothesis of Rolle's theorem for the
function f'(x) = x*> — 2x? + 3. It is known
that @ = 0. Find the value of b.

Solution :

Given that f(x)=x>—2x>+3 ...(D

Letg(x)=x>—2x*=x*(x — 2)

From (I), f(x)=g(x)+3

We see that g (x) becomes zero for x = 0 and

x=2.

We observe that for x =0,
f(0)=g@)+3=3

and for x = 2,
f@)=g@2)+3=3

We can write that f(0) =f(2) =3

It is obvious that the function f (x) is
everywhere continuous and differentiable as
a cubic polynomial. Consequently, it satisfies
all the conditions of Rolle's theorem on the
interval [0, 2].

So b=2.

/,
& O@O o
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Ex. 4 : Verify Rolle's theorem for the function f'(x) = e* (sin x — cos x) on E, 5—“}

4
Solution : Given that, f(x)=e"(sinx — cos x) ...(D
We know that e*, sin x and cos x are continuous and differentiable on their domains. Therefore
f(x) is continuous and differentiable on E, %} and (g, %j respectively.

LetaZE,andeS—7T
4 4

Forx=a= % from (I) we get,

ros(5)=t o 5)- () ()

Forx=5b= (%tj from (I) we get,

o) () (3 )

r@=r®) e (5)=r(3F)

All the conditions of Rolle's theorem are satisfied.

To get the value of ¢, we should have /' (c) = 0 for some ¢ € F, %Tn}

Differentiate (I) w. 7. t. x.

f'(x)=e*(cos x + sinx) + (sin x — cos x) e*=2e* sin x

Now, forx=c, f'(c) =0=2e“sinc=0.Ase“#0 forany c € R
sinc=0=c¢=0,+x,+2n, +3m,. ..

Itis clearly seenthat = € F S—R} SLC=T

4 4
Thus Rolle's theorem is verified.

2.3.2 Lagrange's Mean Value Theorem (LMVT) :

If a real-valued function f'is continous on a closed [a, b] and differentiable on the open interval
(a, b) then there exists at least one ¢ in the open interval (a, b) such that

f(b)—f(a)
b—a
Lagrange's mean value theorem states, that for any real-valued diffenentiable function which is

continuous at the two end points, there is at least one point at which the tangent is parallel to the the
secant through its end points.

. .

)=




Geometrical Significance :

Draw the curve y = f(x) (see Figure 2.3.2) and take the end Yt
points 4 (a, f (a)) and B (b, f (b)) on the curve, then

Jf(®)—f(a)

—a

Slope of the chord AB =

Since by statement of Lagrange's Mean Value.

f (b) —/f(a)

Theorem

S )=
f'(c)= Slope of the chord 4B.

s bﬂf&b\\
\
\0«5&0) L~
A
X'e 4 2 b > X
Y'
Fig. 2.3.2

This shows that the tangent to the curve y = f(x) at the point x = ¢

is parallel to the chord AB.

@) SOLVED EXAMPLES ]

Ex.1: Verify Lagrange's mean value theorem
for the function f (x) = Yx + 4 on the
interval [0, 5].

Solution : Given that /' (x) = \x + 4 ...

The function f (x) is continuous on the
closed interval [0, 5] and differentiable
on the open interval (0, 5), so the LMVT
is applicable to the function.

Differentiate (I) w. 7. ¢. x.

! = (I
S ) NiTa (ID)
Leta=0and b=5
From (I), f(a)=f(0)=~0+4=2

S®)=f(5)=~5+4=3
Let ¢ € (0, 5) such that
b —
o 2L b)_f(a)
a
I 3-2 1
2\Jc+4 5-0 5
5 25 9
\/C"‘—4—53 +4—T' :ZE(O,S)

Thus Lagrange's Mean Value Theorem

1s verified.

Ex.2: Verify Lagrange's mean value theorem
for the function f (x) = x + % on the
interval [1, 3].

Solution : Given that f(x) =x + i ...

The function f (x) is continuous on the
closed interval [1, 3] and differentiable
on the open interval (1, 3), so the LMVT
is applicable to the function.

Differentiate (I) w. 7. . x.

f'(x)=1—é .

Leta=1andb=3
From (1), f(a)=f(l)=l+%=2

f0)=r@)=3++=1

3 3
Let ¢ € (1, 3) such that
, S(®)—f(a)
S (©) T4
10
L
c? 3-1
15 2
oL -3 .2
c? 2 3
2=3=c=%43
=3 e(1,3)andc=—13 ¢ (1, 3)

= 2
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\EXERCISE 23 |

)

J

(1) Check the validity of the Rolle's theorem for

the following functions.

1) fx)=x"—4x+3,xe][l,3]

(i) f(x)=e*sinx,x € [0, n]

(i) f(x)=2x*—5x+3,x € [1, 3]

(iv) f(x)=sinx—cosx+3,x € [0, 2x]

V) fx)=x*if0<x<2
=6—xif2<x<6

(vi) f(x) :x%, x e [-1,1]

[a, b] that satisfies
hypothesis of Rolle's thorem for the function
f(x)=x*+x>—2. It is known that a = — 1.
Find the value of b.

(3) Verify Rolle's theorem for the following

(2) Given an interval

functions.
(1) f(x)=sinx+cosx+7,x € [0,2n]

(i) f(x)=sin @J x e [0, 2]
(iii) f(¥)=x>—5x+9,x e [1,4]

2.4.1 Increasing and decreasing functions :

Increasing functions :

(4) If Rolle's theorem holds for the function
fx)=x*+px*+gx+5,x e[l,3] with
1

c=2+ NER find the values of p and g¢.

(5) Rolle's theorem holds for the function
f(x)=(x—2)logx,x € [1, 2], show that the
equation x log x =2 — x is satisfied by at least
one value of x in (1, 2).

(6) The function f'(x) =x (x + 3) e 7 satisfies all
the conditions of Rolle's theorem on [—3, 0].
Find the value of ¢ such that /' (c) = 0.

(7) Verify Lagrange's mean value theorem for
the following functions.

(1) fx)=logx,on[l,e]
(i) fx)=(x—-1)x—2)(x—3)on][0,4]
11 13
(i) f(x)=x*—3x—1,x¢€ {—7, 7}
(iv) f(x)=2x—x*x € [0, 1]

V) fo=

x— 1 on [4, 5]
X

Definition : A function f'is said to be a monotonically (or strictly) increasing function on an interval

(a, b) if for any x , x, € (a, b) with if x, <x_, we have f(x)) < (x,).

Consider an increasing function y = f'(x) in (a, b). Let 2> 0 be a small increment in x then,

x < x+th
fx) < f(x+h)
fx+h) > f(x)
fx+h)—f(x) > 0
S+ h) = fx) -

0
h
lim |:f(x +h) _f(x):| 0
h—0 h -
f'x) > 0

[x=x,x+th=x]

[f(x)<f(x)] Y

>

X'




If /' (a) > 0, then in a small 6-neighborhood of a 1.e. (a — 0, a + 3), we have f'strictly increasing if

f(a+h)—f(a)>0
h
Hence if 0 <h <9, f(a+h)—f(a)>0and f(a—h)—f(a)<O0
Thus for 0 <h <9, f(a—h)<f(a)<f(a+h)

Decreasing functions :

for |h] <O

Definition : A function f'is said to be a monotonically (strictly) decreasing function on an interval (a, b)
if for any x , x, € (a, b) with x, <x, , we have f(x) > (x,).

Consider a decreasing function y = f(x) in (a, b). Let 4 > 0 be a small increment in x then,

x+th > x
Sx) < fx+th)
SGxth) < f(x)
Sxt+h)-—f(x) <0
S+ h)—f(x)
h
{f(erh)—f(X)
h

< 0

}<

<

lim

h—0

0

') =0

[x=Xx,x+h=x,] v
[f(x) <f(x)]
X'+—5 X
v
Fig. 2.4.2

If ' (a) <0, then in a small -neighborhood of @ i.e. (@ — d, a + §), we have f strictly decreasing

because

fla+h-f@_,
h

for |h| <3

Hence for 0 <h <9, f(a—h)>f(a)>f(a+h)

Note :

Whenever /' (x) = 0, at that point the tangent is parallel to X-axis, we cannot deduce that

whether f'(x) is increasing or decreasing at that point.

@ SOLVED EXAMPLES |

Ex. 1: Show that the function f'(x) = x* + 10x + 7

for x € R is strictly increasing.
Solution : Given that f'(x) = x> + 10x + 7
Differentiate w. 7. ¢. x.
f'(x)=3x*+10
Here, 3x*> >0 for all x € R and 10 > 0.
3 +10>0=f"(x)>0

Thus f(x) is a strictly increasing function.

Ex. 2: Test whether the function
f(x)=x*+ 6x* + 12x — 5 is increasing or
decreasing for all x € R.

Solution : Given that f'(x) = x> + 6x* + 12x — 5
Differentiate w. 7. ¢. x.
f'(x)=3x>+12x+ 12=3(x* +4x + 4)
S ) =30 +2)°

3(x + 2)? is always positive for x #—2
S f'(x)>0forallx e R

Hence f'(x) is an increasing function for all x € R.

4




Ex. 3: Find the values of x, for which the funciton f (x) = x* + 12x* + 36x + 6 is (i) monotonically

increasing. (i1) monotonically decreasing.

Solution : Given that /' (x) = x> + 12x> + 36x + 6
Differentiate w. 7. ¢. x.
S (x) =3x*+24x + 36
=3(x>+8x+12)
S1) =3(x+2)(x+6)
(i) f(x) is monotonically increasing if f'(x) >0
1.e.3(x+2)(x+6)>0,(x+2)(x+6)>0
then either (x +2)<O0and (x + 6) <Oor (x +2)>0and (x + 6) >0
Case(I): x+2<0andx+6<0
x<—2andx<-6
Thus for every x <— 6, (x +2) (x + 6) > 0, hence " is monotonically increasing.
Case(I):x+2>0andx+6>0
x>—2andx>-6
Thus for every x > — 2, (x + 2) (x + 6) > 0 and /' is monotonically increasing.
From Case (I) and Case (II), f(x) is monotonically increasing if and only if x <— 6 or x > — 2.
Hence, x € (00,— 6) or x € (— 2, 00) = f is monotonically increasing.
(i) f(x) is said to be monotonically decreasing if /' (x) =0
1e.3x+2)(x+6)<0,(x+2)(x+6)<0
then either (x + 2)<0and (x +6) >0 or (x +2)>0and (x + 6) <0
Case(I): x+2<0andx+6>0
x<—2andx>-6
Thus for x € (— 6, — 2), f is monotonically decreasing.
Case(Il) : x+2>0andx+6<0
x>—2andx<—-6

This case does not arise. . . . [check. why ?]

. .




2.4.2 Maxima and Minima :
Maxima of a function f'(x) : A function f'(x) is said to have a maxima at x = ¢ if the value of the function
at x = c is greater than any other value of (x) in a d-neighborhood of c. That is for a small & > 0 and for
x € (c— 9, c+3d) wehave f(c) > f(x). The value f(c) is called a Maxima of f(x). Thus the function f'(x)
will have maxima at x = ¢ if f(x) is increasing in ¢ — d <x < ¢ and decreasing in ¢ <x <c¢ + d.
Minima of a function f'(x) : A function f(x) is said to have a minima at x = ¢ if the value of the function
at x = c is less than any other value of f'(x) in a 3-neighborhood of ¢. That is for a small 6 > 0 and for x
€ (¢ — 9, c+9d) we have f(c) <f(x). The value f(c) is called a Minima of /' (x). Thus the function f (x)
will have minima at x = ¢ if f(x) is decreasing in ¢ — 8 < x < ¢ and increasing in ¢ <x < ¢ + 0.

If f' (c) = 0 then at x = ¢ the function is neither increasing nor decrasing, such a point on the curve

is called turning point or stationary point of the function. Any point at which the tangent to the graph

)
is horizontal is a turning point. We can locate the turn points by looking for points at which d_y =0.
X

At these points if the function has Maxima or Minima then these are called extreme values of the

function.

Note : The maxima and the minima of a function are not necessarily the greatest and the least values
of the function in the whole domain. Actually these are the greatest and the least values of the
function in a small interval. Hence the maxima or the minima defined above are known as local

(or relative) maximum and the local (or relative) minimum of the function f (x).
To find the extreme values of the function let us use following tests.

2.4.3 First derivative test :
A function f'(x) has a maxima at x = ¢ if
i) =0
(1) f'(c—h)>0 [ f(x) is increasing for values of x < ¢ ]
(i) f'(c+h)<0 [ f(x) is decreasing for values of x > ¢ ]
where 4 is a small positive number.

A function f(x) has a minima at x = ¢ if

@ f'e)=0
(1) f'(c—h)<0 [ f(x) 1s decreasing for values of x < ¢ ]
(1) f'(c+h)>0 [ f(x) 1s increasing for values of x > ¢ |

where 4 is a small positive number.

Note: Iff'(c)=0andf'(c—h)>0,f"(c+h)>0orf'(c—h)<0,f'(c+h)<O0 then f(c)in neither
maxima nor minima. In such a case x = ¢ is called a point of inflexion. e.g. f(x) =x*, f(x) =x°
in[-2,2].

= 2




@) SOLVED EXAMPLES

Ex. 1: Find the local maxima or local minima of f(x) = x* — 3x.

Solution : Given that ' (x) = x* — 3x ..
Differentiate (I) w. 7. t. x.
f'(x) =3x*-3=3@*-1) ...(IDn
For extreme values, /' (x) =0
3x*—=3=0 ie.3(@—1)=0

ie.x’—1=0=20=>x=1=x=+1

The turning points are x = 1 and x =—1

Let's consider the turning point, x = 1

Letx=1— h for a small, 2> 0, from (II) we get,
ff(A=h)=3[1-h*—-11=30-2h+h—-1)=3h(h—2)
f"A—=h)<0...[since, h>0,h—2<0]
f'(x)forx=1-h= f(x) is decreasing for, x > 1.

Now for x =1 + & for a small, 2> 0, from (II) we get,
ffA+h)=3[A+h?*-11=30+2h+h—1)=3 (I +2h)
f'"(A+h)y>0...[since, h>0,h*+2h>0]
f'(x)<0forx=1+h= f(x)is increasing for, x < 1.
f'x)<O0for1—h<x<l

f'x)>0for1 <x<1+h.

x =1 1s the point of local minima.

Minima of f(x), is f(1)=1—3 (1) =2

Now, let's consider the turning point, x = —1

Letx=—1— h for a small, 2> 0, from (1) we get,
f"C1=h)=3[-1-h?*-1]=30+2r+h—1)=3(h*+2h)
f'1—-h)>0...[since, h>0,r*+2h>0]
f'(x)>0forx=-1—h= f(x)is increasing for, x <—1.
Now for x =—1 + & for a small, ~ > 0, from (IT) we get,
1+ =3[—1+h*—1]1=30-2h+hr—-1)=—3h(2—h)
f'1+h)<0...[since, h>0,2—h>0]
f'(x)<0forx=—-1+h= f(x)is decreasing for, x > —1.
f'x)>0for—-1—-h<x<-1

f'x)>0for—1<x<-1+h.

x =— 1 is the point of local maxima.

Maxima of f(x), is f(—1)=(-1)) = 3(-1)=-1+3=2
Hence, Maxima of /' (x) = 2 and Minima of f'(x) = —2

:



2.4.4 Second derivative test :
A function f(x) has amaximaatx =cif f'(c)=0and /" (c) <0
A function f(x) has aminimaatx=ciff'(c)=0and /" (¢) <0

Note : If /" (c) =0 then second derivative test fails so, you may try using first derivative test.

Y4 Y1 /()
L, (¢, f(0) L1 L3

: : (c.f()

L N\ b L i

R I |

- R X'« : » X
X 0 c—-8 ¢ ¢+ >X 0 c—-8 ¢ c+$§
M

Fig. 2.4.4 (a) Fig. 2.4.4 (b)

Maxima at A : Consider the slopes of the tangents (See Fig 2.4.4a) Slope of L, is +ve, slope of L, = 0

and slope of L, is —ve. Thus the slope is seen to be decreasing if there is a maximum at A.

Minima at A : Consider the slopes of the tangents (See Fig 2.4.4b) slope of L, is —ve, slope of L, = 0

and slope of L, is +ve. Thus the slope is seen to be increasing if there is a minima at A.

@) SOLVED EXAMPLES )

Ex. 1: Find the local maximum and local minimum value of /' (x) = x*> — 3x* — 24x + 5.

Solution : Given that f(x) =x* —3x>—24x+5 ... ()

Differentiate (I) w. . ¢. x.
f(x)=3x*—6x—24 ... (ID
For extreme values, /' (x) =0

3x*—6x—241e.3(*—2x—8)=0

For maximum of f'(x), put x = —2 in (I)
f(=2)=(-2)’—3(-2)*—24(-2)+5=33.
For x =4, from (III) we get
f"4)=64)—-6=18>0

ie.x’? —2x—8=0ie. (x+2)(x—4)=0
=>x+2=00rx—4=0=>x=—2o0rx=4
The stationary points are x =—2 and x = 4.
Differentiate (I1) w. 7 ¢. x.

f"(x)=6x—06 ... (1)
For x =—2, from (III) we get,
f"(=2)=6(-2)-6=-18<0

At x = -2, f(x) has a maximum value.

:

At x =4, f(x) has a minimum value.

For minima of /' (x), put x =4 in (I)
f@A=@4y-3@4)yr-244)+5=-75
Local maximum of /'(x) is 33 when x = -2
and

Local minimum of f'(x) is =75 when x = 4.




Ex. 2:

A wire of length 120 cm is bent in the form
of a rectangle. Find its dimensions if the

area of the rectangle is maximum.

Solution : Let x cm and y cm be the length and

the breadth of the rectangle. Perimeter of
rectangle = 120 cm.

2 (x+y)=120 so,x+y=060

y=60—x ... (D

Let 4 be the area of the rectangle
A=xy=x(60—x)=60x—x .. [From (I)]

Differentiate w. 7. ¢. x.

dA
—=60—2x (1D
dx A
For maximum area — =0
dx
1.e.60 —2x=0=x=30
Differentiate (II) w. 7. . x.
d*A
=-2 LI

I (1)
For, x =30 from (IIT) we get,

d*A
(£8).ur-2

dxz x=30

When, x = 30, Area of the rectangle is
maximum.

Put x =30 in (I) we get y = 60 — 30 = 30
Area of the rectangle is maximum if length
= breadth = 30 cm.

Ex. 3:

A Rectangular sheet of paper has it area 24
sq. meters. The margin at the top and the
bottomare 75 cmeachand at the sides 50 cm
each. What are the dimensions of the paper,

ifthe area of the printed space is maximum ?

Solution : Let x m and y m be the width and the

length of the rectangular sheet of paper
respectively. Area of the paper = 24 sq. m.

24
xy=24:>y=7 ... (D

:

1.€.

A
75 cm
50 cm| 50 cm| y
75 cm
v
< X >
Fig. 2.4.5

After leaving the margins, length of the
printing space is (x — 1) m and breadth of
the printing space is (y — 1.5) m.

Let A4 be the area of the printing space

24
A =x—D((y—-15=x—-1) (?— 1.5)

24
=24 -1.5x——+1.5 ...[ From ()]
X

24
A =255—-15x—— ... (I
X
Differentiate w. r: ¢. x.
dA 24
—=—15+— ... (I
0 " (I11)
) . dA
For maximum printing space d_ =0
X

24
- 1.5x+—2=0:> 1.5x*=24=x=+4,x#—4
X

x=4

Differentiate (IIT) w. 7 ¢. x.
d*4 48

—=—— ... (IV
R av)

For, x = 4, from (IV) we get,

d*4 48
-- <9
(a’xzjx=4 (4)°

When, x = 4 Area of the rectangular
printing space is maximum.
Putx=4in(I)wegety=24—4=6

Area of the printing space is maximum

when width printing space = 4 m. and

length of the printing space = 6 m.
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Ex. 4: An open box is to be cut out of piece of

square card coard of side 18 cm by cutting
of equal squares from the corners and
turning up the sides. Find the maximum

volume of the box.

Solution : Let the side of each of the small squares

1.€.

cut be x cm, so that each side of the box to

be made is (18 — 2x) cm. and height x cm.

3
:

e
Fig. 2.4.6

Let V' be the volume of the box.
V' = Area of the base x Height
=(18—2x)*x=(324—T72x +4x*) x

V =4x>—T72x*+ 324x ... (D
Differentiate w. . t. x
dav
—=12x*—144x+324 ...(I)
dx

. V
For maximum volume — =0

dx
12x2—144x+324=0=x>*—12x+27=0

(x-3)(x-9=0=>x-3=00rx-9=0

x=3o0rx=9, butx#9 ... x=3
Differentiate (I) w. 7 ¢. x
d*v
——=24x— 144 .1
dx?
For, x = 3 from (III) we get,
d*v
(_J =243)—144=-72<0
dx* ) x=3

Volume of the box is maximum when x = 3.
Maximum volume of the box
=(18 —6)*(3)=432 c.c.

‘

Ex. 5: Two sides of a triangle are given, find the

angle between them such that the area of

the triangle is maximum.

Solution : Let ABC be a triangle. Let the given

sides be AB=cand AC = b.

A

1.€.

a C
Fig. 2.4.7
Let A be the area of the triangle.
A:%bcsinA (D
Differentiate w. r. 1. A4.
Z—ﬁZ%cosA ... (ID

. dA
For maximum area — =0
dA

bc T
7005A=0:>cosA=0:>A=E

Differentiate (II) w. 7. ¢. A.

d’A b
—=——csinA

T ... (IID)

T
For, 4 = 5 from (II) we get,

d’A bc = (m bc
— n=——sm(—j=—<0
(dAZJA; 2 2 a

When, 4 = Area of the triangle is

T
2
maximum.

Hence, the area of the triangle is maximum

n
when the angle between the given sides =

T
Note : sin 4 is maximum (=1), when 4 = 5
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Ex. 6:

The slant side of a right circular cone is /. Show that the semi-vertical angle of the cone of

maximum volume is tan' (V2 ).

Solution : Let x be the height of the cone and 7 be the radius of the base.

1.€.

Ex. 7:

So, =1 —x* ..(D
Let V' be the volume of the cone.

1 T
V =—mrx=——-x)x
3 3

T
Vo= 3 (Px—x%)
Differentiate w. 7. t. x
dv =
— =—(P—3x o1
F30TW
For maximum volume — =0
dx
T ?
—(P-3x)=0=>x*=—
3 3
x=+L:x=L 0rx=—iis the stataionary point but x;é—i x=i
3 V3 V3 ’ V3 V3
Differentiate (I1) w. . ¢. x
&
(_VJ -~ om ..am
dx?
[
For, x = — from (III) we get,
73 (1) we g
(szj 2l
—_— < O
dx2 X=\/—_ \/3
[
Volume of the cone is maximum when height of the cone is x = E
! IV IN2
Putx=—in(I) we get,r= [/ — (—j =—
NG (1) we g 33
Let o be the semi-vertical angle.
o L2
Thentanoc=—=#=\/§
Y5
a=tan" (V2)

Find the height of a covered box of fixed volume so that the total surface area of the box is

minimum whose base is a rectangle with one side three times as long as the other.

Solution : Given that, box has a rectangular base with one side three times as long as other.

Let x and 3x be the sides of the rectangular base.
Let / be the height of the box and ¥ be its volume.

* *




V'=(x) (3x) (h)=3x?h . .. [Observe that V' is constant]

Differentiate w. 7. ¢. x.

d dh d
—V=3x2 —+h—(3x%)
dx dx dx

3x2ﬁ+6xh=0:>ﬁ=—%
dx dx X

(D)

Let S be the surface area of the box.
S=(2x3x*)+ (2 x 3xh) + (2 x xh) = 6x*> + 8xh
Differentiate w. 7. t. x.

d dh d

d_S =12x+8 (x—-irh—(x)J

X dx dx

d. 2h

—S=12x+8|:x[——)+h] ... [ from (I) ]
X X

= 12x + 8(~2h + h)

ds
— =12x—-8h ...(ID)
dx

For minimum surface area

§=0:>12x—8h=0:>h=3—x
dx 2
Differentiate (IT) w. 7. ¢. x.
d*S dh 2h 16h
(—J:12—8—=12—8(——j=12+— .1 ... [ from (I) ]

dx? dx X X

Both x and 4 are positive, from (III) we get,

(£5)- 12 190

dx? X

3
Surface area of the box is minimum if height = 5 x shorter side of base.

( )
1 EXERCISE 2.4
& J
(1) Test whether the following functions are (i) f(x)=3+3x—3x*+x°
increasing or decreasing. (i) f(x)=x"—6x>—36x+7

1) fx)=x—-6x>+12x—16,x € R

N (3) Find the values of x for which the following
(i) f(x)=2-3x+3x*—x,xeRrR

functions are strictly decreasing -

() f(¥)=2x—3x—12x+6

(i) f@)=x+>
X

1
(i) f(x)=x——xe Randx#0
X

(2) Find the values of x for which the following
functions are strictly increasing -

1) f(x)=2x*-3x*—-12x+6 (i) f(x)=x>—9x?+24x+ 12

= 2




(4) Find the values of x for which the function
f(x)=x—12x*— 144x + 13

(a) Increasing
(5) Find the values of x for which
f(x)=2x"—15x>—144x — 7 is

(a) strictly increasing

(b) Decreasing

(b) strictly decreasing

(6) Find the values of x for which f(x) = o1 is
(a) strictly increasing
(b) strictly decreasing

1
(7) Show that f'(x) =3x + 3 increasing in

1 1 1
(—, lj and decreasing in (—, —j.
3 9 3

(8) Show that f(x) = x — cos x is increasing for
all x.

(9) Find the maximum and minimum of the

following functions -

(1) y=5+2x*—3x

(i) f(x)=2x*—21x*>+36x—20
(i) f(x) =x*—9x* + 24x

_ _216
V) f)=2+—

i) £ =28

X

(v) f(x)=xlogx

(10) Divide the number 30 in to two parts such

that their product is maximum.

(11) Divide that number 20 in to two parts such

that sum of their squares is minimum.

(12) A wire of length 36 meters is bent in the form
of a rectangle. Find its dimensions if the area

of the rectangle is maximum.
(13) A ball is thrown in the air. Its height at any
time t is given by 4 =3 + 14t — 5. Find the

maximum height it can reach.

(14) Find the largest size of a rectangle that can be
inscribed in a semi circle of radius 1 unit, So

that two vertices lie on the diameter.

(15) An open cylindrical tank whose base is a
circle is to be constructed of metal sheet so
as to contain a volume of ma® cu. cm of water.
Find the dimensions so that sheet required is

minimum.

(16) The perimeter of a triangle is 10 cm. If one of
the side is 4 cm. What are the other two sides

of the triangle for its maximum area ?

(17) A box with a square base is to have an open
top. The surface area of the box is 192 sq.cm.
What should be its dimensions in order that
the volume is largest ?

(18) The profit function P (x) of a firm, selling x
items per day is given by
P (x) = (150 — x)x — 1625. Find the number
of items the firm should manufacture to get
maximum profit. Find the maximum profit.

(19) Find two numbers whose sum is 15 and when
the square of one multiplied by the cube of
the other is maximum.

(20) Show that among rectangles of given area,
the square has the least perimeter.

(21) Show that the height of a closed right circular
cylinder of a given volume and least surface
area is equal to its diameter.

(22) Find the volume of the largest cylinder that

can be inscribed in a sphere of radius 7' cm.

(23) Show that y = log (1 +x) — ,x>—11s
2+x
an increasing function on its domain.
4 sin © ) ) .
(24) Prove that y = ————— — 0 is an increasing
2+ cos 0

function of 6 € {O, %} .

. .
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Let us Remember

Equations of tangent and Normal at P (x , y,) respectively are given by

dy
y—y,=m(x—x)wherem= | —
dx )

d
y—y,=m'(x—x) where m'=— I ,if{—y} #0
{ } ax e v

Approximate value of the function f(x) atx =a + his given by f(a + h) = f(a) + hf' (a)

HE&

(xl,y,)

Rolle's theorem : If real-valued function fis continous on a closed [a, b], differentiable on the
open interval (a, b) and f(a) = f (b), then there exists at least one ¢ in the open interval (a, b)
such that /' (¢) = 0.

Lagrange's Mean Value Theorem (LMVT) : If a real-valued function fis continous on a
closed [a, b] and differentiable on the open interval (a, b) then there exists at least one ¢ in the
open interval (a, b) such that " (c) = M

Increasing and decreasing functions :

(1) A function fis monotonically increasing if /" (x) > 0.

(i1)) A function fis monotonically decreasing if /' (x) < 0.

(ii1)) A function f'is increasing if /' (x) > 0.

(iv) A function fis decreasing if /' (x) < 0.

(i) First Derivative test :

A function f(x) has a maxima at x = ¢ if

@) f'(©=0
(1) f'(c—h)>0 [ f(x) 1s increasing for values of x <c ]
(1) f'(c+h)<0 [ f(x) is decreasing for values of x > ¢ ]

where /4 is a small positive number.

A function f(x) has a minima at x = ¢ if

@ f' (=0
(1) f'(c—h)<0 [ f(x) 1s decreasing for values of x < ¢ ]
() f'(c+h)>0 [ f(x) 1s increasing for values of x > ¢ |

where /4 is a small positive number.
(ii) Second Derivative test :
A function f(x) has a maxima atx=ciff'(c)=0and /" (c) <O0.

A function f'(x) has a minimum atx =c if /' (¢) =0 and /" (c) > 0.

= 2
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’L\MISCELLANEOUS EXERCISE ZA:

(I) Choose the correct option from the given alternatives :

(1

)

3)

4

(5)

(6)

(7

®)

©)

(10)

If the function f'(x) = ax® + bx*> + 11x — 6 satisfies conditions of Rolle's theorem in [1, 3] and

1
f' (2 + —j = 0, then values of @ and b are respectively.

V3

(A) 1,-6 (B) 2,1 (C) —1,-6 (D) -1,6
=1
Iff(x)= 211 for every real x, then the minimum value of /" is -

(A) 1 (B) 0 ) -1 (D) 2

Aladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along
the ground away from the wall at the rate of 1.5 m/ sec. The length of the higher point of

ladder when the foot of the ladder is 4.0 m away from the wall decreases at the rate of
(A) 1 (B) 2 (C) 25 (D) 3

Let f(x) and g (x) be differentiable for 0 <x <1 such /(0) =0, g (0) =0, (1) = 6. Let there
exist a real number c in (0, 1) such that /' (c¢) = 2g’ (¢), then the value of g (1) must be

(A) 1 (B) 3 (C) 2.5 (D) -1

Let f(x) = x> — 6x> + 9x + 18, then f'(x) is strictly decreasing in -

(A) (oo, 1) (B) [3, ) (C) (o0, 11U [3,0) (D) (1,3)
If x =— 1 and x = 2 are the extreme points of y = o log x + Bx? + x then

1 1 1 1
(A) a==6p="  (B) a=—6B=-— (O) a=2,p=—— (D) a=2,p=—

The normal to the curve x> + 2xy — 3)? =0 at (1, 1)

(A) Meets the curve again in second quadrant. (B) Does not meet the curve again.

(C) Meets the curve again in third quadrant. (D) Meets the curve again in fourth quadrant.

X

The equation of the tangent to the curve y = 1 — e?2 at the point of intersection with Y-axis is

(A) x+2y=0 B) 2x+y=0 C) x—y=2 (D) x+y=2
If the tangent at (1, 1) on y* = x (2 — x)* meets the curve again at P then P is

9 3
(A) (4.4) ®) (1.2) (© 6.6) © (%)

The appoximate value of tan (44° 30") given that 1°=0.0175.
(A) 0.8952 (B) 0.9528 (C) 0.9285 (D) 0.9825

. .



an (1)

(2)

3)

4

)

(6)
(7)

(8)

)
(10)

(11)
(12)

(13)
(14)

(16)

(17)

If the curves ax* + by> = 1 and a' x> + b’ )> = 1 intersect orthogonally, then prove that
1 1 1 1

a b a b"

Determine the area of the triangle formed by the tangent to the graph of the function y =3 — x?
drawn at the point (1, 2) and the cordinate axes.

Find the equation of the tangent and normal drawn to the curve y* — 4x* — 6xy = 0 at the
point M (1, 2).

A water tank in the form of an inverted cone is being emptied at the rate of 2 cubic feet per
second. The height of the cone is 8 feet and the radius is 4 feet. Find the rate of change of the
water level when the depth is 6 feet.

Find all points on the ellipse 9x* + 16y* =400, at which the y-coordinate is decreasing and the

x-coordinate is increasing at the same rate.

Verity Rolle's theorem for the function f'(x) = on[—1, 1].

e’( + e*)f
The position of a particle is given by the function s(¢ ) = 27 + 3¢ — 4. Find the time 7 = ¢ in the
interval 0 <¢ <4 when the instantaneous velocity of the particle equals to its average velocity

in this interval.

Find the approximate value of the function f(x) = Vx* + 3x at x = 1.02.

2
Find the approximate value of cos ™' (0.51) given © = 3.1416, E =1.1547.

Find the intervals on which the function y = x*, (x > 0) is increasing and decreasing.

Find the intervals on the which the function f'(x) = , 1s increasing and decreasing.

log x

An open box with a square base is to be made out of a given quantity of sheet of area a?, Show
3

a
6V3

Show that of all rectangles inscribed in a given circle, the square has the maximum area.

the maximum volume of the box is

Show that a closed right circular cyclinder of given surface area has maximum volume if its

height equals the diameter of its base.

A window is in the form of a rectangle surmounted by a semi-circle. If the perimeter be 30 m,

find the dimensions so that the greatest possible amount of light may be admitted.

Show that the height of a right circular cylinder of greatest volume that can be inscribed in a

right circular cone is one-third of that of the cone.

A wire of length / is cut in to two parts. One part is bent into a circle and the other into a
square. Show that the sum of the areas of the circle and the square is least, if the radius of the

circle is half the side of the square.

= 2




(18)

(19)

(20)

1)

A rectangular Sheet of paper of fixed perimeter with the sides having their length in the ratio
8 : 15 converted in to an open rectangular box by folding after removing the squares of equal
area from all corners. If the total area of the removed squares is 100, the resulting box has
maximum valume. Find the lengths of the rectangular sheet of paper.

Show that the altitude of the right circular cone of maximum volume that can be inscribed in

4
a shpere of radius r is Tr

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of
2R
radius R is —. Also find the maximum volume.

V3

Find the maximum and minimum values of the function f'(x) = cos? x + sin x.

\/ \/ \/
0’0 0’0 0.0




3. INDEFINITE INTEGRATION g

Let us Study J

e Definition and Properties

e Different Techniques : 1. by substitution 2. by parts 3. by partial fraction
Introduction :

In differential calculus, we studied differentiation or derivatives of some functions. We saw that

derivatives are used for finding the slopes of tangents, maximum or minimum values of the function.

Now we will try to find the function whose derivative is known, or given f'(x). We will find g (x)
such that g’ (x) = f(x). Here the integration of f(x) with respect to x is g (x) or g (x) is called the primitive

d
of f(x). For example, we know that the derivative of x* w. r 7. x is 3x% So . x* = 3x?; and integral of
X

3x*w. r. t. x is x°. This is shown with the sign of integration namely ' f ". We write f 3x% - dx=x°.
In this chapter we restrict ourselves only to study the methods of integration. The theory of

integration is developed by Sir Isaac Newton and Gottfried Leibnitz.

f f(x)-dx =g (x), read as an integral of f(x) with respect to x, is g (x). Since the derivative of constant

function with respect to x is zero (0), we can also write

f f(x)-dx=g(x)+ c,where cis an arbitarary constant and ¢ can take infinitely many values.

A

Y
For example :

f(x) =x* + ¢ represents familly of curves for

different values of c.

f " (x) = 2x gives the slope of the tangent to
fx)=x*+c.

In the figure we have shown the curves

y=x', y=x'+t4,y=x-5. <

Note that at the points (2, 4), (2, 8) (2, —1) k
respectivelly on those curves, the slopes of tangents
are 2 (2) = 4.

Fig. 3.1.1

= &




3.1.1 Elementary Integration Formulae

(1)

(i)

(iii)

(iv)

V)

(vi)

(vii)

(viii)

(ix)

x)

d (x"! (nt1)x"
R = B — ,I’Z#_l
dx\(n+1 (n+1) -
X
= X" = . fx"-dxz +c
n+1
d ((ax+b)"*! (n+1)(ax+b)"
dx \ (n+1)-a - (n+1)
(ax+b)"* ' 1
= (ax+b)" = =~ Jlax+ by di="r—— —+c
n+1 a
This result can be extended for » replaced by any rational P .
q
d a* *
_ =a,a>0 fax-dxz +c
dx \ loga loga
ax+b 1
JAw b dx = —+c,4>0
d logd a
—e'=e fex'dx=e"+c
dx 1
feax+b. dxzeax+b -+
d a
—sinx=cos x fcosx-dx=sinx+c
dx 1
[cos (ax + b)- dx =sin (ax + b)- —+ ¢
d a
—cosx=—sinx fsinx-dx:—costrc
dx 1
[sin (ax + b)- dx =~ cos (ax + b): —+c
d a
— tan x = sec? x fseczx-dxztanxch
dx 1
fsec2 (ax + b): dx=tan (ax + b): —+ ¢
d a

—secx=secx - tanx
dx

d

X

d
— cotx =— cosec’ x
dx

d
—logx =—,x>0
dx X

1
also f
(ax + b)

d—COSCC)CI_ cosecx - cotx =

fsecx “tanx-dx=secx+c

[ sec (ax + b)- tan (ax + b)-dx = sec (ax + b)- %+ ¢
fcosecx- cotx- dx=—cosecx+c

fcosec (ax+b)- cot(ax+b) - dx=—cosec (ax+ b)- éJrc
fcoseczx- dx=—cotx+c

1
fcosec2 (ax +b) dx=—cot (ax + b) —+ ¢
a

1
f—dx=logx+c,x7é0.
X

1
~dx=log(ax +b) —+c
a

We assume that the trigonometric functions and logarithmic functions are defined on the

respective domains.

4
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3.1.2

7

Theorem 1 : If fand g are real valued integrable functions of x, then

JU@+g@]-de=[ /@) dc+ [g(x) - dx

Theorem 2 : If fand g are real valued integrable functions of x, then

Jlf@ g @] dxe=[f(x) dx— [g ) dx

Theorem 3 : If fand g are real valued integrable functions of x, and £ is constant, then
JRLf@1 - dv=k [ f(x) - dx
Proof : 1. Let [f(x)-dx=g (x)+c and [g(x) dr=g, () +c, then
d d
o [(g, &)+ )] =f(x) and  —[(g,®) )] =g
X dx
d
d_ [(gl (.X) + Cl) + (g2 (.X') + cz)]
X
d d
=l @* )]+ =g, *c)]
X dx

=f(x) +gX)

By definition of integration.

[ /() +gx) (g, () +c)+ (g &) +c,)

Jr@-de+[g) - dx

Note : Students can construct the proofs of the other two theorems (Theorem 2 and Theorem 3).

.

@) SOLVED EXAMPLES ]

Ex.:  Evaluate the following :
1. f(x3+3")'dx
Solution : f(x3+ 3%) - dx

= fx3'dx+f3"~ dx

x* 3
= —+
4 log3

+c




1 1
. inx+—+-==|"
2 f(smx . \3/;) dx

1 1
Solution : inx+—+ - d.
olution j(smx X —\/3?) X

1 Jl
— 3 . + R + - .
fsmx dx fx dx K dx
1 1
= fsinx-dx+f;-dx+fx 3 dx

1
3

+1

3.

f(taner cotx) - dx

Solution : f (tan x + cotx)” - dx

f(tan2 x + 2 tan x-cot x + cot® x) - dx
f(tan2x+ 2 +cot? x) - dx
f(seczx— 1 +2+cosec?x—1) - dx

f (sec? x + cosec? x) - dx

X
= —cosx+logx+1—+c = fsec2x-dx+fcoseczx~dx
-—+1
3 = tanx +(—cotx)+tc
2
= —cosx+logx+£+c = fanxTcotxe
- 2
3
\/;'f‘ 1 e410gx_ eSlogx
4. | e
x+x dx > x° dx
\/; 1 ) e4logx_ eSlogx
Solution : e - dx Solution : 7 - dx
_ elogx4_ elogx5
R - S T L
Vx (Vx +1) g
x4=x3
2. )
5 f 1 p = J(y—ljdx
2
= log(x)—x+c
= 2Vx+c
2x+3
6 fx “dx ) 2
5x—1 _ - _ -
2x+3—5(5x 1)+3+5
N R
Solution : FZQJFH 17
2. 5
2 I = f—+ “dx
5 5 Sx—1
- = —x+— -1) - —+
2x—? 5x 5 og (5x—1) 3 c
— 2 i g (5x— 1)
17 = —xt+tZlog(bx—1)+c
3+—:? 3 25




dx

1
f\/3x+1—\/3x—5

Solution : dx

1
.f\/3x+1—\/3x—5

:f( 1 j_(\/3x+1+\/3x—5
V3x+1—-V3x—5)\V3x+1++V3x-5

[ V3x+1+3x—5
3x+1—-3x+5
_ \/3x+l+\/3x—5.
6

:%'f((3x+ 1)% +(3x— 5)%j “dx

dx

dx

e 3
<1 Gx+ D “dx+ [(3x—5)2 - dx

( 1 1
(3x+1)2 (3x - 5)2

+
1 1
—+1]-3 —+1]|-3
2 2

1 {2 32 El
—-«;(3x+1)2 +?(3x—5)2 +c

+1 +1

1
G e

( 3 3

ABx+1)2 +(3x — 5)7} +c

3
9. fx - dx
x—1
Solution :
-14+1
I = fx “dx
x—1
-1 1
x—1 x-1
- (?+x+1 1
(x—1) x—1
= fx2+x+l+ j'dx
x—1

x> x?
= —+—+xtlogx—1)+c
PR gx—1)

j.dx

g J2x—7'
) V3x—2

Solution : Express (2x — 7) in terms of (3x — 2)

dx

2x—7 2 3x—2 4 7
i e — — +__
X 3(x ) 3

2 T
=3 G2

2 17

3(3)6—2)— 3 | .
V3x—2

[ 2 17

_ 3(3x—2) 3 e
L V3x—2  V3x-2

2[ 17 1
=—|V3x-2 'dx——f - dx
3 3 Jy3x-2

2f(3 2)%61 17f1 d
30 o3 )ym—a @

i LA S 2. (m)%

+c

334 1

T

= &



1. [ecos’x - dx 12, [VT+sin3x - dx
Solution :  cos 34 =4 cos’4 — 3 cos A Solution :
1 3x 3x 3x
[ = Z(cos3x+3cosx)-dx [ = f cos —+sm —+2sm7 cos dx
1
= —(sin3x-— +3sinx)+c 3x 3x
4 3 = f cos—+s1n7) - dx
1 ; 3
= ——sin3x+—sinx+c 3x 3x
12 4 = f(cos —— +sin —j dx
2 2
3x 1 3x 1
= sm; 3 sy +c
2 2
2( 3x 3x
= — ——cos— | +
3 |sin —cos c
13. fsin“x-dx 14. fsinSx-cos 7x -dx
Solution : Solution : We know that
I = f(sinzx)z-dx 2sinA - cos B=sin(4+ B)+sin (4 —B)
1 : 1.
_ f(—(l—cosbc)) - dx I = 5f231n5x-cos7x-dx
2
1 Ly :
= Z-f(1—2cos2x+cosz2x)~dx = Ef[sm(5x+7x)+sm(5x—7x)]~dx
! ! —lf'12+'—2-d
= )| 1= 2c0s 26+ (1+cos dv) |- dr = 5 )Isin(12x) + sin (722)] - dx
1 1.1 - lf(in12 — sin 2x) - d
= 4 J| 1~ 2cos 2+ 4 cos 4x | - dx = o JSIlax TSI ox) dx
1 3 1 1 1 1
= Z-j(5—2cos2x+5cos4xj-dx = 5 —cos 12x - E+cos2x ) te
1 1
1 [3 I 1 1 _
I = ——cosl2x+—cos2x+c
= — = —+— — |+
4 Lx 2 sin 2x - ) 2sm4x 4} c 24 4
IS B
= —=—x- +— +
7 | ¥ T sin2x+ osindy |+ e
sin® x — cos® x 1 i 1
15. fﬁ.dx — f( Smx ' .Cf)sxj.dx
sin? x-cos’ x COsSX cosx sinx sinx
Solution:I:f(_ sinx . cos’ x j_dx = f(secx-tanx—cosecx-cotx)-dx
sin? x-cos’x  sin? x'cos? x _
i = secx—(—cosecx)+c
sinx  cosx
= f( 5 )dx I = secx+cosecx+c
cos’x  sin’x

. .



1
16. f— -~ dx
1—sinx
Solution :
- J( 1 j(lJrsinxj
1 —sinx 1 +sinx
f 1+ sinx
= ——— - dx
1 —sin®x
1+sinx
= - dx
cos? x
1 sin x
cos’x  cos’x
= f(seczx+ secx - tanx) - dx
= tanx+secx+c
Activity :
COS X — COS 2x
18. — - dx
1 —cosx
Solution :

“dx

J

COS X — COS 2x

17.

I =

COS X
— |- dx
1 —cosx

Il

Solution :

COS X

el

cos x (1 + cos x)

I
J

1+ cosx
-~ dx
1+ cosx

1 —cos*x
cos x + cos® x)
S ~dx
sin® x
cosx  cos’x
— T ~dx
sinx  sin’x

f(cosec X - cotx + cot’ x) - dx
f(cosec x - cotx+cosec’x— 1) - dx
(—cosecx)+(—cotx)—x+c

—cosecx—cotx—x+c¢

dx
1 —cosx
fcosx— ............ )
< dx
1——cosx
COSX ™ v vemnnnn.
J ~dx
1—cosx
f cosx(1l—cosx)+ ..........
“dx
1 —cosx
f{cosx+ .......... -
1 —cosx

f[cosx+(1 + cos x)] - dx

f(1+ZCosx)-dx

x+2sinx+c¢




19. fsin’1 (cos 3x) - dx 1 — sin x
21. ftanl - dx
Solution : 1 +sinx
) . Solution :
I = fsm‘1 sin——3x |- dx
2 _ T
|1 —cos [— x]
. [ = [tan’ 2 “dx
= f(?—%cj'dx L +cos (5 —x]
T X = j tan™! 2 sin’ [% _ %j “dx
= Sx-35+*c 2 cos® (5 — 5
X
sin 2x = f tan”! [tan?| — — —j dx
20. tan! | ————— |- dx 4 2
1 +cos 2x
X
Solution : = j tan™! {tan (T - Tﬂ “dx
1 + cos 2x
I = cot'|———— |- dx T X
sin 2x = V) dx
2 cos*x >
(2 ) ST
2sinx ‘- cosx 4 )
= f cot!(cotx) - dx T x?
= —Xx——*tc¢
2 4 4
= Jx-dx = ?-l-c
( )
LEXERCISE 3.1 )
I.  Integrate the following functions w. 7. £. x : III. Evaluate :
212 ) X 4x+3
1) ¥*+x*—x+1 (i1) xz(l——j () x+2 dx (i) w+1 dx
X
1 Sx+2
(i) 3sectr = 77 i 5 <1V>Jv— dx
3 4 3x° —2x+5 2x—7
: 3_ - o = X sin 4x
(i) 22 = 5x X i x° © xVx ) f\/4x— 1 dx V) Jcos 2x

II. Evaluate :

sin 2x

(i) f

(i) [tan?x - dx

CcOS X
cos 2x

(iii) (iv) f 3
cos? sin® x (x)
cos 2x _sinx V7x—2-~7x=5
V) | dx (vi) - dx
sin? x- cos? x 1 +sinx

tan x

(vii) j

sec x + tan x

(vii) [vT +sin5x - dx

. f 2
(IX) m dx

3
V. ff(x)=x——
X

~dx (viii) [VTFsin2x-dx

(ix) f\/l —cos2x - dx  (x)[sind4x-cos 3x-dx

4

(viii) [cos? x-dx

-dx

S = % then find £ (x).




3.2 Methods of integration :

We have evaluated the integrals which can be reduced to standard forms by algebric or trigonometric

simplifications. This year we are going to study three special methods of reducing an integral to a
standard form, namely —

1. Integration by substitution
2. Integration by parts
3. Integration by partial fraction

3.2.1 Integration by substitution :
Theorem 1 : Ifx=¢ (¢) is a differentiable function of #, then ff (x) - dx= ff [0 (D] ¢'(2)dr.
Proof : x = ¢ (?) is a differentiable function of z.
dx | y
o o' (1) ]
Let [ /(@) dr=g (@)= —-[g (@] =/()
By Chain rule,
d d Cdx
E[g(x)] _E[g(x)] ar
.
=/ (x) 7
=fLoO]-¢" (1)
By definition of integration,
g@=[fLo1- ¢ @ - dr
J @) - de=[f1o 01 ¢ @) - ar
For example 1 : [3x2 sin (x%) - dx
Let x*=t¢
3x*dx=dt
= [sin ¢ - dt
=—costtc

=—cos (x*)+ ¢

= &




Corollary I :
Ifff(x) “dx=g(x)+c

1
thenff(ax+b)-dx=g(ax+b)—+c
a
Proof : LetI=ff(ax+b)-dx
put ax +b=t

Differentiating both the sides

1
a-de=1-dt=dx=—dt
a
1
I = 1) — - dt
Jro-—
1
=—-Jr@-ar
a
1
——g(+c
a
1
=—-g(ax+b)+c
a
1
oo [flax+b) - de=g(ax+b)—+c
a
For example : [sec? (5x — 4) - dx
1
=?tan(5x—4)+c

Corollary IIT
/')
S (x)

‘dx=log (f(x))+c

')
)

Proof : Consider J -dx

put f(x) =1
Differentiating both the sides
f'(x)dx=dt

C ol
=log(t)+c
=log (f(x)) +¢

S (x)
S

dv=log (f(x) +¢

Corollary II :

JUr@r 1 0o-dx = %

Proof : LetI=[[/(x)]"*" - f'(x)-dx
put f(x)=t
Differentiating both the sides
f'(x)dx=dt
I =[] at

tn+1

= —+ -
" c , n+-—1

U@

n+1

s JUer S @yde =

+c,n#£—1

+c
S0
n+1

(sin 'x)?

-z

1
= f[(sin 1x)°] - ( — xzj. dx

~_ (sin 'x)*
4

For example : f dx

+c

For example : [cotx - dx
cos X
= . - dx
sin x
d

—sinx =cos x
dx

d .
f —sinx 4
pr— ‘—' x
sin x

=log (sinx) + ¢




Corollary IV
/')
—m'dx =2 \/m +c

S )

VS ()

Proof : Consider “dx

put f(x)=t¢
Differentiating both the sides
f'(x)dx=dt

S
V()

dx=2\f(x)+c

!

Using corollary 111, f ]; (5;)

functions.
3.2.2 Integrals of trignometric functions :

1. [tan x - dx

Solution :

I = [tanx-dx

f CcOS X
—sinx

_ . dx
CcoS X

—log (cos x) + ¢

sin x

“dx

log (sec x) + ¢

1

dx
xvlog x

For example : f

.

f(ilogx
= dx .
Vlog x
=2+logx+c

dx = log ( f (x)) + ¢ we find the integrals of some trigonometric

Activity :

2. [cot (5x— 4) - dx

Solution :

dx




3.

[sec x - dx =log (sec x + tan x) + ¢

Solution : Let I= [secx - dx

d
d—(secx+tanx)=secx *tan x + sec’ x
X

(sec x) (sec x + tan x)

X
sec x +tan x
sec’x +secx - tanx
dx
sec x +tan x
sec x - tan x + sec? x
dx
sec x +tanx

[sec x - dx =log (sec x + tan x) + ¢

Also,

X T

[sec x - dx =log [tan (7 + Tﬂ +c

@) SOLVED EXAMPLES |

Ex.:

1.

Evaluate the following functions :

cot (log x
f (og)
X

cot (log x
Solution : Let] :f(Tg) < dx

put logx=t
1
—-dx=1"-dt
X
= [cot ¢ - dt

=log (sint)+c

= log (sin log x) + ¢

Activity :
4. [cosec x - dx =log (cosec x — cotx) + ¢

Solution : LetI= Jcosec x - dx

(cosecx)(.......... )
_ J’ ................ e

- dx

= log(cosecx —cotx)+c

[cosec x - dx =log (cosec x — cot x) + ¢

Also,

X
[cosec x - dx =log (tan 7) +c

fCOS\E‘dx

\Vx

cos Vx
N - dx

2.

Solution : LetI :J

put \Vx=¢
1
——dx=1"-dt
x

1
— - dx=2"dt
N

=2 [cos t - dt

=2-sint+c¢

=2 -sinVx+c

:



-

Solution : I = jsec7x - secx -

sec? x

COSEC x

1

CcoSeC x

1
=fsec7x- ~sinx - dx
COS X

= [sec’ x - tan x - dx
= [sec® x - sec x - tan x - dx
put secx =t
secx -tanx - dx =dt
=[t° - dt
t7

7

5. fssx-sx-dx

Solution : 1= fssx L 5% dx

I

.

Solution :

put 5*=¢
5 -log5-dx=1dt

5-dx=10g5~dt
[sa

- log 5 !
log 5 I
1 5 1

= . . +
log 5 log 5 ¢
1\ .

= . 5_l’_
(logS} e

e (1+x)

A
cos (x - eY)

put x-e' =t
Differentiating both sides
(x-et+e-1)-de=1dt
e(l1+x)-de=1dt

dx

1
4. Jx+\/;'dx
. f 1
Solution: 1 = x+\/;-dx

:f\/}(\/l}Jrl)'dx

put Vx+1=¢
1
—dx=1-dt
x
1
——-dx=2-dt
NpS

' X
1
t

1
t

=2-log(t)+c
=2-log(\x+1)+c
1
6. —- dx
1+e™
1
Solution : 1= — dx
l+e™

er
=f “dx
e+ 1

i(e"+1) Cdx= e
dx

=log[e+1]+c

1
R
cos ¢t

= [sec ¢ - dt
=log (sect+tant) +c

= log (sec (xe") + tan (xeY)) + ¢

:



.

Solution :

put 3x""+ 7=t

Differentiate w. r. t. x

1 9. f(3x+2)\/x—21'dx
o dx
3x +7x"
1 Solution: put x—4=¢
Consider f?,)c+—w - dx x=4+t
| ) Differentiate
e X = [[3(4+0)+2]F ar
_f X 1
= g & = [(4+30)- 2 at

1 3
J(14t2 + 3z2j - dt

0| w
| v

~
~

14 +3 - dx

N |
SRV

28

32 6 3
—(x—-4dH2+—x—4)2 +c
3 5

dx

3n+1)x"-de=dt
1 -
X 'dx—3(n+1)
1
j 3n+1) -dt -
t
= m'log(t)+c
= m-log(3x"”+7)+c
sin (x + a)
10. fm'dx
Solution :
~ jsin[(x—b)+(a+b)].d
cos (x — b) o
~ fsin(x—b)‘cos(a+b)+cos(x—b)-sin(a+b) .
B cos (x — b)
~ fsin(x—b)'cos(a-l-b) cos (x — b) - sin (a + b)
B { cos (x — b) " cos (x — b)
= [[cos (a + b) - tan (x — b) + sin (¢ + b)] - dx
= cos (a+b) - log (sec (x — b)) +xsin(a+b)+c
o



e+ 1
11. J < dx
e —1

Solution :

e —1+2
I = |—
e—1

SEENER
:ﬂHexz—l)dx

2
=Idx+Jm'dx

X

e
=Ildx+2f I - dx

put (1 —e™=t
Differentiate w. r. . x
—(e™) (-1)-de=1dt
e*-de=1dt
1
[ = Ildx+2J7-dt
=x+2-log(t)+c

=x+2log(l—e*)+c

fe"+l
e —1

~dx=x+2log(l1—€e*)+c

1
12. f—wlx
1 —tanx

Solution :
1
I = —7F7dx

sin x

1 —
CcOS X

f COS X
COS X — sIn x
COS X

= dx
\5( 1 1 j
\Ecosx \Ecosx
1 COS X J
= — . X
V2 cos Ecosx— sing sin x

. cosx
\/— “dx
cos x

SoX=t——
4

put x+—=t
4

Differentiating both sides
l-dx=1-dt

cos
\/_ j cos t - dt

T
J costcos—+smtsm—
4

- dt
cos ¢

\/_

T %Jthant} dt

1
-@[t+10g(sect)]+c

T T
=—|x+—+logsec|x+— }Lc
2{ 4 ( 4]

_ﬁ|_

acosx+bsinx

it luate the integrals of t J : - dx,
o evaluate the integrals of type [-————— o — X

Nr =X (Dr) + p (Dr)', find the constants A & p by compairing the co-efficients of like terms and then

express the Numerator as

integrate the function.

= &




EXERCISE 3.2

)

I. Integrate the following functions w. r. £. x :

3
| (log x)" (sin"'x)2
TR i-v
5 1 +x x-sec? (x?)
~ x-sin (x + log x) Vtan? (x?) IL
5. e3x . (x2+ 2) .y xttanx
e +1 (x*+1)
. e* - log (sin ¢) e+ 1
' tan (e¥) e —1
. 1
9. sin*x-cos’x 10, ——
4x + Sx7!
1. x°-sec?(x') 12, edloer(xi+ 1)
13 Vtan x 14 (x— 1)2
© sin x'cos x C
2 sinx'cosx 1
15. : 16, ———
3 cos®x + 4 sin® x Vx +4x3
1 10 x° + 10*log 10 " x"!
' 107 + x10 ST+ 4
19. 2x+ 1Vx+2 20. x> Na*+x?
1 2
2. (5-39) (2 -39 7 22. 7+4x—+53x
(2x+3)2
3.2.3 Some Special Integrals
1 1 X
1. S dx=—tan'| —|+¢c 2.
x“ta a a
3 f : d : 1 arx 4
. cdx=—— + .
- T2 ®la—x)" €

1
5. fﬁ-dx=log(x+\/x2—a2)+c 6.

1

1
- . [ -1
/. fx x> —a dx a se¢ [

X
—|+e
a

4

23. 24, ————
9—x¢ x(x*—1)

1
25.
x-log x-log (log x)

Integrate the following functions w. r. t. x :

cos 3x — cos4dx 5 COSX
sin3x + sin4x - sin(x—a)
3 sin(x — a)
"~ cos(x+b)
1
4, -
sinx-cosx + 2 cos*x
s sinx + 2 cosx 6 1
" 3sinx +4 cosx " 2+ 3tanx
4e—25 20+ 12 e*
7. — g, ——
2e =5 3e +4
3e>+5
9, — 10. cos®x-cotx
4e*—5
11. tan’ x 12. cos’x

13. tan 3x-tan 2x-tan x

. 2 .
14. sin’ x-cos® x 15. 3¢s°~.gin 2x
sin 6x sin x-cos® x

sin 10x-sin4x 1 + cos*x

1 1 xX—a
fxz_a2~dx=zlog(x+aj+c

1 X
f—w'dxzsinl(zj-i‘c

1
f—m-dx=log(x+\/m)+c




While evaluating an integral there is no unique substitution, we can use some standard substitutions and try.

No. Function Substitution
1. a?—x x=a-sin O (x =a-cos O can also be used.)
2. va? +x? x = a-tan O
3. V¥t —a x=asecH
4. Zli X =a-cos 20
1 1 X
1. S cdx=—tan'| — |+¢
x‘ta a a
Proof :
1
Let 1T = = S dx
rrd Alternatively
X
putx=a~tan9:tan9=g Cosider,
d[1 X
X — tanl| =
i.e.G:tanl[Zj EL tan‘(ajJrc}
sSdx=asec*0 - do dT1 X d
=—|—-tan'| — [[+—c¢
1 , dx | a a dx
I = m-a-sec 0-do
1 1 d (x
a-sec? 0 =————— | |t0
= — . 0 a X dx
a*(tan’ O + 1) 1+ —
c? 0
:jse— - do 1 1 1
a.SeC29 :_.—2._
a lex a
1 -
=—[de @
a 1 |
1 W
=—0+
a ¢ a2
1 (X _ !
1 b (x Therefore,
R VA o .
by definition of integration
1 1 X
_ 1 1 X
2. dx=—_tan| — |+ _ .
©8 fx2+52 s (5) ¢ fx2+a2'dx—;tan‘(z)+c
. /
A\



1
2. .].xz—az.dx

Proof :

Let 1 :fxz—az

1

2a

~dx

1 X —d
og ta +c

1
= —-d
f@+m@—m g
1 71 1 7
=|—" - < dx
2a [x—a x+ta]
1 1 1 7
—_— — .dx
2a J|x—a x+ta|

1
=5, [log(xr—a)—

log(x+a)]+c

Activity :
; f 1 J 11 a+x
: cdx = +
a*—x? . 2a 08 a—x ¢
Proof : Consider,
1
I = R dx
Jo
= . x
C..00..0)
1 71 1 7 p
2a | ] o
1 i 1 7 p
" 2a i a+x| .

1 | XxX—a
= +
2a 08 x+a ¢

1
= — + J—
P [ log (a + x)

1
=5y log[ j+c
f 1 J 1 | a+x
cdx=— +
a’ — x? o 2a 08 a—x ¢

f I B C L
. Cdx = +
8 16-x 2@ Bla—x) €

log(a—x)]+c

1 X
4 f—m'dxzsinl(zJ-i‘c
Proof
1
Let 1 = W-dx
X
put x=asinf = sinezz
_ X
0 =sin! (—j
a
dx=a-cos0do

1
b R

a-cos 0

aN1—a*sin?0 1o

fcos 0 76
cos 0

J1-do

= 0+c¢

X
~dx =sin! (—j +c
a

X
dx =sin! (gj +c

Je=

et [

. S® .



1
> fm'dx:log(x+x/m)+c
1
Proof: Let I:jm'dx

X
put x=asecb = O=sec’! (Zj
dx = a-sec 0-tan 0-d0

6.

Activity :

1
fm rdx=log (x +Va¥=¥*) +c

Proof : use substitution x =a - tan0

e.g.

1
B fm asec 0-tan 6-d0

a-sec O-tan O
a*(sec’0 —1)
a-sec O-tan O 7o
Va* tan?0

f a-sec O-tan O

a-tan©

do

= fsec 0-do
= log(sec 0 +tan 0) + ¢

= log(secO++sec20—1)+c

X /Tl

__|_ o +C
a a? 1
a a? 1

c V=
EAS T PN

= log

= log

= 1
og p

= log(erm)—logaJrcl
= log(x+m)+c

where ¢ =¢,— log a

1
Jﬁ'dx:log(ﬁm)w

1
fm'dx:log(x+\/M)+c

Activity :

1 1 X
—— =— -1 +
7. fx - dx | sec (aj c

Proof :

1
X
put x=asec6 = 0 =sec’ (;)
dx =a-sec O-tan 0-d0

1
! B .[asece ..... _az' .........

_ tan 0 o
= —[1-d0

a

1
= —0+c

a

1 x
= —sec!|—|+ec

a a
L S e B
2 — g2 X aseC P c

1 1 ¥
343 _— _ -1 +
e.g Jx ol dx g Sec (8] c

/,
¢ OG0 .
AN



3.24
1

1
In order to evaluate the integrals of type f i bitc dx and f m dx
we can use the following steps.

b c

(1) Write ax* + bx+ c as, a (xz +—x+ —j , a > 0 and take a or \/a out of the integral sign.
a”  a

b b
(2) (xz + . xj or [Z X — x2] is expressed by the method of completing square by adding and

1 2
subtracting [5 coefficient of x] :

(3) Express the quadractic expression as a sum or difference of two squares
ie. ((x+PB)+a?)or(c2— (x+p)?)
(4) We know that [fo)dx=g@+c = [fx+P)dx=gx+P)+c
1
Jf(ax+B)dr=—g(ox+P)+c

(5) Use the standard integral formula and express the result in terms of x.

3.2.5
1

asin’x+bcos’x+c

In order to evaluate the integral of type f dx

we can use the following steps.

(1) Divide the numerator and denominator by cos? x or sin? x.
(2) In denominator replace sec’? x by 1 + tan? x and /or cosec? x by 1 + cot? x, if exists.
1

at* + bt+ ¢

(3) Puttan x = or cot x = ¢ so that the integral reduces to the form f

(4) Use the standard integral formula and express the result in terms of x.

3.2.6
1
To evaluate the integral of the form f . - dx , we use the standard substitution
asinx+bcosx+c
X
tan —=1.
an -
X ) x 1
If tan > t then (i) sec? E-E-dx =1-dt
) 2 2 2dt
ie.dx = ot = = 57
seczz 1+ tanzz
X
2 tanz 2¢
(i) sinx= X = Tip
1 +tan 5

. .



X
_ 2
1 —tan 1-p

2

(i11)) cosx =

X 1+p

1 + tan’—
211’12

Weput tanx=¢ for the integral of the type j

therefore dx
sin 2x
and cos 2x

With this substitution the integral reduces to the form f
ax

1

asin2x +bcos2x+c

1

integral formula and express the result in terms of x.

@ SOLVED EXAMPLES |

Ex.: Evaluate :
N
’ 452+ 11 .
1
Solution : I = —_ -dx

2
1 1
x2+a2'dx:;tanil —|+c
I = l : - tan™! a
4| V11
2 2

1+7 dt
2t

57 -dt
1-7
1+7 dt

1

————  dx. Now use the standard
+bx+c

1

2. @ — by ~dx
1

Solution : I = —_— . dx

b
1 1 a+x
faz—xz dx=2—log( _x]+c
a
11 s
I = » a “log| —, +c
2(5) Ve
a
(I s
= = - log +c




1
3 fﬁd
1

Solution : 1= f— “dx

|
—
=
S

V3
cdx=log |x+Vx¥—d | +c

5?f7:?ﬂ7ﬁ

[

Sl

11 27
NEI R T

1
> f\/3x2—4x+2'dx

Solution: = f < dx

s~ (2]

35797973
I |
- E.J 4 4\ (2 4
[xz_?X‘f‘gj-F(?—g)
o
- &

1 A%
-log(x+ xz—(\/—?j J+c

1
4. Jx2+8x+ 12.dx

1
Solution : 1= fx2+8x+16—4 “dx

1
- f<x+4)2—(2)2'dx

j 1 p 11 xX—a
. P — +
x> —a? o 2a 8 x+a ¢

1 (r+4)-2
2(2)'1°g((x+4)+2j+c

1 | x+2
f— — +
4 g x+6 ¢

f 1 ol (32
e e +
2rsx+r12 P 4% e )€

f—,—xziaz-dx=log|x+m|+c
1 2 2\ (V2Y
:ﬁMJ@“ﬂ+(V?){7J)”
1 2 L4 2
Zﬁlog (( —?j-i- x—?x+?j+c

. .



1
" J3—10x—25xz - dx

Solution :

e

1 2
{(3 coefficient of xj

GE3]

25 ) 3 N —
3 (., 2 vt
25 X T 5T 55 T o5

Activity :

1
! fﬁ'dx

Solution: I =

1 2
{(E coefficient of xj

-Gen-()-4)

_ J 1 .
\/1_(X2_X+Z_Z)

_ f 1
[ |

:f ﬁzl _
\/(Tj_(x_g)

B 41




g f sin 2x J
’ 3sinfx—4sintxtl

sin 2x
Solution : I = J ; 3 ; “dx
3 (sin*x)” — 4 (sin’ x)+ 1
put sin’x=¢ oo 2sinx-cos x-dx = 1-dt

|

= . t

3|17 : +1
Fm31ir3

1 2
{(E coefficient of tj

1/ 4Y\Y 2V 4

GO

I 1

=73 1 4 4 1 ¢
P—mt+ -+
31797973

I 1

B [ﬂ_iﬁij_i'””
3'779) 79
I 1

Il
N — o
)
0
7\
[U'S]
4.
=)
(3]
=
|
(98]
N
+
o

J‘ sin 2x J
3sin*x—4sin’>x+ 1 .

1 | 3sin?x—3
= —_— e — +
2 %8\ 3simx-1 ) €

‘

9.

[

Solution :

put

¥

X
2

x_ex

= sin!'(¢)+c

= sin!(e)+c

X
2

e

“dx=sin"" (e¥) + ¢




10.

Solution :

put

put

J(Ntan x + Vcotx ) - dx

1
1 =f( tanx+mj' dx
tanx + 1
N Vtan x dx
Vtanx =¢

SLtanx=¢ . x=tan'#?

l-dx = > 2t dt

1
1+ (#?)
sec? x ~dx =2t dt
2t 2t 2t

dx = dx=———"—dx= :
. sec? x . 1 +tan®x . 1+ ¢4

ftl+1 2t J 2ftﬂ+1 J
t L+t M=) d

dt

= /2 tan’! ! +c
\2

?—1

V2 ¢

= /2 tan!

+c

tanx — 1

\/Z-Vtanx) e

= /2 tan!

1
TG

X

put tan —=¢

Solution :
olution >

1—1¢
1+¢

dx = ‘dt and cosx=

1+ 7

+2

f 1+7
= - dt
5+2)—-4(1-1%)

1+
S
T Jsospoa—ap @

j 2
= Jopsg

2 1
STy
Z0
3
2 1
= 3 ‘tan”! +c

2
= §~tan‘1 2t)yt+c

2 X
= §~tan‘1 2tan3 +c

f 1 p 2 [ 5 X
S| ———— - dx=—-tan” — |+
5—4cosx * 3 tan tan2 ¢




1 f 1
. — 13. - :
12 J2—3sin2x i 3 3—-2sinx+5cosx d
. X
Solution : put tanx=¢ Solution : put tanEZt
1 2
dx = 1+t2.dt and sin2x = 77 e 2
1 1+7
l(ﬁ) - — -
I :J 8 - di smx—1+t2‘dt and COSX =3
2- 2
3(1”2) (%)
1+7
ro- -
1+7 3-2 ’ +5 :
= 1+7 1+2
2(1+1%)— 3@0
1+ﬁ 2
1 1+7
- di=| o dt = ; St
+2ﬂ 2(2=3t+1) 3A+H)-2QR2H+5(0 -1
1 2 1+¢
{3 coefficient of tj
1 2 9 - j~3+—3ﬁ 4t+5—-5¢° d
N R
1J 1 ) 8-4r-2p
B 9 o _ f L
3t+z—z+l 4—02f— 2
S T v
= . = t
IR ! 4- (t2+2t)
+ PR —
4 ) f y
I - Ja- (z2+2r+1—1) !
= 2 zdt
( j (2 j B js 02+2t+1) i
(-3 !
1 _E 2 - j\/_z_ 2 dt
- . N (3 = (@t +1)
2 (5 log 3)+\/§ ¢
- t_— -
2 517 _ 1 Ogv_+0+D .
2(3) V5 - @+ 1)
1 2t-3-+35
Y e U NN x
1 J§+1+mn5
1 2tanx—3—+/5 = ‘log +c
= q 245 B
2\/§Og(2tanx—3+\/§j V5—1-tan
o S



Alternative method :

1

sinx — 3 cos x

< dx

J

Solution : For any two positive numbers a and b,

we can find an angle 0, such that

a b

Ja*—b? Ja*—b?

Using this we express sin x — /3 cos x

sin O = and cosO=

=+1+ 3 (cos 0-sin x — sin O-cos x)

=2-sin (x — 0)

) T
=2-sin (x - ?j
1
J—=
2-sin (x - ?j

~dx

1

T
= 3-fcosec (x—gj-dx
1 i T
= E‘log cosec| X = —cot X3 +c
1

2

| X °
—+— |+
og | tan 5% c

1
Activity : 14. fsinx—\/?cosx dx
X 14.
Solution : put tan5=t Sode=
Sinx: ........ and Cosx: --------
e
1+7
1 =f ! dt
-------- +\/§--------
2
1+7
1+
2
........ A
2
(5]
V3
2 1 4
= — - dt
V3 3 3
2 1 U
- 2 1Y) 1
3 1 (tz——t+—j+—
V3 3 3
2 1
= - Z.dt
L))
V3
2 1
= — L ] - dt
V3 (L)
2 1
= —=— — |+
NE] 20) log c
= —'log(—}vLc
X
1 1+\/§tan5
= a-log — [t¢
3—+/3tan—
2
. /
A\




1
15. J3+2sin2x+50052x.dx

Solution : Divide Numerator and Denominator

bycosx
—— J cos® x .
3+ 2sin’ x + 5 cos? x
cos? x
sec’ x
N f3sec 2x+2tan’x + 5 dx
sec? x
N J3(1+tanx)+2tanx+5 dx
sec? x
N fStanerS d
sec? x
S tamszri “
5
put tanx=¢ .. sec’x-dx=1-dt
JEENES
5
IJ 1
T
V5
= l; tan! ! +c
5" V8 V8
V5 V5

11 NREL
\/_3'2\/7‘ tan [ﬁj‘FC

1 1 \/5 tan x
tan! | ———— |+
210 @n 22 ¢

1
'.]‘3+2sin2x+5coszx'dx:

1 1 \/5 tan x
_ — - +
2410 @n 242 ¢

cos 0
16. Jcos 360 do
cos 0
f4cos39—3cose db

1
N f4cos29—3 +d9

Divide Numerator and Denominator by cos” 0
1

20
Lo fL.de
4cos’0—-3
cos? 0

sec? 0
= —-do
4—3sec’0

Solution : I

sec’ 0
4 —3 (1 +tan’0)

sec’ 0
= f—.de
1—-3tan*0

put tan©=¢ .. sec’0 - dO=1-dt

[
b= 1—32 4

+c

2\/§-log 1-+3tan 6

fcose 76 1 | 1++3tan 0
d0=7—=log| —=—— |+
cos 30 243 g 1—+3tan 0

1 [1+\/§tan6j
J’_

. @O .



I1.

EXERCISE 3.2 (B)

Evaluate the following :

1 J 1
j4x2—3'dx = 35— oe &

1 1
N N
N VT -4

; j 9+x J ‘ J 2+x 4
. o, W . PR
10 j : d 11 J : d
' X2+ 8x+ 12 * ' 1 +x—x? x
13 f : d 14 f : d
' 5—4x—3x? . ' V3x*+5x+7 .
16 f : d. 17 f : d
C )8 -3xt22 & Ve a+r @
19 .[ : d 20 JSinx d
) cos 2x + 3 sin® x . ) sin 3x .

Integrate the following functions w. r. 7. x :

1 f 1
L f3+25inx.dx = 4—500sx.dx

1 f 1
4. .[3+2sinx—cosx.dx > 3—2c052x.dx

1 J 1
/- ,[3+25in 2x + 4 cos 2x.dx 8 cosx—sinx'dx

12.

15.

J 1
7+ 2x?

dx

1
J\/2x2—5 o

J/10+x 4
10 —x .

J4x2—

20x+17

f\/xz-k & —20

1
dx

1
-dx

1

f4+3 d

cos? x

1

f2+cosx—sinx

f2 sin

“dx

1

o3&

1

JCOSX

- \/?Sinx'dx




261 f the fi f P P
3.2.6 Integral of the form [-——— = dx and NreEy e dx

. pxtgq . . . .
The integral of the form f - - dx 1s evaluated by expressing the integral in the form

2+ bx+c

d
A —(ax*+bx+c)
f & 'd+fL-dfrm tants 4 and B
a+ bx+c X o+ bt e x for some constants 4 and 5.

d
The numerator, px+¢g= A4 - o (ax* +bx+c)+B
x

d
1.€. Nr=4+-—Dr+B
dx

The first integral is evaluated by putting ax*> + bx+c =t
The Second integral is evaluated by expressing the integrand in the form either

1 1 1
A2+t20rt2_A20rA2_t2

and applying the methods discussed previously.

) px+q . : : :
The integral of the form f NPT - dx 1is evaluated by expressing the integral in the form

d
A — (ax* + bx+¢)
dx

B
Vol F bxrc dx + f Ny dx for constants 4 and B.

d
The numerator, px+¢g= A4 - . (ax* +bx+c)+B
X

The first integral is evaluated by putting ax* + bx+c =t

The second integral is evaluated by expressing the integrand in the form either

1 1 1
or or
\/A2+t2 \/tz_Az \/Az_tz

and applying the methods which discussed previously.




@) SOLVED EXAMPLES |

) f 2x—3 ,
: 3 +4x+5

d
Solution : 2x—3 = A'd—(3x2+4x+5)+B
X

2x—3 = A(6x+4)+B
— (64) x + (44 + B)

compairing the sides/ the co—efficients of like
variables and constants
64=2 and 44+B=-3

1 13
= AZ? and Bz—?
1 d 344 13
—— B2+ Ax+ 5+ | ——
f3 dx(x x +5) 3
= -dx
3x?+4x+5
f (3x +4x +5) 13 |
=— 5 dx —— | —————dx
3x>+4x+5 3J 3x24+4x+5
J 6x+4 13 1
=— dx—— | ——dx
3x2+4x+5 3J3x2+4x+5
=r-L . (1)

__f 6x+ 4
3x2+4x+5
put 3x*+4x+5=¢

(6x +4)-dx=1-dt

ljld
3

1
Z?-log (1) +c,

1
=?1og(3x2+4x+5)+c1 ..... (ii)

13 1
L= ) erares &
13 1 1

3 3 4 5

2+_ +_
SR

1 2
{(E coefficient of t}

“dx

13 1 .
9 ) 4 44 s o
t—xt———+—
YT3Y T 9 973
13 1 .
o9 J) 4 4 X
t—x+t—t+—
YT3Y 9T
13 ]
— R .dx

* 3]+ (5)
X+t— | +|—
3 3

f Lo (X
Y1 4 x—Atan Z+c

2
B o1 [T

= 9 \/_tan m +c,
3 3

thus, from (1), (i1) and (iii)

f 2x—3
3x?+4x+5 dx

1 1 ( - ) 13 3x+2
+4x + +
og( 3x*+4x+5 N “tan”! Vit c




2 f/x_sd
. x_7 X

(x—5) - (x—3)

Solution : I = f

x—5

x—35

— QA)x+(— 124+ B)

x=7) - (x=3)

= AQ2x—12)+B

(x—5)
dx = fx2—12x+35'dx

d
= A-E(x2—12x+35)+8

compairing, the co—efficients of like variables and constants

24=1 and —124+B=-5
1
= A:E and B=1
1 d
3—(x —12x+35)+ (1)
I:f “dx
Qx —12x + 35
12x+35) |
\/x — 12x+35 \/x2—12x+35
=L+L ... (1)
2x— 12
:—f .dx
x? —12x+3
put x> —12x+35=1¢
2x—12)-dx=1-dt
:—j—dt
B fzx/t i
=\/t+c1
=\Vx*—12x+35+¢, ..... (i1)

dx

1
Iz=f -dx
Vx?—12x+ 35

1
:f e
Va2 —12x+36—1

1
= “dx
I (x= 67— (1)

1
f—,m'dx=10g()(+m)+c
I =log (x—6) +V(x—6)—1) +c,

=log((x—6)+\/xz—12x+35)+c2

Thus, from (i), (i1) and (iii)

f x—35 J
x—17 o
=\x?—12x+35+log (x—6)+ Vx> —12x+35 ) +c

(e, te,=c)

:



Activity :

i

Solution :

d
8—x = A'a(Sx—xz)ﬁLB

— (84 + B) — 24x

compairing, the co—efficients of like variables and constants

84+B= ... and —24 =-1
= A=— and B=...
Ld 8 2 4
—_— — +
fzdx(x )+ (4
= “dx
8x — x?
d (8x x?) 1
=5 —F————dxt+4 | —dx
V8x — x?
8 —2x 1
=—f dx+4-f—-dx
8x x? 8x — x?
=L+L (1)
. 1J8—2x
- . -dx
b2 8x — x?
put .. =t
(crerrereenn )dx =1-dt
1 1 J
2 J 4t
5
= 2\/7 t
=\/?+Cl
=V8x—x* tc, ..... (i1)
L

=
| —
= —*
| —

thus, from (i), (i1) and (ii1)
J 8
X

x—4
=\/8x—x2+4-sin1(—4 }+c

- X

“dx




.
{ EXERCISE 3.2 (C) |

I. Evaluate :

. j 3x+4 p 5 j 2x + 1 p ; j 2x+3 4
' x>+6x+5 o ' x*+4x—-5 o ' 2x*+3x—1 o
3x+4 Tx+3 x—7
4, ——————dx 5. ————dx 6. J “dx
V2x2 +2x + 1 V3 +2x — 2

x—9
e

. J’ 9—xd f 3 cosx p 0 fe“— 2"d
' X o ' 4sin>x+4sinx— 1 . ' v oe+1 .

3.3 Integration by parts :

[o¢]

This method is useful when the integrand is expressed as a product of two different types of

functions; one of which can be differentiated and the other can be integrated conveniently.

The following theorem gives the rule of integration by parts.
3.3.1 Theorem : If u and v are two differentiable functions of x then

furvdx =u-fv-dx—f(dii-uj (Jv-dx)-dx

dw

Proof : Let fvax=w ...() = V= . ... (1)
X
Consid 0 + d
onsider, T (uw)=u T w+w I u
du
=uv + we—
dx
By definition of integration
.ﬂ du }
uw =||luv+w— |dx
dx
du
= Ju-v-dx + fw-—dx
dx
du

= [uv-dx + | —w-dx
dx
d
u[vedx = [uvdxe+ f—u~IV'dX'dx
dx
d
Juv-dx =u-fvdx- f(d—uj (Ivdx)'dx
X

In short, Juv=ufv- I(u' fv)

. .




d
For example :  [x-erdx = x_[eX-dx—f(%-je"-dx}dx
X
= xe*— [(1)-edx
= x-e*— [erdx

= xe'—e'tc

now let us reverse the choise of ¥ and v

d
_fex'x'dx = ex'fxl'dx—f—'ex_fx'dx'dx
dx

x2 2

= e~ 7 — J‘ex.x?.dx

! 2 J‘zd
—Zexzexx

We arrive at an integral [e*-x?-dx which is more difficult, but it helps to get [e*x2dx

Thus it is essential to make a proper choise of the first function and the second function. The first

function to be selected will be the one, which comes first in the orderof L I A T E.

B L Logarithmic function. E
I Inverse trigonometric function.
A Algebric function.
T Trigonometric function.
E  Exponential function.

Ll e

For example :  [sin x-x-dx
= [x-sinx-dx ... by LIATE

. d .
= x-[sin x-dx — f—-x-fsm x-dx-dx
dx

=x+(= cos x) — [(1) (= cos x)-dx
=—x-cos x + [cos x-dx

=—xcosx+sinx+c

= &




@ SOLVED EXAMPLES |

1. [x?5%dx

Solution : 1

fx2~5"-dx =
2. [x-tan'x-dx
Solution: I =

[x-tan™' x-dx =

d
xz'IS"'dx - f—-xz'_fS"'dx-dx
dx

— sz.sx.

1
log 5

x2.5x.

.x2.5x

log 5

.x2.5x

log 5

.x2.5x

log 5

.x2.5x

log 5

y2.Rx

log 5

5x
log 5

{_

[(tan™" x-)x-dx

“dx
log 5

2 d
$xf5%dx — | —x-[5dx-dx
log 5 dx
2 5 f 1 (SX : j d
log 5 * log 5 M log 5 *
2 1 1
J .X.Sx. — .sx.dx
log5 ( log5 log 5
2 1 1 1
D, .x.5x. — .5x. +c
log5 ( log5 log 5 log 5
2
.x.5x. + .5): +c
(log 5)° (log 5)°
2x 2
+ +c
log5 (log5)>
..... by LIATE

d
tan~' x- [x-dx — .[—-tanl x-[x-dx-dx
dx

2

2

X 1 x
tanlx'——f —dx

2 1+)c2 2
1 2 -1 f x d
2)(? tan ' x W X
1 1+x—1
— x2-tan™! x——
2 1+x
1 N 1
Ex-tan X_E 1—- 2 “dx
2. 14 — _ -1 +
2 X tan"'x 5 [x —tan"'x] + ¢
1 , 1 1 1 1
—x*tan'x ——x+—tan'x +
2xtanx 2x 2tanx C

4




-

J

1 —sinx

X

1 —sinx

Solution: [ = f

X

“dx
X (1 + sin x)

I —sinx (1+sinx)

x (1 +sinx) x (1 +sinx) 1 sin x
——dx=| —————dx= | x + “dx
1 —sin’x cos? x cos’x cos’x

[x-(sec?x + secx-tanx)-dx

Jx-sec?x-dx + [x-secx-tanx-dx
d d

x[sec?x-dx — d—x-fseczxdx-dx + | xsecx-tanx-dx — d—-x-fsecxtanxdx'dx
X X

x-tanx — [(1)-tanx-dx + x-secx — [(1)-secx-dx
x-tanx — log (secx) + x-secx — log (secx + tanx) + ¢

x-(secx + tanx) — log (secx) — log (secx + tanx) + ¢

“dx = x-(secx + tanx) — log [(secx) (secx + tanx)] + ¢

4. [e* sin 3x-dx

Solution :

I=[e* sin 3x-dx

Here we use repeated integration by parts.

To evaluate [e*- sin (bx + ¢)-dx; [e®- cos (bx + ¢)-dx any function can be taken as a first function.

I

. d .
e [sin 3x-dx — j-d—‘ez’“fsm 3x-dx-dx
X

1 1
ezx'(— cos 3x~?j — fezx~2 (— cos 3x~?j~dx

1
— —e¥-cos 3x + = [e*cos 3x-dx
3 3
1 2 d
——e¥cos 3x + — | e [cos 3x-dx — | —-e*[cos 3x-dx-dx
3 3 dx
1 2 1 1
- §~e2x-cos 3x+ 3 e**| sin 3x~§ — fe2- | sin 3x-§ “dx
. 2. + —- 2X. o1 — | p2x.q3 .
3 € cos 3x g € sin 3x 9 [e-sin 3x-dx
— . p2x. + —- 2X. o1 [
3 € cos 3x g € sin 3x 9 I
e2x er
9[—3cos3x+ZSin3x]+c = 13[25in3x—3cos3x]+c
er er
5 [2sin3x—3cos3x]+c . e sin 3x-dx = ;3 [2sin3x—3cos3x]+c

/,
GG .
AN



Activity :

Prove the following results.

eax
() [e= sin (bx+c)dx = g Lasin (bx+ o)+ bcos (bx+o)] +c
(i) [e™: cos (bx + ¢)-dx = e ‘la sin (bx +c¢)— b cos (bx+ )]+ ¢

: } “dx
(log x)°

Solution: 1 = [log(log x)-l-dx+J

5. .][ log (log x) +

d
(logxy

d
= log (logx)-_fl-dx—J—' log (1ogx)j1-dx+j -dx
dx (log x)?

= log (log x)-x—J -%-(x)-derJ

d
log x (logx)?

1 1
= log(l : —J “d +J “d
og (log x)x log x x (log 1)’ x

~ log (log x):x — [(log x) " 1-dx + J -
(log x)

= log (log x)-x — {(log x) [ 1-dx + f% (log x) ' [1-dx-dx } + f (log )’ “dx

= log (log x)-x — {(log x)'x — [ = 1(log x)Z.%-x-dx } + f (Tog 1) “dx

= log (log x)'x — (log x)™"x — [(log x)?+dx + f (log )’ dx

X 1 1
= x-log(l - —j “d +J. d
xlog (log x) log x (log x)? * (log x)? *

+c

} “dx = x-log (log x) —

1
f{ log (log x) + (log x)’

log x
Note that :

To evaluate the integrals of type [sin'x-dx; [tan"'x-dx ; [sec' x-dx; [logx-dx, take the second function

(v) to be 1 and then apply integration by parts.

INa =2 dx ; [Na®+ x> -dx ; [Nx2— a® -dx

. OO .




6. [Va*—x*-dx
Solution : Let I = [va?—x* -1-dx

d
Va2 —x? -fl-dx— fd—-\/cﬂ — x? -Il'dx'dx
X

1[a2_x2 X —

1
J —2 == (—2x) (x)-dx
= Va*—x* x+j

va —x
- ﬁq ‘("‘“-dx

(@’ x°)

\/a —x? \/a —x’
x~\/a2—x2+a2f -dx — [N a* = x*dx

“dx

1
NP

dx—1

1
I = x-\/az—xz-irazf —a

x
I+1 = x~\/a2—x2+a2-sin‘1(—j+c
a

1 Y 2 2 @ : 1()6)
= —Na —x"+t_sm | —|+c
2 2 a
a’ X
[Na*—x? dx— \/a —x2+Esm (—ijc
a

x 9
c.g. Im-dxzz-\w—x“rz-sin1(%)+c

with reference to the above example solve these :

2
7. JNa&+x2-dx= %-\/x2+a2+%-log (x+ VX + a? ) +c

8. [V¥—-a? dx——\/x —a ——10g(x+\/x2+a )+c




9. [x-sin'x-dx

Solution : I [sin'xxdx ... by LIATE

: d .
= s1n‘1x~fx-dx—f—-sm‘lx'fx-dx'dx
dx

x? 1 x?
= sin'x—— | ——dx
2 2 2
1 ) 1 1 x? J
= 2x sin ' x 7 — x
1 ) 1 1 1—(1—x%
= EX'Sln X_E m X
L, { 1 (1—x2)}d
= —x»sin'x—— - -dx
2 2 \/l—x2 \/l—x2
1 1 dx

= —y2eqiinly — — J— —
S Xsinly == \/TJF f\/lxdx

1 1 I[x 1

= Exz'sin‘x—zsin'x+3{5\/1—x2+asinl(x)}+c
1 1 1

= Exz's1n"x+zx\/1—xz—zsm’1x+c

1 1 1
[x-sin'x-dx = Exz-sin"x + 2 VI1—x*— 7 sin"'x+ ¢
Activity :

10. [cos™ Vadx

Solution : put Vx=1
x=2
differentiating w.r.t. x
l-dx =2tdt
= [cos ™' t-2¢-dt

refer previous (example no. 9) example and solve it.

‘



11. [\4+3x—2x% -dx
Solution : I = [V4—2x2+3x-dx

f\/4—2(x2—%x)'dx
J\/E'\/2—(x2—%x)dx

(o] - 5235
)
e
- o [T

X a’
Na x> -dx= —'\/az—x2+5-sin’1 (iJ +c

2

a
3 R
X—— ) 7 | — -
4 41 3 4 . 4
= 2 j(—} —(x—— + sin”! | ———1 |t+¢
2 4 4 2 Va1
4
\/E|:4X—3 2+3 2+41 __1(4)6—3)]}_
= : —Xx —x*+—7 - sin c
8 N 2 32 V41
4x — 3 41 4x -3
s N4+ 3x— 242 -dx=x—-\/4+3x—2x2+ -sin‘( j+c
8 16 V2 Va1
Note that :
3.3.2:
To evaluate the integral of type [( px+ ¢) Vax> + bx+ ¢ - dx
d
we express the termpx+¢g= 4 - d—(ax2+bx+ c)+B ... for constants 4, B.
X

Then the integral will be evaluated by the useual known methods.

/
. O@O .
AN




3.3.3 Integral of the type fex [fO+f' (X)) dc=e*"f(x)+c

Let e* f(x)=t

Differentiating w. 7. ¢. x

e [ @) +f)] |= %

dt
e[/ +f )=
X
By definition of integration,
Jerlf@+r @] -de=r+c
Jer /@ +f ] de=e* f(x) +¢

e.g. fex[tanx+sec2x]~dx=ex-tanx+c

dt 2)
—tanx = sec’ x
dx

@ SOLVED EXAMPLES ]

’ j‘ 2 +sin 2x J 5 fx x+2 J
) “1+cos2x ) ) ¢ (x+3) *
Solution : Solution :
f 2 + 2 sin x-cos x J [x+3-1
L= Je 2-cos® x x boo)e | (x+3) }-dx
B Jx 1 sin x-cos x :fx x+3 N -1 d
- e cosszr cos? x dx ¢ [(x+3)* (x+3) *
= fex[sec2x+tanx]'dx :fex_ ! + a -dx
x+3  (x+3)
= fe"[tanx+sec2x]~dx ) .
o f(x)=tanx = f'(x)=sec’x f(x):x+3 = f (x):(x+3)2
e LS @] de=et ) +e e @S @) dv=er f@) + e
- x. + 1
I e’ tanx +c¢ _ ex.(x+3j+c
f 2 +sin 2x J
- X . — pX. + X
e 1+ cos 2 x=e' tanx +c _ e .
x+3
f x+2 J e*
X . — +
“Na+3 | x+3 7€
o S



Lo (THx+x
3. etan X o —- .dx
1+x2
Solution : put tan'x=¢
x=tant
differentiating w. 7. t. x
“dx=1-dt
+ x2
I = Je'[l+tant+tan?¢]-dt

. fetan_ X .

Here

=

fe' [ tan ¢+ (1 +tan?¢)]-dt
fe!-[tant+sec? t ]|-dt
f(t)=tant
f'(t)=sec’t

e f(t)+c

e'“tant+c

etan"x “ X + c

1

1+x+x2
1 +x?

).dx: etan_lx ‘x+ec

(x2 + 1).ex

(x>—1+2
| (x+ 1)

a1y 4
Solution :
.I' x*+1
I =e _(x+1)2 -dx

}.dx

folE
=le _(X+1)2+(x+1)2}'dx
jx—x—l 2
=le Ty +(x+1)2}-dx
-1
Here f(x)=xJrl
. _(x+1)(1)—(x—1)(1)_ 2
= f (x) - (x+1)2 _(x+1)2

[[f@)+f ()] dx=e*f(x)+c

(“J
I =e* t+c
x+1

e ()
=e* tc
x+1

I.

Evaluate the following :

1.
4.
7.

10.

16.

19.

[x*log x-dx
[x*tan™" x-dx

[ sec? x-dx

| € - cos 3x-dx

log (log x
f glogn)

X

[ sin 0-log (cos 0)-d6

log x
fg -dx
X

2. [x*sin 3x-dx
5. Jx*tan” x-dx
8. [x-sin?x-dx

11, [x-sin™ x-dx

tsin'¢t
14. -dt

V1-27

17. [x-cos’x-dx

20. [x-sin 2x-cos 5x-dx

f o+ 1)e”
(x+1)
EXERCISE 3.3

12.

15.

18.

21.

[x-tan™ x-dx
[(log x)? -dx
x3-log x-dx
Jx*log x-d
[x*-cos™ x-dx
fcos Vax-dx
sin (log x)?
[0

Jcos (%/; )-dx

4

4

SO



II. Integrate the following functions w. r. . x :

1.  e*sin3x 2. e*cos2x 3. sin (logx)

4. 52 +3 5. xX*Na*—x* 6. m
7. Na@+4) 8. (x+ DV2r+3 9. xV5—4dx—x*
10.  sec? x-\tan? x+ tan x — 7 1. V2 +2x+5 12. V2 +3x+4

I1I. Integrate the following functions w. r. £. x :

1 +sinx 1 1
1. (2+cotx— cosec? x)-e 2. |/ | € 3. e | ———
1 +cosx x X
. X 5 e 1 210 (1 . . S5x - logx+1
. Gty e’ . ;[x(ogx) (log x)] . e .

8. log(1+x)d+

; - (x-%\/l—xzj
. eSln I —
V1-—x2

9. cosec (logx)[1—cot (logx)]

3.4 Integration by partial fraction :

X
If f(x) and g (x) are two polynomials then f(( )) , & (x) # 0 is called a rational algebric function.
gx

0 is called a proper rational function provided degree of /' (x) < degree of g (x) ; otherwise it is
g (x

called improper rational function.

X
If degree of f'(x) > degree of g (x) i.e. f(( )) is an improper rational function then express it as in
g(x

) Remainder Remainder ) .
the form Quotient + ——————, g (x) # 0 where ——————— is proper rational function.

g (x) g (x)

Lets see the three different types of the proper rational function g (x) # 0 where the

g’
denominator g (x) is expressed as

(1) a non-repeated linear factors

(i1) repeated Linear factors and

(i)  product of Linear factor and non-repeated quadratic factor.

. .




No. Rational form Partial form
@) pxX>tgx+r A . B N C
(x—a) (x—b) (x—c) (x—a) (x—b) (x—o
(ii) pxX2tgx+r A . B . C
(x—a)’ (x—b) (x—a) (x—a (-0
(iii) pxXtgx+r A . Bx+C
(x—a) (x*+ bx+c) (x—a) x*+bx+tc

: px*tgxtr , . : :
Type (i) : - dx 1i.e. denominator is expressed as non-repeated Linear factors.
x—a)(x—b)(x—c¢)

@) SOLVED EXAMPLES |

3x?+4x—5
j(xZ— Da+r2) @

3x*+4x -5
G-DarDar @

Solution : [ = j

. 3x* +4x—5 A B C
Consider, G-DEtD) 2 = =1 + Gr D + D)
A+ E+2)+Bx-1)x+2)+Cx—1)(x+1)
- - @+1)(x+2)
3+ 4x—5=ACx+1)(x+2)+B(x—-1)(x+2)+Cx—1)(x+1)

atx=1, 3P +4(1) -5 =A4(Q2)(3)+B(0)+C(0)

1
2=064 = A =?

atx=—1, 3(-12+4(-1)—5 =4 (0)+ B (-2)(1) + C(0)
~6=-28B = B =3

atx=-2,  3(2P+4(2)-5=4(0)+B(0)+C(3)(-1)
1

-1=3C = C =——
3

5) -5)
32 +4x—5 3 3 3

Thos, CDEIDETD) 1) GFD @2

S IomE])

ax
x+1) x+2)

1 1
Z?log(x—1)+310g(x+1)—?10g(x+2)+c

I [G-DE+1y [ 2EEETS [T DR
?“’g{ «+2) }“’ "f(xZ—l)(x+2)d"_?1°g{ (r+2) }H

= gj{’(} &




5 f 2x* =3 y
BRI ICET

Solution :  Consider,

2x*—3
@5 )

Let 2=m
2m—3 R
- - t tion.
(m—=5)(m+4) proper rational function
2m—3 A B A(m+4)+B(m—5)
Now, _ N _
(m—35)(m+4) (m—5) (m+4) (m—35) (m+4)

2m—3 =A(m+4)+B(m—75)
atm =25, 2(5)—-3 =A4(9)+B(0)
7=94 = 4 =l
9
atm=—4, 2(-4)-3 =4(0)+B(-9)
11

~11=-9B = B =—
9

- BH ., B

Thus,

m=3m+4)  (m-5 (m+d @-HE+4H  pe-5  e+4

- 5 G

- x*=5 xX*+4

7 f 1 i Jr11 1 P
DY R dx
o Je-sp T 9 Jerp

7 1 x—+57 11 1 x
-——log +—-?-tanf‘ —[tc

:32(\5) x+V5] 9 2
. 7 | x—5 +11' _1(xj+
_18(\/§) Og{x—l—\/?} ﬁ tan 7 c

j 2x2—3 = 7 : x—+5 +11‘ l[x}r
s @ Y T 1500 og{wﬁ} 182

‘



1
f (sin0) (3 +2cos 0) P

. 1 J sin 0
Solution : 1= ] (sin) (3 + 2 cos 0) (1 —cos’ 0) 3+ 2.cos 6)

J sin 0 "
(1 —cos0)(1+cosB)(3+2cosH)

put cos 0 =1¢ S —sin0-do=1-dt
sin 0-d0=—1-dt
Consid -1 4 B C
e T Y YC 1)) (-0 (+1) (3+20)

A B2 FBA-0)(B2)+CA—1)(1+1)

(1—1)(1+1)(3 +21)
1 =A(1+)B+2)+B(U-1)3+2)+C(1—1t)(1+1)

ati=1, —1 =4Q2)(5)+ B (0)+C(0)
1
12104 = A4 =——
10
ati=—1,  —1=A(0)+BQ)1)+C(0)
1
~1=28 = B =——
2
3 1 =4 B C > :
5 4
-1=——C = C=—
4 5

LB

I-00+0G+2) (-1 (+0  G+2)

(_ 1] (_1) (4)
j 10 2 5
I = + + “dt
(1-t) (@(Q+t) @+21)

1 1 1 4 1
=——log(1—t —— log(1+t)+?log(3+2t)-—+c

Thus,

10 -1 2 2
1 1 4
=—1log(1—cos®)—— log(1+cosB)+—log(3+2cos0)+c
10 2 10
1 (1 —cos 0) (3+2cos0)* | |
10 8 (1+ cos 0)° ¢ 0g a7 =mlog

= &



1
4. fZ cos x + sin 2x'dx

1 1 1
oruton 2 cosx+sin2x 2cosx+2sinx-cosx 2 (cos x) (1 + sinx) o

B J‘ CoS X e — 1 f COS X J
2 cos? x (1 + sin x) YT (1 —sin?x) (1 + sin x) x

put sinx =t¢ S cosxdx=1-dt

_l.j 1 y _1.J 1 .d_l.j 1 y
Do a0 Tl anarnan Tl anarg @

_ 1 4 B C AU+ P+BA-0)(1+0)+C(1—1)
Consider, (1—t)(1+t)2_(1—t)+(1+t)+(1+t)2_ (1—1)(1+¢)>
l=A(+t2+B(—t)(1+1)+C(1—1)
atr=1, 1 =4 2%+ B (0)+ C (0)
1 =44 - A=%
atz=—1, 1 =4(0)+B(0)+C()
1=2C = C=i
2
atz=0, 1=A1R+B1)(1)+C(1)
1=4+B+C
1 1 1
l=—+B+— = B=—
4 2 4
1 1 1
U eee
thus =00+ 1F  (-0) (40 (A+ep
& & 6
o 4 4 2 oo - 1 I (-1
..I'[‘_(lt)+(1+t)+(1+t)2 = { og( t) + log(1+t) 2(1+t)}
171 1 1 I -1
:?_ZIOg(I_t)(_l)—i_? log(1+¢)+ ——t}+c
17 . . 2 1 1 +sinx 2
Zg_—log(l—smx)Jrlog(l+smx)—1+Sinx}+c :g{log(l—sinxj_ﬁrsinx}rc

j‘ 1 J 1 | 1+sinx 2
. —_— _ +
2 cos x + sin 2x . 8 8 1 —sinx 1 +sinx ¢

. .




J’tan 0+tan® 0
1+tan® 0

) (tan 0) (1 + tan® 0) (tan 0)-(1 + tan? 0) tan 0 - sec’ 0
Solution : I:J 1 +tan® 0 o :j 1 +tan’ 0 ' :J 1 +tan*0
put tan 6 =x S.osec?0-do=1-dx
X X
:f1+x dx_f(ux)(l—x+x2)'”bC
] X A Bx+C
Consider, 1+x)(1—x+x?) - 1+x+(1—x+x2)

A4 —x+x?)+Bx+C(1+x)
B (1+x)(1—x+x2)

x =AQ—x+x*)+Bx+C)(1 +x)=A4—Ax + Ax*+ Bx+ Bx*+ C + Cx
0x>+1'x+0=A+B)x*+(-4A+B+C)x+A4+C)

compairing the co-efficients of like powers of variables.

0=A+B ... (D
l=—A+B+C ...dD and
0=4+C ... (1)
) ) 1 1
Solving these equations, we get 4 = ) ;B :? and :?

.5 Gy

(I+x)(I=x+x)  [+y (1 x+x?)

) 5

- — x4 —

3 3 3 1 1 1 x+1

s = + dx =—— dx+— | ————— dx
1+x (1-x+x?) 3 I +x 3 l—x+x

Thus,

1 1 1 1 2x—1+3 d
_ — . .dx_|__. 5 .dx _xz_x+1:2x_1
1 +x 3 2)) x¥*—x+1 dx
1 1 11 2x—1+3
=—— dx + —— 2—'dx
1+x 32 x*—x+1
1 1 2x—1 1 3
= — . dx_|__ “dx + —- —.dx
3 1+x x—x+1 6 x—x+1
= L[ +L+1 ... (IV)

= &



1 1 1
L =——'J “dx Z—?[log(ler)]

=—%log(l+tan9) ... (V)

1] 2x—1 1 )
L Y xz—-dx —6[log(x —x+1)]

—x+1
1
Zglog(tanze—taneﬂ) ...(VD
L
N e
lf 1 P 1 et of o1 12 1Y 1
=5 2 +1 1+1 X . 5 coe cient of x —2()— >~
Xoxt oy
_lf 1 4
G
X—— | t|—
2 2
| 1
1 X——
= n’! 2 |+c
2|25 3
5
1 1 2x—1
=—tan" +
\Btan 3 c
. 1 1 2tan 6 — 1 VII
=—tan' | — = |+
3 \/?tan 73 c (VL)
ftan9+tan39de 11 (1 6) 11 ( 20 o 1) 1 thanO—l
—————d=—— + +— - +1)+—=tan!| ——=— |+
L+ tan’ 0 3 og tan 6 og( tan tan 73 tan 73 c
EXERCISE 3.4
I. Integrate the following w. . £. x :
x2+2 5 x2 3 12x+3
=D Ex+2)(x+3) D) EE-2)(x*+3) © o 6x2+ 13x— 63

. .



For example :

. 2x
' 4—3x—x2
. 12x2—2x—9
’ 4x*=1)(x+3)
x*+3
10.
@=1)(x*-2)
3x—2
13.
(x+ 1) (x+3)
16 :
X1
19 :
" 2sinx+sin2x
5-e"
22.

(€ +1)(*+9)

3.5 Something Interesting :

11.

14.

17.

20.

23.

xX>+x—1

xX>+x—6
1

x(x*+1)

2x
2+x)(B+x?

5x*+20x+ 6
X+ 2x*+x

(3sinx—2) - cosx

5—4sinx—cos’x
1

sin 2x + cos x

2logx+3

x (3 logx+2)[(logx)*+ 1]

Students/ now familier with the integration by parts.

d
The result is (uv-dx=ufvdx— f(d—uj (fv-dx)-dx ,
x

u and v are differentiable functions of x and u-v follows LI A T E order.

This result can be extended to the generalisation as -

Juvdx = wv —uv,ru"v,—u"v, ..

(") dash indicates the derivative.

(,) subscript indicates the integration.

This result is more useful where the first function (u) is a polynomial, because

[x?-cos 3x-dx

o

©

12.

15.

18.

21.

6x>+ 5x*—7
3x?—2x—1
2x>—1
x*+9x2+ 20
2x
43274
1
x (14 4x3 + 3x%)

1

sin x + sin 2x

1

sinx - (3+2cosx)

n

= ( for some n.

xﬂ

- 2.('3.1j_2 (_ 3.1.1j+2(_'3.1.1j_0
=X smx? (2x) cosx?? (2) smx?E (0)

=—x*sin3x +—x-cos 3x ——sin 3x + ¢
3 9 27

verify this example with usual rule of integration by parts.




/_W Let us Remember

(I1) ff(ax+b)-dx=g(ax+b)'l+c
a

/eI

A (1) JLrr -/ @rde="""=—+c (2)
3) gf(()) “dx = 2\/f(x)+c

av) (1) fxn-abc:nn:l +e (2)
3) fconstant (k) ~dx=kx+c 4)
(%) fex- dx=e*+c (6)
(7) fsinx- dx=—cosx+c (8)
) ftanx ~dx =log (sec x) + ¢ (10)

ll)fsecx ~dx= log(secx+tanx)+c (12)

X w
= log tan(—+—) +c
2 4

(13) [sec’ x - dx=tanx +c (14)

(lS)fsecx-tanx-dx:secx+c (16)
= +

(17)f\/1 dx= sin'x+c¢ (18)

dx= tan'x+ ¢ (20)

(21)f dx= sec'x+c (22)

&% We can always add arbitarary constant c to the integration obtained :

d
WG e E =i = Jr@ - dr=g@+ec

f(x) is integrand, g (x) is integral of f'(x) with respect to x, c is arbitarary constant.

"(x)
fj;(x) -dx =log (f(x)) +c

IW dx = 2\/x+c

fcosx- dx=sinx+c
fcotx~ dx =log (sinx) + ¢

fcosec x-dx = log (cosec x —cotx) + ¢

- tog|tan (5 ]|+

fcoseczx- dx=—cotx+c

fcosecx- cotx-dx=—cosecx+c

-1
f\/sz-dxz cos'x+c

-1
.f1+x2 “dx= cot''x+c

-1
f——'dx= cosec’'x +c
x-Vx2—1

‘




N

. j 1 F 1 (> 1 xX—a
“dx=—tan!| — [+ -
(23) i atan )Te -] e R

f 1 _1 a+x f B X
(25) az_x2-dx—zlog(a_xj+c (26) Jo—x dx =sin” ( j+c

dx =log | x+ \/xZ—a2| +c (28) f ~dx=10g| x+\/x2+a2|+c

1 1

(27)
[ B .
(29) N et x—asec (ajJrc

x a* x
(30) f\/az—xz' dx=5\ja2—x2+zsinl(zj+c
x a
(31) f\/a2+x2- deE\/a“rx“rElog (x+Vx+a?) +c

(32) f\/x—a dx— Vx? —a——log(x+\/x—a)+c

d
(V)  Ifuand v are differentiable functions of x then [u-v-dx=u-fv-dx— f (d—u) (fv-dx)-dx
X
where u-v follows the LI AT E order.

(VD [er[f()+f' )] dx=e 'f(X) te

X
or the integration of type | —— - dx, g (x where roper rational function.
VII) For th g ftyp d. # 0 wh f(())pp ional functi
g (x
(1) non-repeated linear factors (i1) repeated Linear factors and
(i11) product of Linear factor and non-repeated quadratic factor.
1
1 — 1 f . “dx
(VIID) fxz el dx m'dx a sin xx+ bcosx+c
Method of completing put tan (—j =t
1 d square 2
P2 H— f px+gq
_ = 5 dx
1 ax*+bx + ¢
1 J : dx d
az_xz'dx asin’x+bcos’x+c px+q:A—(ax2+bx+c)+B
—Divide Nr and Dr by cos*x dx
(VIII) f " dx j;'d
vax*+bx+c *
foae
_ pxtgq
f\/a —x2 " \/ax2+bx+c
/

= &
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| MISCELLANEOUS EXERCISE 3 |

(I) Choose the correct option from the given alternatives :

(1

2)

3)

4

)

(6)

(7

(8)

1+x+md B
rwm o

3
(x+l)2 +c

(A) — \/x_+ T+c (B) —

f 1
x+x°

(A) logx—f(x)+c

f log (3x) .
x log (9x) *

(A) log (3x) — log (9x) +c

(C) log9 — (log x)-log (log 3x) + ¢

j’ sin” x J
wdy =
cos"t2x

tan' m+1

4

X
~a’x=f(x)+c,thenf
X+

“dx =

(A)

m+1
[ tan (sin"'x)-dx =

(A) (l—xz)_%ﬂ‘ (B) (l—xz)%ﬂf

X — sinx
f dx =
1 —cosx
X
(A) x cot (Ej +c

sin”™!

Iff(x)= NI

g =e"

(A) & (sinx— 1) + e

(C) ™ (sin'x+ 1)+ ¢

(B) f(x)+logx+c

+c (B) (m+2)tan""'x+ ¢

(B) —xcot (g] +c¢  (C) cot (gj +c

" then [ £ (x)- g (x)-dx =

3

(C) Vx+1+c D) 2x+1)2+c
©) fx)—logx+tc (D) %xsf(x)ﬂLC

(B) log (x) — (log 3)-log (log 9x) + ¢

(D) log (x) + (log 3)-log (log 9x) + ¢

m

© +c¢  (D)y(m+1)tan" " 'x+¢
tan™ x
©) ﬁ+ (D) —V1—-x*+c¢

(D) xtan (%j +c

(B) ¢ (1 —sin'x) + ¢

(D) & (sinx— 1)+

1 1
If [tan’ x-sec3x-dx = (ZJ sec”x — (;) sec"x + ¢, then (m, n) =

(A) 5,3) (B) 3,5)

(D) 4,4)

11
© (? ?)




)

(10)

(In

(12)

(14)

(15)

(16)

1
——————dx=
COS X — COS” X

X
(A) log (cosec x — cot x) + tan [3) +c

X
(C) log (sec x + tan x) — cot (5) +c
f v cot x

sin x *COS X

(A) 2+cotx+c

X eX

(A) 7+c (B) 2 +

[ sin (logx)-dx =

(A) % [sin (log x) — cos (log x)] + ¢
(©) % [cos (log x) — sin (log x)] + ¢
[ x* (1 +log x)-dx =

1
(A) 5(1 +logx)?*+c¢ (B) x¥+c
3 i
[cos 7 x-sin 7 x-dx=
4
(A) log(sin 7 x)+c

4

(C) —Ztanf7x+c

cos? x —sin’ x
ot B
COS” x +sm” x

(A) sin2x+c¢

dx
112 2 .dx:
cos x Vsin® x — cos® x

(A) log (tanx —tan’x —1 ) +c

(C) 1+sin!(cotx)+c

(B) -2 +vcotx+c

(B) cos2x+c

(B) sin2x—cosx +c¢

(D) cos2x—sinx +c¢

(©) %\/coterc (D) Veotx+c

1
©) (x - ;) e*tc (D) xe™+c¢

(B) ; [sin (log x) + cos (log x)] + ¢
(D) % [cos (log x) — sin (log x)] + ¢

(C) x*logx+c (D) x*+c¢

4
(B) 7tan7x+c

El
(D) log (cos7 x ) +c

(C) tan2x + ¢ (D) 2sin2x+c¢

(B) sin!(tanx) + ¢

(D) log (tanx + Vtan?x—1 ) + ¢




log x B
(17) f(logex)z.dx_
A) T

+
1+logx ¢

(B) x(1+logx)+c (C)

(18) | [sin (log x) + cos (log x)]-dx =

(A) xcos (logx)+ ¢

(19) j'cos2x—1 _

cos2x +1
(A) tanx—x+c

er + e*Zx
(20) —xdx =
e

(B) sin (logx) + ¢

(B) x+tanx+c¢

1

—+
1+ logx

(C) cos (logx) + ¢

(C) x—tanx+c

1

D -
D) 1 —logx

+c

(D) xsin(logx)+c

(D) —x—cotx+c

X — + X _|,_ _|,_ X —
(A) e 3 € (B) e 3o € ©) e 307 (D) e 30
(II) Integrate the following with respect to the respective variable :
X’ 3
—7)2 + 2
() (=2 x @ T3 (3) (6x+5)
@ t3 ) 3—2sinx ©) sin® 0 + cos® O
(t+ 1)? cos? x sin? 0 - cos? 0
cos 7x — cos 8x 1 +sinx
(7) cos 3x - cos 2x - cos x (8) (9) cot™!
1 +2cos5x Cos x
(IIT) Integrate the following :
(1 +logx)} 1
() ——— (2) cot™' (1 —x+x? 3) ———
X x - sin? (log x)
3 El X x>
(4) xsec(x2)- tan (x2) (5) log (1 + cosx)—x- tan (Ej (6) =
- X
(7) : (8) log (log x) + (log x)™ ) :
og (lo 0
(1 — cos 4x) (3 — cot 2x) glogx 8t 2 cosx + 3 sinx
10) — ! (1) >+ 1 12) Tog (2 + 1)
e ey ) (12) log (»
x2
(13) e sinx - cosx (14) 15 —
x—1D)Bx—-1)Bx—2) sin x + sin 2x
16 2x-NT+2t — tan? 17) ———— 18) —————
(16) sec’x- anx —tanx - ( )x3+3x2—x—3 ( )x‘(x5+1)
Vtan x
(19) ——m (20) sec* x -cosec?® x
sin x * cos x
DR
o o

+c



4. DEFINITE INTEGRATION

\E Let us Study J

e Definite integral as limit of sum.

¢ Fundamental theorem of integral calculus.

e Methods of evaluation and properties of definite integral.

4. 1 Definite integral as limit of sum :

In the last chapter, we studied various methods of finding the primitives or indefinite integrals of

b

given function. We shall now interprete the definite integrals denoted by I f(x) dx, read as the integral

from a to b of the function f'(x) with respect to x. Here a < b, are real numbers and f(x) is definited on

[a, b]. At present, we assume that /' (x) > 0 on [a, b]

and f'(x) is continuous.

b
J f (x) dx is defined as the area of the region

bounaded by y = f(x), X-axis and the ordinates x = a
and x = b. If g (x) is the primitive of f(x) then the area
isg(b) — g (a).

The reason of the above definition will be clear
from the figure 4.1. and the discussion that follows
here. We are using the mean value theorem learnt
earlier. Divide the interval [a, b] into a equal parts
by

a=x,<x <x,<...<x _<x =b.
n—1 n

Y x=Db
N
B
y=/() /
x=a //
P ‘Q/
//
A
) (2, 0) X X (b, 0)
y Mr Mr+]
Fig. 4.1

Draw the curve y = f(x) in [a, b] and divide the interval [a, b] into n equal parts by

a=x,<x <x,<...<x _<x =b.
n—1 n

Divide the region whose area is measured into their strips as above.

Note that, the area of each strip can be approximated by the area of a rectangle M M __ QP as

shown in the figure 4.1, which is (x__
and Q.

1

/,
. GG
AN

—x ) x f(T) where T is a point on the curve y = f'(x) between P



The mean value theorem states that if g (x) is the primitive of f(x),

<g('xr-%—l) _g (xr) = (xr+l _xr) f(tr) Where xr< tr<xr+l'

Now we can replace /(T ) by /(¢) given here and express the approximation of the area of the

..~ Xx) f(t)where x <t <x .

n=1
shaded region as Z (x
r=0

Now we can replace f( T ) by f(¢) given here and express the approximation of the area of the
shaed region as

_0 (., —x) f(t) =Zog(x,ﬂ)—g(x,>= g (h) - g (@)

r=

Thus taking limit as n — «©
gD)—g@ =50 (., —x) f(1)
=158,

b
= j 7 (x) dx

a
The word 'to integrate' means 'to find the sum of'. The technique of integration is very useful in

finding plane areas, length of arcs, volume of solid revolution etc...

@ SOLVED EXAMPLES )

2
Ex.1: j(2x+5) dx
1

2

b
Solution : Given, | (2x+5) dx = [ £ () dx

1 a

fx)=2x+5 a=1;b=2

= fla+rh) = f(1+rh) od  p=24
n
= 2(1+rh)+5
) 2-1
= 2+2rh+5 h=—
= T7+2rh nh=1

b ) n
We know j fE)dx=0m "1 f(a+rh)

a

. OO .



2

[@x+5)ax

1

3

Ex.2: |7 dv
2

Solution :

We know

i o> - (74 2rh)
r=1

fim > (Th+2rh?)

n

fim [7};2 1+21) rj
r=1

r=1

=5 :7h'(n) + 2R (” (”2+ 1)}}

im i 1
11—)00 Tnh + h*n? (1 + 7J:|

1w ar(1e |

=7+1(1+0)=8

3

b

Given, [7°-dx = [ 1)

—W g —

F@de="m S fla+rh)

75

dx

2
fx)=7 a=2;b=3
fla+rh)y = f(1+rh) and  h=

a

— 72+rh 3
— 72.7rh n

Eﬁw i b (72 . 7r-h)
}11200 72. ih . Jrh
=1

lliiw 72.h.[7h+72h+73h+74h+.”+7nh]

h nh _
lim 72h 7h [(7h)n — 1] _ lim 72‘ u
n—>w 7h . 1 n—»o 7h — 1

h (1) —
_ lim 72, M
n—>00 7}, _ 1

h
77 (-1 @A9I)6) 294
log 7 ~ log7  log7

SO

nh=1



4
Ex.3: I(x—xz) dx
0

4
Solution : I(x x?) - dx = j f(x) dx
fx)=x—x? a=0;b=4
= flatrh) = fO+rh) and  h=
= f(rh) 40
= (rh) — (rh)? n
= rh—rh’ nh=4

We know [ f(x) dx = 23002": he[f(a+rh)]

Ot b o —

(x —x)-dx ='m Zh -(rh — r*h?)
= i(mz — )
= (hz '2r—h3-2r2)
_lim I (n(n+1)J (n(n+1)(2n+1)ﬂ

i 1 1 1
i h*nn [1 —j nn (1 + —jn(2 + —j]
_ lim _ n n

n—»o0

afeles) o))

n—»o0 2 6

afoled] ol

n—»o0 2 6

L@ (110)  (@(1+0)(2+0)
B 2 - 6

(69)2)
6




1%
Ex.4: I sin x - dx
0

2 2

Solution : I sinx-deI f(x)dx
0 0
. T
f(x)=sinx a=0;b=?
. T
= f(a+rh) = sin(a+rh) b—a 3—0
= sin (0 + rh) and h= n . n
. . X
= sinrh s nh=-
b . n
We know [ f(x) dv =, > h - [f (a+ rh)]
r=1
TVZ n
j sinx - dx —L‘ﬂwz}z-sinrh
0 r=1
=i k- sinrh
r=1
=lm h-[sinh+sin2h+sin3h+... +sinnk] ...(I)

Consider,

Zsinrh =sin h+sin2h+sin 34 + ...+ sin nh
h . h . h . h
=2sin=-sinh+2sin =-sin2h+ 2 sin =-sin 34 +. ..+ 2 sin = sin nh
2 2 2 2
2sin A - sin B=cos (A—B) — cos (A + B)

i h_” ) B h 3h 3h S5h 5h Th
ZSIHTZ sin rh = 0087—0087 + COST—COST + COST—COST +...
N N 2n—1 . 2n+1 I
COS D) COS D)

3 [ h 2n+1
= |cos5 —cos 3 h

B h_ 2nh+h
= COS? COS T 7
f h T h h—£
B R I I ) "=

_ h
= cos— + sm7

/
. O@O .
AN




h . h
COS—& + sin—--

z”:' - 2 2

Msmr = - 7
Sll’lj

Now from I,

2

n
. . _ lim ol
Ismx dx—n_mZh sin rh
0 r=1

h e h
. cos 5 +sin—+-
= e B
2sin7
T 1
nh=— asn—>oo:>h—>0(——>0}
4 n
£+ 1 ﬁ
. cos 5 +sin—
= n—0 h
=0 2~sin7
h

cos0 +sin0

1+0
= =1
1
2-7
123
jsinx-deI

0

EXERCISE 4.1

Evaluate the following integrals as limit of sum.

3 4
(1) [Gx—4)dx @) [adx
1 0
2

@) [Gx—1ydx (5)

0

x3-dx

——w

(3) [erdr

‘



4.2 Fundamental theorem of integral calculus :

Let f be the continuous function defined on [a, b] and if J. fx)dx=g(x)+c

b

_ b p 22\
ten [5a = g+’ B Jotona - {[? . TJL
= [(g®)+c)—(g@+c)] 5 5 3 92
= gb)+tc—g(a)—c B H?_?j_(?_TH
= g -g@ _ 125 25 8 4
b 3 2 3 2
ThusJ'f(x)dx= g (b)—g (a) ~ 117 21 234-83
a 3 2 6
; 151
J (x* — x) dx= =3
2
b
In I f(x)dx aiscalled as a lower limit and b is called as an upper limit.
Now let us discuss some fundamental properties of definite integration.
These properties are very useful in evaluation of the definite integral.
4.2.1
a b a
Property I : '[f(x) dx=0 Property II : J.f(x) dx =— Jf(x) dx
a a b
Let If(x)dx = g(x)+c Let Jf(x)dx = g(x)+c
2 b
If(x)dx = [g(x)+c}a ..J.f(x)de [g(x)JrcL
" @i -(g@+e)] - s te@ral
~ 0 = g()—g)
= ~[g@-g®]
= [/
b
b a
Thus j f(x)dx = — j F(x) dx
a b
3 [ 3 1 [ 1
Ex. jx dx = 5 Ex. jx dx = 5
1 1 3 3
B 32_12_9_1_4 o3 1 9
-2 272 2 -2 2 2 2774
AN



b b 4 3
Property 111 : [ /() dv= [ f(¢) dr Bx. | cosxdv - {Sin N }
a a ,[[/6
Let Jf(x)de gx)tc T i
, = sin 3 —sin
LHS.: [f()dr=[g(x)+ c}z G
L s s+ —(g@+e)] F
3—-1
=gb)—g)..... (1) = 5
b
RHS.: [f()dt = [g(1)+ c]” o %
a ‘ Ex. j cost-dt = {sin l}
= [(g@) +c)-(g@+c)] 6
=gb)—g)..... (i1) — sin % —sin =
from (1) and (i1) B
b b - 2
[reydv=[f@yr 2
“ “ V3-1
1.e. definite integration is independent of the B 2
variable.
Property IV : 'Iff(x) dx = jf(x) dx + jzf(x) dx wherea<c<b 1ie.c € |a,b]
Let Jf(x) dx = g(x)+c
Consider R.H.S.: Jc‘f(x) dx + jzf(x) dx
= [gm+e] +[g)+e]

[(g)+e)—(g@+c)]+[(g®)+c)—(gl)+c)]
gle)te—gl@-ctgd)+tc—gl)—c

g () —g(a)

[g(x)+c}z

= jzf(x) dx :L.H.S.

a

Thus ff(x)deTf(x)derff(x)dx where a<c<b

a a c

‘



5 3 5

Ex.: [Qu+3)dc= [Qv+3)dc+|(Qu+3)dx
-1 S -1 3
LHS.:  [@c+3)dr
-1
- .
= 27 + 3X:|
= -1
r 5
= |x+ 3x}

-1

(5 +3 ()] - [1)+3(-D)]
25+ 15)— (1 -3)
40+2=42

b
Property V : If(x) dx =

a

Let jf(x)dxz g(x) +c

fla+b—x)dx

Q —

b
Consider R.H.S.: j fla+b—x)dx

put a+tb—x=t ie. x=a+tb—t

—dx=dt=dx=—dt

As x>a=t—>b and xX—>b=>t—>a
therefore = I f(t) (—dt)
b
= - j (1) dt
b
b b a
= j f(t)dt...('.' j F(x)dx=— j f(x)de
a a b
b
= J' f(x)dx as definite
a integration is
independent of
the variable.
= L.H.S.
b b
Thus jf(x) dx = jf(a +b—x) dx

‘

3 5
J@x+3)-dx+ [ @u+3)dx

R.H.S.:
-1 3
3 5
= {x2+ 3x} +{x2+ 3x}
-1 3
= [(BP+33) - (D*+3¢1)]+
[(57+3(5) - (Br+33)]
= [(9+9)—(1-3)]+[(25+15)—(9-9)]
= 18+2+40-18
= 42
Ex.:
3
J sin? x - dx
6
3
I =[sintx-dx ...(0)
6
_fvz (n N -
—Ism F ?—x
6
ZTsinz (l—xj
2
6
3
I = costx-dv ...(ii)
6
adding (i) and (i1)
3 3
2I=J sin® x - dx + '[ cos? x - dx
6 6
u%)
21= J (sin? x + cos? x) - dx
6
L%} w3
2= J 1-dx ={x}
6 6
ol — nom_x . - T
376 % - =1
Tsinzx . dle
12
6
L 2




Q

Property VI : Jf(x) dx = Jqf(a —Xx) dx
0

Let jf(x)dxz g +c

(=]

a

4
J log (1 +tanx) - dx
0

w4

Let J log (1 +tanx) - dx

Ex.:

()

Consider R.H.S.: j f(a—x)dx L7 -
0 I =|log|l+tan (Z—xﬂ
put a—x=t ie. xX=a-—t ‘ i
i T
—dx=dt=dx=—dt 4 tanZ—tanx
. ) = .[ log |1+ dx
As x varies from 0 to a, ¢ varies from a to 0 ; T
0 1+ tanZ'tanx
therefore I = | f(¢) (—dt) )
J; _TV41 lJrl—tanx 4
p B -[ 08 [+tanx | &
= —[f@ar o
“ T“l [1+tanx+1—tanx 4
¢ ? ¢ — 108 1 + tan x Sax
= j (1) dt...U f(x)dx=— j F(x) dxj o L
0 a b Tj~/4 - 2
a = | log —} dx
= I f(x)dx as definite 0 |1 +tanx
0

independent of

the variable.

L.H.S.

Thus

Tf(x)deJqf(a—x)dx

0 0

integration is

= | [log2 —log (1 +tanx)] - dx
0

V4 4
Z_[(10g2)~dx—'[10g(1+tanx)'dx
0 0
w4
I =(log2) [ 1-dx=1  ..by eq.()
0
R 2
[+1 =(log2) x}
L Jo
'
21=(log2) Z—O}
I = — (log2
= g (log2)
Thus
4

j log (1 +tanx) - dx = % (log 2)
0




Property VII :
Tf(x)dx Jf(x)dx+ff(2a—x)dx
0 0

R.H.S.:

'—.a

£ (x) dx + j f(a—x) dx
I +1 ()

Consider I, = j f(Qa—x)dx
0

put 2a —x=t¢ 1e. x=2a—t
—ldx=1dt=dx=—dt

As x varies from 0 to 2a, ¢ varies from 2a to 0

L= o

2a

- [ ra

2a

2a b a
= jf(z) dt ...Uf(x) dxz—jf(x) dx)
0 a b
2a b b
= jf(x) dx ...Uf(x) dxzjf(z) dt)
0 a a

a 2a
j f(x) dx= j £ (x) dx
0 0
from eq. (i)
f F(x) dx+ j (2a —x) dx = j £ (x)dx + T 7 (x) dx
0 0
2

0 0

a

j f(x)dx:LHS
0

Thus,

2a a a
f)dx=|fx)dx+|f(2a-x)d
£ X) ax £ X) dax £ a—Xx)ax

Property VIII :
j fx)de =2+ j F(x) dx , if f(x) even function

—a 0

=0 , 1f f(x) 1s odd function
f(x) even function if f'(— x) = f(x)
and f(x) odd function if f(— x) = — f(x)

ff(x)dxz JQf(x)dx-Ir'Tf(x)dx ... (1)
—a —a 0

0
Consider J f(x)dx

put x=—1¢ Lodx=—dt
As x varies from — a to 0, ¢ varies from a to 0
0 0
I = [fe0Ed) = —[fEnad

b a
f(~t)dt U f@de==[ /() dxj
a b

Il
Se—q

a b b
= j £(—x) dx ...Uf(x) dx = Jf(t) dt]
0 a a
Equation (i) becomes

e =

—-a

j £(=x) dx + j (x) dx

(=)

a

j [f (=) +f ()] dx

If £ (x) is odd function then f(—x) = — f(x), hence

Jqf(x) dx =0

—-a

If £ (x) is even function then f'(—x) = f(x), hence

ff(x)dx =2'Jqf(x)dx
—a 0
Hence :

: I f(x) dx , if f(x) even function
0

=0 , if f(x) is odd function

Jqf(x) dx =2

= &



Ex.:

4
1. J. x* - sintx - dx
~1/4
Let f(x) =x*-sin*x
f(=x)=(—x)* - [sin (—x)]* = —x* - [~ sinx]* = —x* - sin*x
=/ (x)
f(x) is odd function.
4
J. X} osinfx - dx=0
14
L L | 2
2. _J;lsz-dx '[lsz-dx = 2I1+xz'dx
x? _ 1+x*2—1
Let f(x) = 1+ 2 26[ 1 +x? dx
|
e -]
—X)= = 2])|1- ~dx
I -1
|
_ X = 2 [x— tan‘lx}
1 +x? 0
= 2{(1—tan"'x) - (0— tan"'x)}
=f(x)
T
f(x) is even function. = 2 {1 7 0}
_ o[- n) (4-m
— Z 1=l
Lox? 4—r
JToe ="

@) SOLVED EXAMPLES | B

1
Ex. Ix/T+x/_ 3
3 Va+x—x :L{ x%_x%}
Solution : '[(\/2__”_’_\/_)( \/2—+x—\/§j.dx 7 [(2+x)2 - (x) 1
YN g 1 303 s 3
{( o jdx =g{[(2+3>2—(>2} [<2+1)2—(1)2]}
1¢2 32 3 3
I - it
: % {57 —-2(3)2+1

NI E =
1 {(2+x}2 X2




%3
Ex.2: J\/l—cos4x-dx
0 %)
Solution : LetI=J N1 —cos4x - dx

L%
1= [ V2sin?2x-dx
0
A
( 1 —cos A =2 sin? 2)
%)
= 2 Isin2x dx
0
—coS 2x
- [
1 |
= — cosZ——cosO
2
V2
= —7 [cos T — cos 0]
\/5
= ——(-1-1)= V2

nH
J\/l—cos4x-dx=\/3
0

w4 sec? x
Ex.4: .[ .
o 2tan’x+Stanx + 1

A sec? x

Solution : Letl= J

%)
Ex.3: Icos3x~dx
0

%)
LetI=Jcos3x'dx
0

[

1
{sm 3x-—= + 3 sin x}

Solution :

[cos3x+3cosx]-dx

w2

0

T
[?sm3 + 3 sin 2)

[ 3 sin 3 (0) + 3 sin (O)H

-lklr—‘

N 3n+3, T
—Z?SIHT SlIl?

1
?sin0+3 sinO}

1
{?(—1)”(1)—0}

EREIOE

s ax
2tan’x + Stanx + 1 1
0 _i_ | (1,‘4—1)—\/7
put tanx=¢ .. sec’x ‘dx=1-dt ST 1y log -1
As xvariesfromOto% 2(ﬁj U+1)+W 0
tvarieslfromOtol \/_ K\/_tJr\/__lﬂ
_ J‘;.dt 7 o\ Zr vz
0 2¢ +4t+1
Lo | _£{1 (\/E(I)Jr\/i—l]_l (x/i(owﬁ—lﬂ
e e ni T4 Nz ez ) B2 2
0 t2+2t+; _£{1 (2\/—_1j o (ﬁ_lj}
:i.jl ! N 22+1) B2+l
2 0l \2 {(2@—1)(@—1)}
_ L 1 2‘dt “ 4 Rz T (V2
2 £(;+1)2—(Lj2 V2, {3%5}
V2 T4 % 3-\2
4 4
N



Ex.5: j% log x :

1

x2

2
1

Solution : Let I Zf(log X) (—j dx
1 x

fog | x| ~[L o]
—_(logx)- ;-dx 1 —1Elogx- ;dx dx
I 1N 2101
=|(logx):| —— —J—' —— |-dx
L x /)], 1x X
- 2

{5ee2) (o0t | (-5)- (5]

= 11 2—-0 1+1—1 ll 2 log1=0
2 %8 2 2 2 % - o8
Z logx P _1 |~ losn
.[ o o= og
m2 COS X
J - ~dx
o l+cosx+sinx
2 COS X
Solution : Let 1 :I “dx

o 1+cosx+sinx

o X
_Tj_/z cos(zj sm[z) |
X (x X
0 2 cos? (7) + 2 sin (7]"’05 (7)

p L)l el ) ()]
* a3 s[5 )l 5 )

FEEECIRRE

()

(@]

2
7\
o =
N




L AT
2
1 [=x T
= 5 7—210g sec - —(0—2logsec 0)
1 _TC 1 T \/—
= 7-_7—2logﬁ—o+z(0) = |5 —2log\2
w2 sec? x
J - -de%—log\/E
o 1+ cosx+sinx
1/ 1
E.7:r -d.
R NS
1

1
Solution :Let I = j/z d
L R
put x=sin@ .. 1-dx=cos 0-dO

1 T
As  x varies from 0 to , O varies from 0 to — 6

6 cos 0 6 cos 0

- J — 2sin? 0) V1 — sin? 0 0= J (cos 20) m.de
6

- J cos 26
6

= [ sec20-a0

0
1%
= {log (sec 20 + tan 20) - 3 }

: {log (sec 2 (%) + tan 2 [%) — log (sec 0 + tan 0)}

: {log (sec % + tan %) —log (1 + 0)} v log1=0

l\)lr—‘

[log 2 +3)-0]

l\)lr—‘ Nl»—ﬂ l\)l»—‘

10g(2+\/§)

1
‘fz(l—sz)\/— 10g(2+\/_)

%—log\/f

‘



Ex. 8

Solution : Let 1= I

put
As

2x

0 2 (1+4)
2 Dx

< dx

—

— - dx
o 27 (1+4)
2=t 2¥-log?2 -dx=1-dt

x varies from 0 to 2, 7 varies from 1 to 4

1

4
log?2
L t(L+ %)

11
log2 5 t(1+¢%)
f
1

1
log 2

1+¢2—1
- dt
t(1+1?)
may be solved by method of partial fraction

RN £2
log L Le(1+1%) t(1+t2)

4
1
- I{ }dt
log21
_ ! HL Lf 2 }
lOgZ 1t 211+t2

1
Ex.9:j|5x—3|-dx

-1

1
Solution : Let I= j|5x—3|-dx

| 5x—3|

-1

3
—(5x—3)f0r(5x—3)<0i.e.x<g

3
(5x—3)f0r(5x—3)>0i.e.x>?

3/5 1

= j|5x—3|'dx+.[ | 5x =3 | dx
-1 35

35 1

(5559 (555

S =0

4

1 1
= E{log(r)—;log(l-ﬁ-t )}

1 1
= ——||logd——logl7 |-
log 2 Mog 2 °8 j

1
locl ——1log?2
(Og 2 8 ﬂ

1

= 10;2-_log4—%logl7+%log2}
log1=0
_ 1-_10g4\/§}
log2 [ V17
2 1 { 4@}
2+ (1 +4%) - (log2) 8 T
- 42
_Ing(Wj

TS— (5x—3) dx + Jl (5x—3)- dx

-1 35

5 35 5 1
3x——x* +|x*—3x
2 -1 2 3/5

GG Gov-ser]lGos0)-GE) ()

. .



G523
S | S [ S S
5 10 2
9 9 5 5
= ———+3+—+—
5 10 2 2
4
I|5x—3|dx=—
-1
%3

Ex.10:

L% 1
Solution : Let I = j

1
n sin x
Jcos x

Tj/z \/cosx
\lcosx+ sin x

~dx

~dx

adding (i) and (i1)

1+]1 =TZ

Jcos x
N cos x +'sin x

\lcosx+ smx

2] =

6[3cosx+ sin x
%)

20 = [ 1 dx
0

1_1{ ]‘/2_1{11
217, 214

1

2
5 " dx
J 1 +tan x

with the help of the above solved/ illustrative example verify whether the following examples

————dx
0 1 +tan x

~dx +

FE)-@-2)
N R

By property ]l‘ f(x) dx= J f(a—x)dx

}COS ——x
0 TT '
3/ 05(7—)6) +i/sm(7—x

TJ‘-/Z sin x p
\/s1nx+\/cosx *

w2

()

.. (i)

\/smx J
\l3 smx+\/cosx *

-3

dx

T
evaluates their definite integrate to be equal to / as 7T

fr/z
[—
0 1 +cot’x
TJVZ sin? x
0

sin® x + cos* x

4

sin x 2 sec x
X ; J “dx j “dx
¢ sinx + cos x § secx + cosec x
5
"2 cosec? x
“dx; J H 5 dx
0 cosec? x+sec? x
/,
L
AN



8§ (11 -x)

Ex. II:I—Z-dx
> ¥+ (1-x)
g (-’ |
Solution : Let IZJ -, dx ()
X2+ (1—-x)

By property _lff(x) dx=jff(a+b—x) dx

a

[11-(8+3—-x)]° [11- (11 - x)]*

I:jE 2 2.dx :ji 2 2
L [8+3—x]"+[11—(8+3—x)] L (11 —x)° + [11 = (11 —x)]

2

8
'[ “dx
> (11 —x) +x2

adding (i) and (ii)
8 2 8
11 —x x*
I+1 ZI(—)2~dx + j—z-dx
3 2+ (1+x) 3 (11 —x)" +x2
8 2
11 —x) +x?
o = o
3 x2+ (11 —x)
|8
1=—]1 ax
23
8
1 1 5
ST PR
217 2 2
§ (11 —x) 5
J'—z.dx:_
> 2+ (1+x) 2
b X 1
Note that : In general J AL, -dxzz(b—a)

o St fla+b—x)

verify the generalisation for the following examples :

— ., e
1 3oxtVx I(9—x)3+x3 * ’
2
1
J? le l,dx ]‘/3;\/—‘61)6
4(13_x)7+x7 Tr/61+ cot x
L) 1

— ———— - dx
L 1 +Vcosec x

~dx

‘

. (i)



Ex.12:.[x~sin2x'dx
0

Solution :

Consider, T =] x-sin’x-dx...(Q)

ot—3

(m—x)- [sin(m—x)]"x - dx

e
I
o3

(m—x) - sin’x - dx

p—( p—
I Il
O3 o3

T
7 - sin’x - dx —jx- sin®x - dx
0

T 1 ]
I ZR-I?(I—COSZX)-dx—I...by(l)
0
TCTE
I+1 =—.[ (1 —cos2x) - dx
2
0
n| 171"
2l=— x—sin2x-—}
2 2 ],
| 1 1
[ =—||n——sin2n|—|0——sin0
4 2 2
T . .
:Z[n] wsin0=0;sin2n=0
TEZ
4

T TCZ
I x> -sin’x - dx=—
A 4

T
Ex. 13 : Evaluate the integral I cos’x - dx using
0

the result/ property.
Solution :
2a a a
j f(x) dx = If(x) dx + jf(za — x) dx
0 0 0

Let,I = J. cos®x - dx
0

5

cos? x - dx

Il
—_—

H 2
T

cos’x - dx + J {cos (2— - xﬂ - dx
o 2

2

I
Ot_,S o

cos’x - dx+ | cos’x - dx

Ot_,S
Se—3a

© cos (T —X)=—Ccosx

L%
=2-Jcoszx-dx
0
H
= J (1+ cos2x) - dx
0

1 2
= x+sin2x'—}
L 2]

(n 1 | = L
_ (_+_Sln2—]—(0+—sm 2(0)]}
2 2 2 2

T
=—+0
2

sin0=0;sint=0

T

2

T
cos? x - dx=3

ot—2




¢ x (1+sinx)
Ex.14: | ——-
_'[t 1 +cos’*x

) ¢ x (1+sinx)
Solution : Let [ = I —1 n ; “dx
-~ COS* x

¢ X { x-sinx
e (e
1 +cos’x 1 +tcos’x

- sin
The function B is odd function and the function sy is even function.
1 +cos’x 1 +cos’x
.[ f(x)dx=2" I f(x)dx ,iff(x) even function
- 0
=0 , 1f f(x) 1s odd function
T _X-sinx sin x
0 1 +cos? x
) A - sin x )
= dx ... (1
J(; 1 +cos’x

_2_”(71 X) - sin (1 — x)
N J(; 1+ [cos (m—x)]
(m—x) - sinx
1 + (- cos x)°

Il
[\
o—x

Tmeosinx—x-sinx
=27 J - dx
0 1 +cos?x
T osinx T x-sinx
= 2n j -2 j
0 1+ cos’>x 01+cos X
I 5 Tosinx [ b 0
=2n| — 1 ...byeq.(i
-[01+coszx yed
T osinx ..
I+1 = 2n-j— . (i)
0 1 +cos?x
put cosx=t¢ S —sinx-dx=+dt

As varies from 0 to mt, ¢ varies from 1 to — 1

21 2 -

1 =m-2

(where is even function.j

1+1¢2 1+

|
|

‘



1

| = 2n -{tan‘lt} .
0

= 2m[tan”' (1) —tan'(0)]

¢ x (1 +sinx) T
jrdosing 0w
= l+cos’x 2

3
Ex. 15: I x[x]- dx,where [ x ] denote greatest integrate function not greater than x.
0

3
Solution : Let] = J.x[x]~dx

? : ;

I = |x[x]-de+|x[x] dc+|x[x] dx
| | |
1 2
= jx(())-dx+jx(1) dx+jx(2)-dx
0 1 2

Il
S
+

5[]

- 0+(5-7)ro-4
= 5 5O

_ 3.8
2 2
3 4 13
[xx] 5
0
( )
LEXERCISE 4.2 )
I. Evaluate:
9 x+1 3 w4 w4
1 “d. 2 —d 8 1 +sin 2x-d. 9) | sin*x-d
O et ()£2+5x+6x ()()jv wde ) [sintxds
3) ij £2-d (4) ]m L 4 f (11)]1 L
COol” -ax - —ax x —FT—"axX
0 w1 Tsinx 4 2t dx+13 o Vdx — x?
®)] Jé “dx (12) j ;'dx (13) Tjax'sinx'dx
3\/2x+3 \/2x 3 o V3 +2x —x? 0
1 /4 1 )
(6) j (7) [ sindesindrdr  (14) [x-tan " xdx (15) [x-edx
0 0 0 0

/
. O@O .
AN



II. Evaluate :

J~2 sin”! x

(1)
0 (1 _ 2)2

]Y“ secxx p
“dx
03 tan’x + 4 tanx + 1

)

i sin 2x
e | -dx

o sin*x + cos’x

4) Vcosx - sin’x - dx

Ot_.l;‘v

1

—.dx
5+4 cosx

)

Ot—.s

4 cosx

(6) -dx

Se—a

4 —sin® x

(7

]‘-/2 CoS X dx
o (1 +sinx) (2 +sinx)

| 1
8 ———dx
( ) _.[ azex+ b2€*x

1

3+ 2 sinx + cosx

“dx

©)

Y —

w4
(10) j sectx - dx
0

- X
“dx
+Xx

(11)

ot

(12)

(13)

sin 2x - tan "' (sinx) - dx

J
0
2
J
0
(ecos" x)(Sil'fl X)
v

cos (logx) 4
i S = A

X

(14) “dx

N — ﬁl.— —

(15)

sin’x (1 + 2 cosx) (1 + cosx)’ - dx

II1I. Evaluate :

‘ 1
[ ———=a
W =
2
2) J log tan x-dx
0

3)

1
log (— - IJ-dx
X

sin x — cos x
—.dx

4

Se—md o

1 + sin x*cos x

(5) x*(3 - )c)2 “dx

x3

9—x2

(6)

|
|

T2 2 +sinx
(7) '[ log (—_j~dx

v 2 —sinx
T
4 x+z
(8) _T-£42—cos2x'dx
4
9) Jx3-sin4x-dx
T4
1
log (x + 1)
10 “d
(10) [ 725
o[22y
( )_[ e
a x x3
(12) I1 —

(14) |x - sinx - cos’x - dx

log x
1-r

(15) -dx




Note that :
2 2
To evaluate the integrals of the type j sin” x - dx and j cos” x - dx, the results used are known as
0 0

'reduction formulae' which are stated as follows :

7 1) (n=3) (n-5
[[sinx-ax = oD@ w25 42 if s odd.
0 n (m—2) (n—4) 53
(n—1) (n—=3) (n—5) 31 ©
= : : cr-——-—, ifniseven.
n (m—2) (n—4) 42 2
TV2 TV2 Tc n
Jcos”x-dx = j {cos (E—xﬂ - dx ... by property
0 0
1V2 n
= j [ sinx ] dx
0
nH
= '[ sin” x - dx
0

(7-1) (7-3) (7-5)
7 (7-2) (1-4)

sinx-dx =

Oo_.s

T-1D7-3)7-5)

7-(7-2)(7—4)
_6-4-2 16
7-5-3 35

(8-1) (-3 (-5 -7 =
8§ (8-2) (8—4) (8-6) 2

cos!x-dx =

O-_,S

_@B=1D)@=3)@8-5@-7m
 8(8-2)(8-4)(8-6) 2

531 =
8:-6-4-2 2




%

oFf
5,

Let us Remember

Z(xm_x) 'f(t)zzg(xrﬂ)—g(er gb)—g(a)

Thus taking limit as n — oo

. . b
gB)-g@ =N (., mx) S)=1mS, = [ /(@) dx
b a
Fundamental theorem of integral calculus : I f(x)dx=g(b)—g(a)

a
a

Property I : Jf(x) dx=0
Property II : jff(x) dx=— jff(x) dx
b

a

Property Il : | f(x)dx= | f(¢) dt

b
Property IV: | f(x)dx= | f(x) dx + jf(x) dx where a <c<b 1ie.c € [a,b]

@

s ]
jros- |

PropertyV:ff(x)dxz'ff(aﬂLb—x)dx

Property VI : jff(x) dx = Jqf(a —Xx) dx
0 0

Property VII : Taf(x) dx = ff(x) dx + jzf(2a —X) dx

0 0 0
Property VIII : j f(x)dx =2- j f(x)dx ,iff(x) even function
—a 0
=0 , if f(x) is odd function

f(x) even function if f(— x) = f(x) and f'(x) odd function if f(— x) = — f (x)

'Reduction formulae' which are stated as follows :

2 — — —
[simx-age = LDEZDW) 22 0 i odd
0 n (m=2) (n—4) 53
_ @D @) @) 3L R even
- — ) =3 25 2 if n is even.

%) - ! ) ) %)
cos"x - dx = I {cos(——Oﬂ - dx :j [ sinx ] dx = J sin” x - dx
0 2 0 0

OQ—,S

‘



:MISCELLANEOUS EXERCISE 4;

(I) Choose the correct option from the given alternatives :

(1

(2)

3)

4)

()

(6)

(7)

®)

J‘ dx _
> x (= 1)

1 208
(A) —log (189)
TZ sinx-dx
o (I+cosx)

oL (189
(B) 3 Og(zosj

@ )

o af2)

B T — C 4_1 D 4+7
®) (© 4 ©)
1985 prer — 1
Ders O
(A) 3+2n B) 4—=n ©C) 2+mn D) 4+n
L)
J sin®x cos?x-dx =
0
T Ei o 5 -
()256 ()256 ()256 ()256
Jl.\/lex N 3,‘[henkis equal to
X
\2 _
(A) V2 (2V2-2) (B) T(z—zﬁ) (©) 2\53 2 (D) 4V2
1L
e )
(A) Ve+1 B) Ve-1 (€) Ve (Ve—1) (D) Ne- 1
! 1 b
va[{ - 2} ‘dx=a+ , then
>Llogx  (logx) log 2
(A) a=e,b=-2 B) a=e,b=2 (C) a=-e,b=2 (D) a=—e, b=-2
e 2
LetIIZI and [ :I dx, then
e logx 1 X
(A) IIZ%I2 B) I,+1,=0 (©) 1,=21, (D) I, =1,
0
*
N




(9) fi'd
o xrVo-x

9
(A) 9 B) © 0 (D) 1

i 2 +sin 0 .
(10) The value of '[ log| ——— | dOis
o — sin

(A) 0 (B) 1 (©) 2 (D) ©

(I) Evaluate the following :

1) T o @) Tz cos0 40 3) j L4
-dx : -dbx
. 1 e e 3
o 3-cosx+sinx W4[cos—+sin—} o 1+\x
2 2
w4 tan? 1 1
@ [ ) | eNT—ae ©) | (cos x)dx
o 1+cos2x 0 0
1 T T
1+
7 “dx 8 x-sin x-cos* x-dx 9 X
™ '[9—x2 ® '([ ©) J(;1+smx
1
10
( )I i
(IIT) Evaluate :
YA B 2x (S
(1) j sin”! - dx (2) I —dx
o\ 1 +x? 1 +x? o 6—cosx
¢ 1 0 sinx
3) jﬁ dx 4) f ——dx
oad tax—x s Sin x +cos x
¢ . 2x 4 cos 2x
(5) [ sin - dx © | —
0 1+x? o 1+ cos2x+sin2x
2
(7) j (2-log sin x — log sin 2x) - dx () I(sm X+ cos” x) -sin® x-dx
0

S i

3
©) [[V+2x+3] -dx (10) []x—2]-dx
-2




(IV) Evaluate the following :

a H atl
(1) If.[ Vx-dx = 2a-J sin® x-dx then find the value of J x-dx.
0 0 a
k
1 T .
Q) If] -dx=—. Find k.
0 2 + 8x? 16

1

(3) Iff(x)=a+bx+cx2,showthatj‘f(x)=%{f(0)+4f (é)+f(l)}

0

>
>
>

.0 L0 L0

L)
L)
L)
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5. APPLICATION OF DEFINITE INTEGRATION

\: Let us Study J

—_

e Area under the curve
e  Area bounded by the curve, axis and given lines

e Area between two curves.

a

\ Let us Recall J Y
e In previous chapter, we have studied definition of
. . .. . S -
definite integral as limit of a sum. Geometricall Ry =f)
d g y Py
| f(x)-dx gives the area A under the curve y = f (x) with = A
a X=a xX=
f(x) > 0 and bounded by the X—axis and the lines x = a,
X' < > X

x =b ; and is given by 0 P Q

b %

[f@)dx=0¢ )~ ¢ () Fig. 5.1

where [ f(x) dx=¢ (x)
This is also known as fundamental theorem of integral calculus.

We shall find the area under the curve by using definite integral.

5.1 Area under the curve :

For evaluation of area bounded by certain curves, we need to know the nature of the curves and
their graphs. We should also be able to draw sketch of the curves.

5.1.1 Area under a curve :

The curve y = f (x) is continuous in [a, b] and Y

f(x)=0in [a, b].

1. The area shaded in figure 5.2 is bounded by the curve _ S
R_V=/(%) A
v =f(x), X—axis and the lines x = a, x = b and is given by 4
) ) x=b x=a A x=b
the definite integral J: (y)-dx
A = area of the shaded region. X 0 P Q "X
b v,
A=/ (x)ydx '
a Fig. 5.2

. .



X' <

>
=X

(©)5

<

y=c

Fig. 5.3

@) SOLVED EXAMPLE

>
>

Y’ Fig. 5.4

5.1.2 Area between two curves :

Fig. 5.5

2. The area A, bounded by the curve x = g (), Y axis
and the lines y = c and y = d is given by

Ex.1: Find the area bounded by the curve y = x?, the

Y axis the X axis and x = 3.

3
Solution :  The required area A = ‘[0 y-dx
X2

3
A =[x>dx
0
Bl
3 1
A =9-0
=9 sq.units

Lety =f(x) and y = g (x) be the equations of the two

curves as shown in fig 5.5.
Let A be the area bounded by the curves y = f (x)
and y = g (x)
A = | A, —A2| where

A = Areabounded by the curve y = f(x), X-axis and
x=a,x=>b.
A = Areabounded by the curve y = g (x), X-axis and

x=a,x=>b.

:



The point of intersection of the curves y = f (x) and y = g (x) can be obtained by solving their

equations simultaneously.

b b
. The required area A=|frmdy —[ g dx |

@) SOLVED EXAMPLES

Ex.1: Find the area of the region bounded by the curves y? = 9x and x> = 9y.

Solution :  The equations of the curves are

V=9x..... ()
and x*=9y..... 1)) Y
X'= 9y
Squaring equation (II)
xt=81y?
x*=81 (%) ...by(1) P(a, a)
x*=729x X o B *X
x(x*=9)=0 !

Y' 2_
ie. x(x*—-9)=0 y =X
= x=0 or x=9 Fig. 5.6

From equation (II), y =0 or y=9

The points of intersection of the curves are (0, 0), (9, 9).
9

9 2
Requiredarea A = [VOxdx-— f v
0 J 9
379 9
- {3'3')67} _{lx_gl
3 0 9 3],
3
= 2-92-27
A = 54-27
= 27 sq.units

Now, we will see how to find the area bounded by the curve y = f(x), X-axis and linesx =a, x = b

if f(x) is negative i.e. f(x) <0 in[ a, b ].

. .




Ex. 2 : Find the area bounded by the curve y = — x* , X—axis and lines x = 1 and x = 4.

Solution :  Let A be the area bounded by the curve y = —x?, X—axis and 1 <x <4.

4
The requiredarea A = [ ydx

v

A = -21,

Y' y = -x2 . ..
But we consider the area to be positive.

Fig. 5.7

LA = | —21 |sq.units = 21 square units.
Thus, if f(x) <0 orf(x) >01in[ a, b ] then the area enclosed between y = f (x) , X—axis and

b
x=a,x=>b is | [ f@x)-dx |
If the area A is divided into two parts A| and A, such that

t A, isthe part of a <x <t where f(x) <0 and
A, isthe partofa <x <t where f(x)>0

then in A, the required area is below the X—axis

and in A , the required area is above the X-axis.

Now the total area A = A +A,

Y higss | frec] + | frevar]

Ex. 3 : Find the area bounded by the line y = x, X axis and the lines x =—1 and x = 4.

Solution :  Consider the area A, bounded by straight line y = x , X axis and x = —1, x = 4.

X From figure 5.9, A is divided into A, and A,
0 0
The required area A, = [y dx = [x dx
-1 -1
Bl
21
1
- 0-—
2
1 :
A = - E square units.




But area is always positive.

1
sq.units = S square units.

A =

1

2

4 4 21t ‘
A, =fydc=[xdx= {—} = — = 8 square units.
0 0 24, 2

1 17
Required area A= A +A, = 5 + 8 = ey sq.units

Ex. 4 : Find the area enclosed between the X-axis and the curve y = sin x for values of x between
0 to 2.

Solution : The area enclosed between the curve and the X-axis 4
consists of equal area lying alternatively above and

below X-axis which are respectively positive and

negative.
1) Area A, = arealying above the X-axis
- inx-d = [- "
(j).smx x [ cosx]0
= —[cosm—cos0] = —(-1-1)
A = 2
21 o
2) Area A, = arealying below the X-axis = [ sinx dx = [— cos x} =[— cos 21 — cos 7]
i R
A = 2

2

Total area= A +|A,[=2+[(—2)[=4 sq.units.
Activity :
Ex.5: Find the area enclosed between y = sin x and X-axis between 0 and 4.

Ex. 6 : Find the area enclosed between y = cos x and X-axis between the limits :

() 0<x<

T
~2
. T

(i1) ESxSTc

(i) 0<x<n




@) SOLVED EXAMPLES |

Ex. 1: Using integration, find the area of the region bounded by the line 2y + x = 8 , X—axis and the

lines x =2 and x = 4.

Solution :  The required region is bounded by the lines 2y + x = §, and x = 2, x = 4 and X—axis.

1
y=7 (8 — x) and the limits are x = 2, x = 4.

Y
t Required area =  Area of the shaded region
4
= d.
x£2 v
A 4
1
-\% = f3(8 —x)dx
X o~y X ’ o
v 2 2],
. 1 42 22
Fig. 5.11 _ b (8. 4 __j_(g. ) __ﬂ
> { 4 5 ) 5
= 5 sq. units.

Ex. 2 : Find the area of the regions bounded by the following curve, the X—axis and the given lines :
i) y=x,x=1x=2 () y=4x,x=1,x=4,y>0

() . T /I
i) y=sinx,x=——,x=—
Y 2’ T

Solution :  Let A be the required area

Y i) A = [ydx
A 1
3
= [ x?dx
1
3
il
3 1
1
= —[27-1]
X' < > X 3
26 .
! A = qu. units.
Yl
Fig. 5.12




4
(i) A = [yde v
1 A __yP= 4y
4
= [2Vx dx x =1 / )
1 =
4 1 X' « . '/ : » X
= 2 [ x%dx O\1 2 3 4
1
2 37 41 3
= 2~—{x2} = —{42—1} v
3 | 3 v
28 . Fig. 5.13
A = —sq.units.
3
42
(i) A = [ yar
%)
42
= J sin x dx X
%)
0 %)
= J sinx - dx |+ J sin x - dx =
%) 0 X'« »X
go x =1/2
0 2
= —cosx| n|+||— cosx
[~ eosx ]’ [o [ cosa]
s s v
= - cosO—cos(—j + —cos[—}rcoso | v
2 2
= [-1-0]+[0+1]=1+1 Fig. 5.14
A = 2sq. units.
Ex. 3 : Find the area of the region bounded by the parabola y* = 16x and the line x = 4.
Solution :  3?=16x =  y=x4+x
A = Area POCP + Area QOCQ v
= 2 (Area POCP) i
4 P/
= 2 “dx _
({y é%“
4 X' < > X
= 2 f4vx dx O%C(W
0
27 27 16 Q ——
A = 8—|x2 = —x8 il
3 0 3 v
128 . Fig. 5.15
A = ——sq. units.
3
o S




Ex. 4 : Find the area of the region bounded by the curves x* = 16y, y = 1, y = 4 and the Y-axis, lying in
the first quadrant.
4
Solution : Required area = [ x dy
1
Y 4
A A = [+16y dy
1
P |y y=4 p
g = 4[\y-dy
1
3 14
= 4 _.y7 }
< \\ / > y=1 |: 3 1
« R 8
- o % = xI8-1]
Yl
56 .
Fig. 5.16 A = EY sq. units.
xZ 2
Ex.5: Find the area of the ellipse 7 + o 1.

Solution : By the symmetry of the ellipse, required area of the ellipse is 4 times the area of the region

OPQO. For this region the limit of integration are x = 0

Y and x = a.
xZ 2
From the equation of ellipse — + —=1
Q (0,b) q P a b
B N
1 < > 2 2
\/P(a,O) b a
a2_x2
=
a
v b
Y' y = —Na—x , In first quadrant, y > 0
a
Fig. 5.17
A = 4 ._fo ydx
(b
= — - ~Na?—x? dx
a
0
4b [ x a’ x ¢
=— {—\/Tx“r—sin‘—}
a a al,
4b [a* = ¢
a 2 2 0
A = mabsq. units
/
o o
A\



Ex.6:

Solution : The equations of the parabolas are

y* =4ax .. (D
and x> =4ay ...(ID)
x2
From (i) y= 1 substitute in (I)
a

22
[@j = 4dax
= x'=064a’x
x(x*—64a’)=0
x[¥—4a)]=0
x=0and x=4a y=0andy=4a
The point of intersection of curves are O (0, 0), P (4a, 4a)

The required area is in the first quadrant and it is

Find the area of the region lying between the parabolas y? = 4ax and x? = 4ay where a > 0.

Y
A 2
X =4ay
P(4a,4a)
X > X

e} B
v
Y' 2_

A = area under the parabola ( y* = 4ax) — area under the parabola (x* = 4ay)

4q 1

4a
L x?
= V4a_[x2 dx—f—dx
0 : 4q

A= Y @*sq. units.

Aa 4a 2
A = [ axdx— f —dx
0 : 4a
PR e T
oAl
3 o 4a 3],
4 1 32 16
= ?\/5 {4(1 \/@—5 . 64a3}=? a’— EY a?
Ex. 7 : Find the area of the region bounded by the curve y = x* and the line y = 4.

Solution : Required area A =2 x area of OPQO

4 Y
A = IX'dy 1 y=x
" | [,
A = 2[\y-dy
0
2 37 4 3
— 2. |22 _ [Zx42
{3 g L (3 )
X'« o > X
4
= —XS
3 1}.
R 32 )
BT Fig. 5.19
o S




Ex. 8 : Find the area of sector bounded by the circle x>+ y? = 16 and the line y = x in the first quadrant.
Solution :  Required area A = A (AOCB) + A (region ABC)
Y To find,
Y X The point of intersection of  x*+y*=16 ...(I)
Y B(2\2, 2\2) and line V=X ..(1D
5 0 é . Substitute (1) in (I)
X< C JA@40) X
J * Ftxt = 16
23 = 16
X +y2 =16 *
x* =8
Y x = 2242,  y=+2\2
Fig. 5.20 The point of intersection is B (2v/2, 2v/2)
22 a 1 Wy 16 x 1
A = _fx'dx-ir f V16 —x? - dx = —|x? +|—V16—x*+—sin!'—
0 202 2 0 2 2 41,5

T T
448 ——4- 8 —
2 4

1 272 1
5 (2V2) + {8 sin”'1 — (T 8+ 8 sin™! 7)}

A =271 sq. units.

Note that, the required area is 3 times the area of the circle given.

(

(1)

N

\
| EXERCISE 5.1 )

Find the area of the region bounded by the

following curves, X- axis and the given lines:

i) y=2x,x=0,x=5

(i) x=2,y=0,y=4

(i) x=0, x=5,y=0,y=4

(iv) y=sinx, x:O,ng

v) xw=2,x=1x=4

(vi) y*=x,x=0,x=4

(vii)) y*=16xandx=0,x=4
4

(2) Find the area of the region bounded by the

parabola :
(@)
(i) y=4—x*and the X-axis

»* = 16x and its latus rectum.

(3) Find the area of the region included between:
(1)
(i)
(iii)
(iv)
)

y? =2x, line y = 2x
y*=4x, liney=x

vy =x?and the line y = 4x
y? = 4ax and the line y = x

y=x*+3andtheliney=x+3

4




% The area A, bounded by the curve y = f(x), X-axis and the lines x = a and x = b is given by
A= f et jb e
If the area A lies below the X-axis, then A is negative and in this case we take | A |.

% The area A of the region bounded by the curve x = g (y), the Y axis, and the lines y = ¢ and
y=d is given by

A

% Tracing of curve :
(i) X-axis is an axis of symmetry for a curve C, if (x, y) € C < (x, —y) € C.
(ii) Y-axis is an axis of symmetry for a curve C, if (x, y) € C < (—x, y) € C.

(iii) If replacing x and y by —x and —y respectively, the equation of the curve is unchanged

b

&

Let us Remember N

d y=d
=1 f@rde= [ g(ydr

then the curve is symmetric about X-axis and Y-axis.

> \
’L\MISCELLANEOUS EXERCISE SA:

(I) Choose the correct option from the given alternatives :

(1

)

3)

4

)

The area bounded by the region 1 <x <5 and 2 <y <5 is given by
(A) 12 sq. units (B) 8 sq. units (C) 25 sq. units (D) 32 sq. units
The area of the region enclosed by the curve y = T and the lines x = e, x = €’ is given by
1 3 5
(A) 1 sq. unit (B) 5 89 unit ©) 5 89 units (D) 5 84 units
The area bounded by the curve y = x* , the X-axis and the linesx=—2 and x =1 is
‘ 15 _ 15 . 17 .

(A) —9 sq. units B) — s units ©) 4 S units (D) 4 s4 units
The area enclosed between the parabola )? = 4x and line y = 2x is

2 1 1 3
(A) 3 54 units (B) B units ©) 72 54 units (D) 754 units
The area of the region bounded between the line x = 4 and the parabola y* = 16x is

128 108 ‘ 118 ‘ 218 ‘
(A) 3 Sa units (B) 3 Sa units ©) 3 Sa units (D) 3 Sa units

'S 188 L 2




(6)

(7)

(8)

)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The area of the region bounded by y = cosx,Y-axis and the lines x =0, x = 27 is
(A) 1 sq. unit (B) 2 sq. units (C) 3 sq. units (D) 4 sq. units

The area bounded by the parabola y? = 8x the X-axis and the latus rectum is

31 32 3242 . 16 _
(A) 3 sq. units (B) 3 sq. units (©) 3 sg. units (D) 3 sq. units
The area under the curve y = 2\x , enclosed between the lines x = 0 and x = 1 is
3 2 . 4 .
(A) 4 sq. units (B) 7 54 units ©) R units (D) R units
The area of the circle x* + y* = 25 in first quadrant is
257‘5 . . . .
(A) 3 Sa units (B) 57 sq. units (C) 5 sq. units (D) 3 sq. units
xZ y2
The area of the region bounded by the ellipse — + o 1is
a
. . TE . .
(A) ab sq. units (B) mab sq. units (@) 5 54 units (D) ma? sq. units

The area bounded by the parabola y* = x and the line 2y = x is

4 2 1
(A) 3 54 units (B) 1 sq. units (©) B units (D) R units
Tc . .
The area enclosed between the curve y = cos 3x, 0 <x < 3 and the X-axis is

1 2 1
(A) 5 84 units (B) 1 sq. units (©) 3 sq. units (D) 3 sqg. units

The area bounded by y = Vx and line x = 2y + 3, X-axis in first quadrant is
34

(A) 2V3 sq. units (B) 9 sq. units (©) B units (D) 18 sq. units
2 2 X y
The area bounded by the ellipse — + ke 1 and the line —+ 5= lis
a a
nab  ab
(A) mab—2ab (B) T (C) mab—ab (D) mab

The area bounded by the parabola y = x* and the line y = x is

1 1 1 1
(A) o (B) 3 ©) " (D) T

The area enclosed between the two parabolas y* = 4x and y = x is

8 32 16
) B) 5 © 5 D) -

= &



an

(19)

(20)

T
The area bounded by the curve y = tan x, X-axis and the line x = s is

1
(A) 3 log 2 (B) log2 (C) 2log?2 (D) 3-log 2

The area of the region bounded by x*> = 16y, y =1, y =4 and x = 0 in the first quadrant, is

7 8 64 56
() B) © 5 )

The area of the region included between the parabolas y* = 4ax and x* = 4ay, (a > 0) is given by

A 16 a* 8 a? c 4 a? b 32a°
(&) = (B) (©) (D) =
The area of the region included between the line x + y = 1 and the circle x> +y* =1 is
A . 1 2 C r ! D :
(A) 5 - (B) ©- © 45 (D) 7~

Solve the following :

(1

()

3)

4)

)

(6)

(7)

®)
©)
(10)

Find the area of the region bounded by the following curve, the X-axis and the given lines

T

(1)0<x<5,0<y<2 (i) y=sinx,x=0,x=7 (1i1) y:sinx,x:O,x:?

Find the area of the circle x* + y* = 9, using integration.

x2 2
Find the area of the ellipse 75 + 6 1 using integration.
Find the area of the region lying between the parabolas.
(i) y*=4xand x*=4y (i) 4y*=9xand 3x* =16y (iii) y*=xandx*=y
Find the area of the region in first quadrant bounded by the circle x* + y* = 4 and the x axis

and the line x = V'3 .

Find the area of the region bounded by the parabola y* = x and the line y = x in the first

quadrant.

Find the area enclosed between the circle x> + y? = 1 and the line x + y = 1, lying in the first

quadrant.
Find the area of the region bounded by the curve (y — 1)° =4 (x + 1) and the line y = (x — 1).
Find the area of the region bounded by the straight line 2y = 5x + 7, X—axisand x =2, x = 5.

Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y =1, y = 4.

J/ J/ \/
0’0 0’0 0’0




6. DIFFERENTIAL EQUATIONS g

Let us Study )

e Differential Equation . Order and degree of differential equation
e Formation of differential equation . Solution of differential equation
e Types of differential equation. . Application of differential equation.

7

\ Let us Recall J

e The differentiation and integration of functions and the properties of differentiation and integration.

%@; Let us Learn ]

6.1.1 Introduction :

In physics, chemistry and other sciences we often have to build mathematical models which involves

differential equations. We need to find functions which satisfy those differential equations.

6.1.2 Differential Equation :

Equation which contains the derivative of a function is called a differential engation. The following

are differential equations.

) dy . d*y dw dw
i) —=cosx i) —+ky=0 il — =X —+w=0
@ dx ) dx? 4 (i) (dxzj dx
&y &
(1v) aV ar X, here x and y are functions of 't '.
de  df
& d d
(v) 2V & 4xy = 0, here x is a function of y. (vi) r b cos0=5
dx? dx do

6.2 Order and degree of the differential equation :

The order of a differential equation is the highest order of the derivative appearing in the equation.
The degree of differential equation is the power of the highest ordered derivative present in the
equation. To find the degree of the differential equation, we need to have a positive integer as the index

of each derivative.

= &




@ SOLVED EXAMPLES )

Ex. 1: Find order and degree of the following differential equations.

&y  , dy &y jz dy
i X ——+3x —+4y=0 ii —— | +txy——2x+3y+7=0
@ dx? dx Y (i) (abc3 ¥ dx xRy
Solution :  It's order is 2 and degree is 1. Solution :  It's order is 3 and degree is 2.
dr Py (dy)?
@ _ . aYY (Y2 s
(iii) rg teos 0=>5 (iv) (de [dxj e
Solution :  It's order is 1 and degree is 1. Solution :  It's order is 2 and degree is 2.
dy 3x 1 &P 3
V) 2 =cosx (vi) 1+ = (—y) ?
dx dy dyy?  \dx?
dx [Ej
Solution :  This equation expressed as Solution :  This equation can be expressed as
dy\? dy 1 (dzyf
(dxj 3%y = cos.x (dx) (dsz dx?
It's order is 1 and degree is 2. dx
dv\2 B\ (dy 2
_y + 1 — _y (_yj
dx dx? ) \dx
It's order is 2 and degree is 3.
d'y dy 7 & dy
. ay _1 (2 T4
(vii) T {1 ( dxj } (viii) e o
Solution :  It's order is 4 and degree is 1. Solution : It's order is 1, but equation can not be
expressed as a polynomial differential equation.
The degree is not defined.
(ix) X3 y? 3
dy
2 — =
2x 3y I 0 0
dy (dy)
_ | —
o2 {y dx? (dx} } 0
Solution : . x*[0—0]—»?[0— 0] + 3 {4x? ﬁ+ d_y2_15 Q =0
olution: .. x v X ydx2 e Xy
ey D (D 150 P20 - it orderis 2 and degrec s 1
xy% o Xy o= .. Its order is 2 and degree is 1.

dy : ] dZy 1 " d3y : "
Notes : (1) e s also denoted by ', o is also denoted by )", o is also by y"" and so-on.

(2) The order and degree of a differential equation are always positive integers.

‘ .
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| EXERCISE 6.1 )

(1) Determine the order and degree of each of the following differential equations.

d
(1) @er(—yjﬂLy:Zsinx

dx2 dx
. dy 2sinx+3
() —= ——F—
dx dy
dx
a3
——+|—=| +7x+5=0
v) il X

. (Y dyy
(vii) (@j + cos ( dxj_o

1 dv \—
(ix) (%jz - (éy =20

6.3 Formation of Differential Equation :

Gi) 1+ (d—yjz _ 4y

dx dx2
. dy dy y
T 4T 4= 4+ -
(1v) e + I X 1 70

(vi) (") + 3" +3x' +59=0

3
vz &P
(vii) {H(%” =8d—xy2

From the given information, we can form the differential equation. Sometimes we need to eliminate

the arbitrary constants from a given relation. It may be done by differentiation.

@ SOLVED EXAMPLES |

Ex.1:
(1) y*=4ax
. 2 C
= + —
(ivyy=c .
Solution :

(1) y=4dax...(1)

Here a is the arbitraty constant, we

differentiate w. r. t. x,

dy

o

then eq. (1) gives
dy

V= (Ej x is required differential equation.

4da

(i) y=4Ae*+ Be™

Obtain the differential eugation by eliminating the arbitrary constants from the following :

(iii) y=(c, +c,x)e*

v =ce*+ce”
y 1 2

(i) y=Ade*+Be™ ...(1)
Here A and B are arbitrary constants.

Differentiate w. r. t. x, we get

d
& 34e3 —3Be ™

dx
again Differentiate w. r. . x, we get
ﬁ=3 x 34e3 —3 x 3Be ™
dx?
=9 (4de¥+ Be ) =9y ...fromeq.(1)
dy
—==9
dx? 4

= &



(iii) y=(c, +c,x) e'...(1) c
b ) (iv) y=c+— ..
Here ¢, and c, are arbitrary constants. b
Differentiate w. r. t. x, we get Differentiate w. r. t. x, we get
dy . dy o
EZ(ClJrczx)e’”rczeY S Y
dy 5 dy
E=y+ c,et ...(2) ...fromeq.(l) . c=—x I
Again differentiate w. r. t. x, we get then eq.(1) gives
dly_dy — | — 2 d_yzz—xzd_yxl
E_dijczex Y Yl dx x
d*y dy
czevz_y__ . S d_yZ_xd_y
dx’  dx 4 dx dx
put in eq.(2) 4 oy dy 0
d_y= +@_d_y N x(xj Yax VT
dx dx* dx
d*y dy
- — + =
dx? 2 dx 0
(V) y=ce>+ce™ .

Differentiate w. r. t. x, we get

dy 3 2x
o 3ce¥+2ce ... (1D
Again differentiate w. r. 1. x, we get
dly 3x 2x
I =9ce*+4cpe ... (1)
As equations (I), (II) and (II) in ¢ e** and c e are consistent
y 1 1
dy
— 2 |=0
dx 3
&
&y 9 4
dx?
dy _dy dy dy
— — _— N + _— _ | =
y(12 - 18) 1(4 i 2 dxzj 1(9 I 3 dxzj 0
d y b dy
— J— E— + _—— _ =
6y 4d 2dx2 9dx 3dx2 0
Py _dy dy _dy
———+5——-6y= ———=5—+6y=
dx? Yo 70 dx* " dx




Ex. 2 : The rate of decay of the mass of a radioactive substance any time is k times its mass at that time,
form the differential equation satisafied by the mass of the substance.

Solution : Let m be the mass of a radioactive substance time 't'

dm
The rate of of decay of mass is E
H dm
ere — - ocm
dm
— =mk , where k<0
dt

is the required differential equation.

Ex. 3 : Form the differential equation of family of circles above the X-axis and touching the X-axis at

the origin.
Solution : Let ¢ (a, b) be the centre of the circle Y

touching X-axis at the origin (b < 0).

The radius of the circle of b.
The equation of the circle is

(x=0F + (= by =17

x2+y2—2by+b2=b2 X'« S > X
xX2+y*=2by=0 ..
Differentiate w. r. t. x, we get vy'
dy dy Fig. 6.1
+ B - | =
2x + 2y (dxj 2b (de 0

dy
x+(y—b)a=0

S (y-b)=0 b=yt —— ..(Il)
0 v s y AR
(dx} (dxj
From eq. (I) and eq. (II) , L, 2xy
R S A
dy
X2+y2=2] y+ y=0 (a)

dy
(&)
5 2xy . . . . .
X2+ — 2P — =0 is the required differential equation.

(&)

Activity : Form the differential equation of family of circles touching Y-axis at the origin and having

(x> — z)d_yzzx
y dx 3%

their centres on the X-axis.

= &




Ex. 4 : A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at

that time. Find the differential equation of the motion of the particle.
Solution : Let s be the displacement of the particle at time '7'.

ds

Its velocity and acceleration are ’ and d_tj respectively.
d*s ds
Here 7 oc i
d*s ds
i k R (where k is constant # 0)

is the required differential equation.

( h
kEXERCISE 6.2 )

(1) Obtain the differential equations by elliminating arbitrary constants ¢, and c,.

(1) xX*+y*=4dax (i) Ax*+By*=1
(i) y =4 cos (log x) + B sin (log x) (iv) y*=(@x+c)
(v) y=dA4e*+ Be™* vi) (y—ay=4x->)
a
(vii) y=a+¥ (vili) y=c e +ce™
(ix) c,x*+c,y*=5 (x) y=e*>(4cosx+ Bsinx)

(2) Form the differential equation of family of lines having intercepts a and b on the co-ordicate ares

respectively.

(3) Find the differential equation of all parabolas having length of latus rectum 4a and axis is parallel
to the X-axis.

(4) Find the differential euqation of an ellipse whose major axis is twise its minor axis.
(5) Form the differential equation of family of lines parallel to the line 2x + 3y +4 =0
(6) Find the differential equations of all circles having radius 9 and centre at point 4 (4, k).

(7) Form the differential equation of all parabolas whose axis is the X-axis.

. .



6.4 Solution of differential equation :

Verify that

y=asinxandy=bcosx
are solutions of the differential equation, where a and b are any constants.
Also y =a sin x + b cos x is a solution of the equation.

Here sin x and cos x are particular solutions where as a sin x + b cos x is the general solution which

describes all possible solutions.

A solution which can be otained from the general solution by giving particular values to the
arbitarary constants is called a particular solution.

Therefore the differential equation has infinitely many solutions.

@ SOLVED EXAMPLES |

Ex.1: Verifythat: ysecx=tanx+c Ex.2: Verifythat: y=logx+c
is a solution of the differential equation is a solution of the differential equation
dx y tan x = sc€C Xx. X@ dx_
Solution : Here ysecx=tanx+c Solution: Here y=logx+c
Differentiate w. r. t. x, we get Differentiate w. r. t. x, we get
dy ) dy 1
tan x + —= —=—
ysecxtanx +secx - =sec’x X
dy dy .
——+ = Lox—o o=
dx ytanx =secx X dx
Hence y sec x =tan x + ¢ Differentiate w. r. t. x, we get
is a solution of the differential equation . ﬁ n d_y “1=0
dx*>  dx
o Py d
—_tytanx=secx
dv 7 SooXx LA & 0
dx*  dx

y =log x + c is the solution of

Ty b

—+ =
X 0 It 0.




Consider the example :

dy

o

y dx

g Yy ty
1

+1

We can consider x and y both as variables and write this as

d
_y:(x2_|_1
Y

)-dx

Now we can integrate L.H.S. w. r. z. y and R.H.S. w. r. t. x, then we get

x3

logy=—+x+c

3

This integration is obtained by separating the variables.

It helps to examine the equation and find out if such a separation is possible.

The above method is known as the method of separation of variables.

In general, if the given differential equation can be written as

J(x)dx=g(y)dy

then this method is applicable.

@ SOLVED EXAMPLES

Ex. 1: Find the general solution of the following differential equations :

d
() ==xV3—=
dx
Solution :
d
() —=xV25-2
dx
dy=x7V25—x*-dx

Integrating both sides, we get
Jay= f\/25 — x* xdx ...(D
Put25— x*=t
— 2x-dx = dt
dt

X'dx=—7

(i)

dx xlogx
et

Eq. (I) becomes, [dy = f\/? (

2fdy =—[t -dt

1
2fdy + [t2-dt=0
3
7

y+—=—=c¢,
2
2 3

2y+?l‘2=cl
3

6y +2t2 =3¢,

3
6y+2(25—x)2 =c

dt
2

4

.o [e=3c]




(ii)

dx xlogx
dt ¢
dx dt

xlogx ¢

Integrating both sides, we get

dx dt
fxlogx )t

log (logx ) =log(t)+1logc

log (logx ) =log ()
log x = ct

e’=x

Ex. 2 : Find the particular solution with given initial conditions :
dy i y—1 x—1 dy
1 _— = Y = — = 11 + T = == ==
(1) e € cosx when x ¢V 0 (ii) 1 xrl dx 0, whenx=y=2
Solution :
dy y—1 x—1 dy
. - _ y .o L
@) I e’cos x (ii) 1 X1 dx 0
dy x+1 y+1
pum—— . . + . —
o cos x-dx 1 dx o dy=0
2y — — _
e V-dy=cos x-dx x—1+2 (y—-1+2
g St Ty
Integrating both sides, we get X Y
Ly 2 2
_fe 'dyZIcosx'dx 1+——\|de+|1+ ‘dy=0
x—1 y—1

-2
ey

zzsinx-i—c (D

T
When x = il 0. So eq. (1), becomes

e T 1 1

—_2=smg+c —5=—+c
1 1

2T c=-1

(Given initial condition determines the value
of ¢)
Put in eq. (1), we get

-2
ey

-2

-2
_eJ’

=sinx— 1
=2sinx —2

¢ (2sinx —2) + 1 =0 is the required particular

solution.

‘

Integrating , we get

fdx+2f

x+210g(x—1)+y+2log(y—l)=c
x+y+2log [(x—l)(y—l)] =c ...

When x =2, y=2. So eq. (I), becomes

dx

dy
+ +2 | ——=
Jdy 2jy_1 0

x—1

2+2+2log[2-1)2-D] =¢
4+2log(1x1)=c
4+2logl=c

4+20)=c

c=4 Putineq. (I), we get

x+y+2log[ (x—1)(y—1)] =4is required

particular solution.




Ex. 3 : Reduce each of the following differential equations to the separted variable form and hence find

the general solution.

(1) 1+d—y= (x+y) (ii) d—y=(4 +y+ 1)
oy cosec (x Ty o X+y
Solution :
(i) 1+d—y=cosec( +5) I (i) d—y=(4 +y+1) I
e x+y) ...(D e x+y ... (D
Put x+y=u Put dx+y+1=u
dy du dy du
l+——=— oAt =
dx dx dx dx
Given differential equation becomes . d_y _ d_“ 4
du odx o dx
dx coseeu Given differential equation becomes
du du
=dx ——4=2
cosec u dx
sin u-du = dx du
oo =urt4
Integrating both sides, we get d’;,
u
Jsin u-du = [dx S 2+ 4 dx
—cosu=x+tc Integrating both sides, we get
_ du
x+cosu+c=0 . —
s f ia Jax

x+tcos(x+y)+c=0 ...(.x+ty=u) | "
Etan’l (Ej:ercl

u
tan™! (3} =2x+2c,

4x+y+1
tan™! (Tj =2x+c oo [2¢,= ]
( )
LEXERCISE 6.3 )

(1) Ineach ofthe following examples verity that the given expression is a solution of the corresponding

differential equation.

dy ) &y dy
1 = =+ ¢ — = 11 = ! 2+ . — 2y 7 _— =
(1) xy=logy ¢ I (1) y=(sin'x) +c;(1 )c)dx2 X 2
G g L : . 22V 4 _
(i) y=e +Ax+B,e‘dx2—1 (iv) y=x";x E—mxdermy—O
b &y dy _ dy
=a+— ;x——+2—= =¥y —=
(v) y=a ; ,xdx2 2dx 0 (vi) y=e X ylogy

. .



(2) Solve the following differential equations.

dy 1+)7? dy
N Y . DY, L
(1) e (i) log ( dxj 2x + 3y
dy :
(i) y-—x I 0 (iv) sec’x-tan y-dx + sec’y-tan x'dy =0
dy
(v) cosx-cosy-dy — sin x-sin y-dx =0 (vi) o —k , where k = constant.
cos’ y'dy cos*x-dx dy dy
. N _ L o, WA
(vii) . ; 0 (viii) y PRt s
dy
(ix) 2e**¥-dx—3dy=0 (x) EZe”erxZ e’

(3) For each of the following differential equations find the particular solution satisfying the given

condition.
(1) 3e“tany-dx+ (1 +e*)sec’y'dy=0,whenx=0,y=rm.
(i) (x—y*x)dx—(y+x*)dy=0,whenx=2,y=0.

dx
(i) y(1 +10gx)5—xlogx20,y=e2, when x = e.

: . Y T
(iv) (e’+1)cosx+e” smxazo, whensz,yzo_

dy dy
v) (x+1)a—1=2e’y,y=0,x=l (vi) COS(EJZa,aelz,y(O)ZZ
(4) Reduce each of the following differential to the variable separable form and hence solve.
dy dy
(1) e cos (x+y) (i)  (x—yp)? o a’
dy dy
(i) x+y y o sec (x*+37) (iv) cos?(x—2y)=1-2 I

v) (x—2y+3)dx—(x—y+1)dy=0,whenx=0,y=1.

6.4.1 Homogeneous differential :

Recall that the degree of a term is the sum of the degrees in all variables in the equation, eg. : degree of

3x%?z is 5. If all terms have the same degree, the equation is called homogeneous differential equation.
. Y . . . .
For example : (i) x+y o 0 is a homogeneous differential equation of degree 1.
. Y . . ) .
(i) X’y +x° + xzyza = 0 is a homogeneous differential equation of degree 4.
(1i1) d_y+ 2y=0 (iv) d_y+ 24+ 2x=0
X TXy V) Xy ooty 2x

(111) and (iv) are not homogeneous differential equations.

To solve the homogeneous differential equation, we use the substitution y = vx or u = vy.

= &




@ SOLVED EXAMPLES ]

Ex. 1: Solve the following differential equations :

_y: tan1+
o x) 7

(1) xydx—(*+)y)dy=0 (i) x

Solution :

(i) xydx—(*+)y)dy=0

xzy—(x3+y3)d—y=0 (D

dx
This is homogeneous Differential equation.
Put y =wx ... (1D
Differentiate w. r. t. x, we get
dy dv
azv-i-xa ... (IID

Put (II) and (III) in Eq. (I), it becomes,
x2vx — (0 +vx?) (v +x ﬂ} =0

dx
divide by x*, we get

dv
v—(1+v3)(v+x—j=0

dx
dv . s dv
y’—y—xdx—v —vxdx—O
1+ dv 4
_ + JE—
x( V)dx v
1+43 dx
, .dv:__
y X
1+ dx
; .dv:__
V X
1 p dx
- _ 4+ —=
[v“ v“) v X 0

integrating eq., we get
dv [dx
fv4dv+f—+ —=c
v X
—3

v
3 +log (v) +log (x) = c,

V3 1 v3

log (vx) =c, +—+

x3

310g(y)=3cl+y—3
3

X
310gy=y—3+c ...wherec=3c,

=c, +
3 log (y)=c, 30

dy y+\a+y

(1i1) o ;
dy y
i) x——= =+ .

(i) x I xtan(xj y D
This is homogeneous Differential equation.
Put y =wx ... (1D
Differentiate w. r. t. x, we get
dy dv
——=vtx— - .

Fe (1)

Put (II) and (III) in Eq. (I), it becomes,

dv VX
x(v+x—j =Xx tan (—J +vx
dx X

divide by x, we get

dv
v+tx——=tanv+v
dx

dv
X E =tanv
dv dx
tan v - ?

integrating eq., we get

dx
feotvdv=| —
X

log ('sinv ) =log (x) +log ¢
log (sinv)=log(xxc)

sin v =cx

(Y ) )
sin ; = ¢x 1s the solution.

‘ .



dy yERT

(111) - = . (D
Solution : It is homogeneous differential equation.
Put y=vx (1)
Differentiate w. r. t. x, we get
dy dv
dx—v+x5 .. (1)

Put (I) and (IIT) in Eq. (1), it becomes,
dv  vx +Vx?+ X2

V+x——=

integrating eq. (IV), we get

J‘ 1+v2 X

log(v+V1+v?*)=log(x)+logc
log(v+V1+v?*)=1log(cx)
vVl +? =ex

y |y
—+ l+—2=cx
X X

y +Vx? + 2= cx? is the solution.

dx X
dv
yhx =y T
dx
dv
X o= 1 +y?
dv dx
N = ... (IV)
(

N

\
| EXERCISE 6.4 )

I. Solve the following differential equations :

(1) xsm(dey {ysin(éj—x}dx

X x dy
3) [1+2ey]+2ey (1— jdx 0

5) x*—y)dx+2xydy=0

dy (Y
(7) xa—erxsm(;j—O

dy dy
2_ 2 7 -
) »y¥—x oY

(1) xdy+2y-dx=0,whenx=2,y=1
(13) (9x +5y)dy + (15x + 11y) dx =0

(15) (x> +y?) dx — 2xy"dy =0

2)

(4)

(6)

(8)

(10)

(12)

(14)

*=y) dx —2xy'dy=0

s+ () dy =0

dy x—2

=+ =
dx 2x-—y
= =~ X
(1+ey)dx+ey (l—y)dyZO

dy
Xy =X 22y (1)=0

) dy , )
— =24 xy+
X=Xyt

>+ 3xy+y)dx—x*dy=0




6.4.2 Linear Differential Equation :
dy
The differential equation of the type, _x + Py =Q (where P, Q are functions of x.)
is called linear differential equation.

To get the solution of equation, multiply the equation by eIde, which is helping factor here.

We get,
d
P { v Py} _ Q,eIde
dx
d d
[Pdx 'y [Pdx
J— . = 4 - .
Note that, I [ y-e™] {dx v P} e
d
“ [y_ejpdx] _ Q'eIde
dx
IQ,eJde -dx :y,efpdx
Hence, y-eIde: fQ-(ede") dx +c is the solution of the given equation

Here ¢ is called the integrating factor. (L.F.)

Note :  For the linear differential equation.
dx
- +py=0 (where P, Q are constants or functions of y) the general solution is
Y

x (LF.) = f O-(LF.) dy+ ¢, where LF. (integrating factor) = e

#%) SOLVED EXAMPLES |

Ex. 1: Solve the following differential equations :

(1) d_y ty=e’ (i) x sin & + (x cos x + sin y) = sin
dx y-e X dx X x Y X
(iii) (1 +y*) dx=(tan'y — x) dy
Solution :
N

@ dx Ty=e - (@ eq. (IT) becomes,
This is linear differential equation of the form ye'=fe x e-dx+c
dy — X —xtXx
E+Py=QwhereP=1,Q=e" sooyet=le  d+ e

X 0

It's Solution is ye'=Jedx+c
y(LF) = [Q-(LE) dx+ ¢ ... (D) oooye=ldxte
where LF. = % = J#= & .. y-€"=x+ cis the general solution.

. .



(ii) xsinx

'y . .
——+(xcosx+sinx)y=sinx

dx

(iii) (1 +y*)dx=(tan'y —x) dy
dx (tan'y — x)

divide by x sin x, we get

dy 1 1
—+ +—|y=—
It (cotx xjy . .. (D

It is the linear differential equation of the type

dx
—+
dy

[

(I+)7)
1 tan"'y
1+y2jx‘ 1+

dy
This is linear differential equation of the type

d

where

1

fy
—+ Py= = +—
It Py=0 P=cotx o

Its solution is

y(LF)=[O-(LF)dx+c

1
where LF, =% = o)

...

dx
IF — efcotxd)er;

IF — elog |sin x|+ log x

LLF. =xsin x
eq. (IT) becomes,
. 1 .
yxsinx= f; x xsinx-dx+c
Xysinx =—cosx+c¢

xy-sin x + cos x = c is the general solution.

dx 1 _tan'y

— — — —
a Px = (Q where P 1+y2’Q 1ty

Its solution is

x(LE)= [QO-(LE) dy+c ... (1D

1
where LF. =" = eIW dy
LE. ="

eq. (IT) becomes,

Canly tanﬂy- [an—ly.d n I
x-e = 1+y2€ ly+c...(ID)

inRHS.Put tan'y=¢

differentiate w. r. t. x, we get

dy
1 +)7?

= dt

eq. (III) becomes

X = [t-e"dt+c
=tfe"dt— [[Ix e ]dt+c
=te — [e-dt+c
=te—ée+c

xe™ " =tan™! y'etanfly— & e

c

x=tanly—1+

tan ! y
e

_ -1y, . .
x+1—tan'y=ce ™ ’is the solution.

= &



Ex. 2: The slope of the targent to the curve at any point is equal to y + 2x. Find the equation of the

curve passing through the origin.

Solution :  Let P (x, y) be any point on the curve y = f'(x)

dy
The slope of the tangent at point P (x, ) is e

dy dy
o + ... I =
dx y+2x dx y=2x
This is linear differential equation of the type
dy
£+Py:QwhereP=—1 ,0=2x
Its solution is
y(LF)=[Q-(LF)dx+c )
where LF. = = (&

LF =o" (IT) becomes
Tr.=e

P 2 _ X __ - +
eq. (I) becomes, re [Freme]te
pe =[x e dvt y =—2x—2+ce’ ... (1I)
= 2fxe it an The curve passes through the origin (0, 0)
ye =2xedx+tc ...
0 =—2(0)—2+ce’
Consider,  [x-e™dx ©) ce

—X

e . 0 - 2 + C
=xfe " dx— f{lx —j dx
-1 52 = ¢ Putin(Il)

—X

x-e »
- + [e " dx Sy ==2x—2+2e"
=—xe dx+ Ie_x'dx S 2xty+2=2e"
—— e — " is the equation of the curve.
( )
LEXERCISE 6.5 )

(1) Solve the following differential equations :

dy y dy
1 —_— — =3 = i 2 — + =
(1) dx+x x =3 (1) cos x ooty tan x
(i) (2= () S yseex=t
i) (r+27) =y iv) - Tysecx=tanx
d_y+2 = 21 i + d_yZI
(v) x_—+2v=xlogx Vi) )
dy
(vil) (x+a)———-3y=x+a) (viii) dr+ (2rcot© +sin 20) d6 =0
e

. .



2)

3)

4)

()

d L
(ix) ydx+(x—»)dy=0 (x) (1—x2)£+2xy2x(1—x2)2

( ) (1+ z)d_y+ — tan ! x
X1 X i y=e

Find the equation of the curve which passes through the origin and has slope x + 3y — 1 at any point

(x,y)onit.
3 .
Find the equation of the curve passing through the point (ﬁ’ \/7) having slope of the tangent to
4x
the curve at any point (x, y) is — g

The curve passes through the point (0, 2). The sum of the co-ordinates of any point on the curve

exceeds the slope of the tangent to the curve at that point by 5. Find the equation of the curve.

If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the
product of the abscissa and ordinate of the point. Also the curve passes through the point (0, 1).

Find the equation of the curve.

6.5 Application of differential Equations :

There are many situations where the relation in the rate of change of a function is known. This gives

a differential equation of the function and we may be able to solve it.

6.5.1 Population Growth and Growth of Bacteria :

It is known that a number of bacteria in a culture increase with time. It means there is growth in the

number of bacteria. It the population P increases at time t then the rate of change of P is proportional to

the population present at that time.

dP

EOCP

dP

E:k'P, (k>0)
dP

?=kdt

on integrating
dP
f 5= [kdt
log P= kt+c,
P=cé"  wherec=¢"

which gives the population at any time ¢.

= &




@ SOLVED EXAMPLES |

Ex. 1 : The population of a town increasing at

a rate proportional to the population at that
time. If the population increases from 40
thousands to 60 thousands in 40 years, what

will be the population in another 20 years.

3
(Given \/; = 1-2247].

Solution : Let P be the population at time t. Since

rate of increase of P is a proportional to P

itself, we have,

ar k-P 1

7 (D)

where k is constant of proportionality.
Solving this differential equation, we get
P=aé", wherea=¢ ...(2)

Initially P = 40,000 when =0

From equation (2), we have

40,000 =a-1 ..a=40,000
eq. (2) becomes
P =40,000-¢" ... (3)

Again given that P = 60,000 when ¢ =40
From equation (3),

60,000 = 40,000-¢™"

¢=— .4

t =40+ 20
= 60 years

Now we have to find P when

From equation (3), we have

3
P =40,000-¢""= 40,000 (¢*")2
3

3\7
= 40,000 (7) = 73482

Required population will be 73482.

‘

Ex. 2 : Bacteria increase at the rate proporational

to the number of bacteria present. If the
original number N doubles in 3 hours, find
in how many hours the number of bacteria
will be 4N?

Solution : Let x be the number of bacteria at time .

Since the rate of increase of x is proporational

x, the differential equation can be written as :

dx o
dr

where £ is constant of proportionality.

Solving this differential equation we have
ki c

x=c €', wherec =¢ (D)

Given that x =N when ¢ =0

From equation (1) we get

N=c-1
¢, =N
x=N-¢" ... (2)

Again given that x = 2N when 7 =3

1.€.

From equation (2), we have
IN=N-¢" .. 03)
=2

Now we have to find 7, when x =4 N

From equation (2), we have
4N=N-¢"
4=¢"= (e3k)%
2= 2%

t

?22

t=6

Therefore, the number of bacteria will be 4N

...byeq.(3)

in 6 hours.




6.5.2 Radio Active Decay :

We know that the radio active substances (elements) like radium, cesium etc. disintegrate with time.
It means the mass of the substance decreases with time.
The rate of disintegration of such elements is always proportional to the amount present at that time.

If x is the amount of any material present at time ¢ then
dx .
— — —kx
dt

where £ is the constant of proportionality and £ > 0. The negative sign appears because x decreases

as t increases.

Solving this differential equation we get

x=ae" where a = ¢’ (check!) ... (1)

If x, is the initial amount of radio active substance at time ¢ = 0, then from equation (1)

x,=al

a=x,

x=xe" (2)
.

This expression gives the amount of radio active substance at any time ¢.

Half Life Period :

Half life period of a radio active substance is defined as the time it takes for half the amount/mass

of the substance to disintegrate.

Ex. 3 : Bismath has half life of 5 days. A sample originally has a mass of 800 mg. Find the mass

remaining after 30 days.

Solution : Let x be the mass of the Bismath present at time .

dx
Then —=—kx where k>0
dt
Solving the differential equation, we get From equation (2), we have
_
roee (D) 400 = 800 ¢
where c is constant of proporationality. 5, 400 1 3)
Loe T =——=— c
Given that x = 800, when =0 800 2

. ) ) Now we have determine x, when t = 30,
using these values in euqation (1), we get

800=c-1=c .. From equation (2), we have

=800 ¢ " ) x =800 e "% =12-5 (verify )

Since half life is 5 days, we have x =400 | . The mass after 30 days will be 12-5 mg.
when =15,

Now let us discuss another application of differential equation.

= &




6.5.3 Newton's Law of Cooling :

Newton's law of cooling states that the rate of change of cooling heated body at any time is

proporational to the difference between the temperature of a body and that of its surrounding medium.

Let 0 be the temperature of a body at time 7 and 0 be the temperature of the medium.

Then ’n is the rate of change of temperature with respect to time ¢ and 0 — 0 is the difference of

temperature at time 7. According to Newton's law of cooling.

do
EOC(@—GO)

49 k(© -0 1
where k is constant of proportionality and negative sign indicates that difference of temperature is
decreasing.
do
Now o ~k(0-0,)
do rd
= —k dt
(©-9)
.. Integrating and using the initial condition viz.
0=0, when ¢ = 0, we get
. —kt .
0=0,+(0,-6,)e" (verify) .2

Thus equation (2) gives the temperature of a body at any time ¢.
Ex. 4 : Water at 100°c cools in 10 minutes to 88°c in a room temperature of 25°c. Find the temperature

of water after 20 minutes.

Solution : Let 6 be the temperature of water at time . Room temperature is given to be 25°c. Then

according to Newton's law of cooling. we have

do .. From equation (1) we have
- (6-25)
A 0 = 25+75¢™
—_— == — > _ 2
r k(6 —25), where k>0 = 25475 (™)
After integrating and using initial condition. 2
We get 0=25+75¢" (D = 25+75 (Ej ... by (2)
But given that 0 = 88°c when ¢ = 10 75 x 21 x 21
= 25+ —FF—F—
From equation (1) we get 25 %25
ok 1323
88=25+"75¢ = 25+———=77-92
63 21 25

63="75¢"" . %= % = E .. (2) Therefore temperature of water after 20
Now we have to find 6, when 7 = 20, minutes will be 77-92°c.

. .



6.5.4 Surface Area :

Knowledge of a differential equation is also used to solve problems related to the surface area. We

consider the following examples :

Ex. 5 : Water is being poured into a vessel in the form of an inverted right circular cone of semi vertical
angle 45°c in such a way that the rate of change of volume at any moment is proporational to the
area of the curved surfaces which is wet at that moment. Initially, the vessel is full to a height of
2 cms. And after 2 seconds the height becomes 10 cm. Show that after 3.5 seconds from that start,
the height of water will be 16 cms.

Solution : Let the height of water at time ¢ seconds be / cms.

Fig. 6.2

We are given that initial height is 2 cms. and after 2 seconds, the height is 10 cms.

h=2whent=0 (D)
and 7 =10 when =2 ... (2)

Let v be the volume, r be the radius of the water surface and / be that slant height at time ¢ seconds.
Area of the curved surface at this moment is 7r/.

But the semi vertical angle is 45°.
r

tan 45° = o 1
r =h
and P = r+h =2n
I =A2h
Area of the curved surface = mrl = nwh\2h
= V2 nh?

/
. O@O .
AN



Since rate of change of volume is proporational to this area, we get
dv

J— 2

- V2 nth

dv 5

o - eNZm
where c is constant of proportionality.
Let \2n =k

s kh? 3

7 .3

where k is constant
1
Now v.o= 3w r*h
1 1
3" rh = 3 nh?, (since r = h)

Differentiating with respect to 7, we get

dv 2 dh A

- .4

%
Equating ” from (3) and (4) we get
h* @ kh?
ar
dh

k
— = —=q(sa
7 - (say)
where a is constant.

integrating we get

h = at+b ... (5
using (1) we have 2 =al0+b b=2
Equation (5) becomes

h = at+2
Now using (2) we get

10 = 2a+2 a=4

using the values of a and b in equation (5), we have

h 4t +2

Now put £ =3-5
h = 4x35+2
=14+2=16cm

Therefore, height of water after 3-5 seconds will be 16 cms.

‘ 0



( )

| EXERCISE 6.6 |

10.

11.

N )

In a certain culture of bacteria the rate of increase is proportional to the number present. If it is found

that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

If the population of a country doubles in 60 years, in how many years will it be triple (treble) under
the assumption that the rate of increase is proporational to the number of inhabitants?
[Given log 2 =0-6912, log 3 = 1-:0986]

If a body cools from 80°c to 50°c at room temperature of 25°c in 30 minutes, find the temperature
of the body after 1 hour.

The rate of growth of bacteria is proportional to the number present. If initially, there were 1000

1
bacteria and the number double in 1 hour, find the number of bacteria after 2 — hours.

2
[Take V2 = 1-414]

The rate of disintegration of a radio active element at any time t is proportational to its mass at that

time. Find the time during which the original mass of 1 -5 gm. will disintegrate into its mass of 0-5 gm.

The rate of decay of certain substance is directly proporational to the amount present at that instant.
Initially, there are 25 gms of certain substance and two hours later it is found that 9 gms are left.

Find the amount left after one more hour.

Find the population of a city at any time t, given that the rate of increase of population is proporational
to the population at the instant and that in a period of 40 years the population increased from 30,000
to 40,000.

A body cools according to Newton's law from 100°c to 60°c in 20 minutes. The temperature of the

surrounding being 20°c how long will it take to cool down to 30°c?
A right circular cone has height 9 cms and radius of the base 5 cms. It is inverted and water is

T
poured into it. If at any instant the water level rises at the rate of A cms/ sec. where A is the area of
water surface at that instant, show that the vessel will the full in 75 seconds.

Assume that a spherical raindrop evaporates at a rate proporational to its surface area. If its radius
originally is 3mm and 1 hour later has been reduced to 2mm, find an expression for the radius of

the raindrop at any time ¢.

The rate of growth of the population of a city at any time t is proportional to the size of the population.
For a certain city it is found that the constant of proportionality is 0.04. Find the population of the
city after 25 years if the initial population is 10,000. [Take e = 2-7182]

12. Radium decomposes at the rate proportional to the amount present at any time. If p percent of

amount disappears in one year, what percent of amount of radium will be left after 2 years ?
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Let us Remember

% Equation which contains the derivative of a function is called a differential equation.

&% The order of a differential equation is the highest order of the derivative appearing in the

equation.

% The degree of the differential equation is the power of the highest ordered derivative present in

the equation.
% Order and degree of a differential equation are always positive integers.

&% Solution of a differential equation in which number of arbitary constants is equal to the order

of a differential equation is the general solution of the differential equation.
% Solution obtained from the general solution by giving particular values to the arbitrary constants
is the particular solution of the differential equation.

.oay
&% The most general form of a linear differential equation of the first order is : I +Py=0Q

where P and Q are functions of x or constant.

[Pdx

Its solution is given by : y (L.LF.) = f Q-(LF.) dx+ ¢, where LF. (integrating factor) = e

dx

&% Solution of a differential equation o kx is in the form x = a-¢"” where a is initial value of x.

Further, £ > 0 represents growth and k> 0, represents decay.

% Newton's law of cooling is 0 =0, + (6, — 0 ) e .

P \
| MISCELLANEOUS EXERCISE 6 |

(I) Choose the correct option from the given alternatives :
3

dv\2? TR
(1) The order and degree of the differential equation |1 + Y _(4r)y are respectively . . .
dx dx?
X
(A) 2,1 B) 1,2 (©) 3,2 (D) 2,3

c
(2) The differential equation of y =c¢? + . is. ..

dyV dy d*y dy
A 4[_j— Y B) 2 +x21y=0
(A) ) T D ()dx2 Y
dyY dy dy dy
C 3(—) +x—= D) —+—-y=0
© dx xdx 7 D) dx*  dx 4

. .



3)

4

)

(6)

(7)

(8)

9)

x* +y* =@ is a solution of ...

dy dy (dyjz
A —+——-y=0 B) y=x |[1+| = | +d?
(A) a2t B) y = Y
dy (dyT &’y dy
C) y=x—+a|l+| = D) —=(x+1)—=
(© y=x= — (D) 5=+ )=
The differential equation of all circles having their centers on the line y = 5 and touching the
X-axis is
d dyy
(A) y2(1+—yj=25 (B) (y—5){1+(_yﬂ=25
dx dx
dy Y dy Y
©C) (y—=5>%+|1+|—=| |=25 (D) (y=5?*1—-| =] |=25
dx dx

d
The differential equation y d_y + x = 0 represents family of . . .
X

(A) circles (B) parabolas (C) ellipses (D) hyper bolas
1 dy )
The solution of ———=tan'xis ...
x dx
x*tan' x
——+c¢=0 (B) xtan'x+¢c=0

xXtan'x 1

(C) x—tan'x=c¢ (D) y= 5 —E(x—tan’lx)Jrc
dy .
The solution of (x + y)za=lls...
X
(A) x=tan' (x +y) + ¢ (B) ytan (—jZC
Y
(C) y=tan' (x+y)+c (D) yttan' (x+y)=c
&y yHNEy
The solution of—yz uis...
dx 2
() (YY)
(A) sin'|—|=2log|x|+c (B) sin'|—|=log|x|+c
X X
(V) (Y
(C) sin| —|=log|x|+c (D) sin| — |=log|x|+c
X X
: dy .
The solution ofd— +y=cosx—sinxis...
X
(A) ye*=cosx+tc (B) ye*+te*cosx=c
(C) ye*=e*cosx+tc (D) y*e*=e*cosx+c
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(10) The integrating factor of linear differential equation x I +2y=x?logxis...

1 1
() — (B) ©) — (D) ¥

(11) The solution of the differential equation d_y =secx —)tanxis
X

(A) ysecx+tanx=c (B) ysecx=tanx +c
(C) secx+tytanx=c (D) secx=ytanx +c
'y _ .
(12) The particular solution ofa=xey ,whenx=y=0is...
(A)e™7=x+1 (B)e" " =x+1 (C)e"+e'=x+1 (D)e’ "=x-1
x2 2
(13) ?—EZIisasolutionof...
dy (dyjz dy (dy)z dy
A) —+yx+|—|=0 B) xy—+2|=—| —y—=0
*) dx? 4 dx ®) ya?x2 dx ydx
&'y (dyjz dy dy
()ydx2 ) ()ydx Y3

(14) The decay rate of certain substance is directly proporational to the amount present at that
instant. Initially there are 27 grams of substance and 3 hours later it is found that 8 grams left.
The amount left after one more hour is...

2 1
(A) 5 3 grams B) 5 3 grams (C) 5-1 grams (D) 5 grams

(15) If the surrounding air is kept at 20°c and a body cools from 80°c to 70°c in 5 minutes, the
temparature of the body after 15 minutes will be...
(A)51-7°c (B) 54-7°c (C) 52-7° (D) 50-7°c
(I) Solve the following :

(1) Determine the order and degree of the following differential equations :

. d dy .. (cﬁy}z [ dy
i) —+5—+y=x° i) | ——| = _[1+=
D > dx Y (@) dx? 2 dx

dyT d*y Ay [dyjz
1+ 247 — =3+ 1452
(i (dx dx> () a7V dx

4

d d
(v) 2 +sin (_y) =0
dx* dx

. .




2)

3)

4)

)

In each of the following examples, verify that the given function is a solution of the differential

equation.
) PHyP=rx—+r [1+| ==
(1) v e — |-y
d? d
(11) yze""sinbx, —y—2a_y+(a2+b2)y:0
dx? dx
d? d
(iii) y =3 cos (log x) + 4 sin (10gx),x—y+x_y+y: 0
dx? dx
a? d
(iv) y=ae +be +xx 242 4 p—yy42
dx? dx
dx

(V) ¥=2y'logy,x*+y*=xy—
dy
Obtain the differential equation by eliminating the arbitrary constants from the following equations.

i) y*=ab-—x)(b+x) (1)) y=asin (x + b)

(i) (y—aP=b(x+4) (iv) y =a cos (log x) + b sin (log x)

(V) p=dAe¥*' + Be ¥

Form the differential equation of :

(1)  all circles which pass through the origin and whose centres lie on X—axis.

(i1) all parabolas which have 4b as latus rectum and whose axes is parallel to Y—axis.

(ii1) an ellipse whose minor axis is twice its major axis.

(iv) all the lines which are normal to the line 3x — 2y + 7 = 0.

(v) the hyperbola whose length of transverse and conjugate axes are half of that of the given

x2 2

hyperbola 16 36~ k.

Solve the following differential equations :

1 1 d_y =2x+3 (")d—yz 2y +

i og| 4 x+ 3y i) ==Xy Ty

LAy 2Zy—x .

(1i1) o tx (iv) xdy=(x+y+1)dx
dy , : N

(v) ——+ycotx=x*cotx+2x (vi) ylogy=(logy*—x) —
dx dx

L dx
(vii)) 4 —+8x =5
dy
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(6) Find the particular solution of the following differential equations :

d
(1) y(l+logx)= (logx")d—y, when y (e) = e?
X

d
2) (x+2y2)d—y=y,whenx=2,y=1
X

dy
dx
4) (x+ty)dy+(x—y)dx=0,whenx=1=y

T
3) — 3y cot x = sin 2x, when y (Ej =2

(5) 2ev dx+ (y—2x67j dy=0,wheny (0)=1
dy y+y+1

(7) Show that the general solution of the differential equation — = ————— 1is given by
dx X*+x+1

x+y+D)=c(l—x—y—2xp)

(8) The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve

passes through (2, 3). Find the equation of the curve.

(9) The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is

3 units and after 3 seconds it is 6 units. Find the radius of the balloon after ¢ second.

(10) A person's assets start reducing in such a way that the rate of reduction of assets is proportional to

the square root of the assets existing at that moment. If the assets at the begining are X 10 lakhs and

2
they dwindle down to X 10,000 after 2 years, show that the person will be bankrupt in 2 [} years
from the start.




7. PROBABILITY DISTRIBUTIONS aa

%ﬁ; Let us Learn ]

e Random variables
e Types of random variables

e Probability distribution of random variable.

e Discrete random variable e Continuous random variable
e Probability mass function ¢ Probability density function
e Expected values and variance e Cumulative distribution function

e

\ Let us Recall ]

¢ Arandom experiment and all possible outcomes of an experiment

e The sample space of a random experiment

Let us Study J

7.1 Random variables :

We have already studied random experiments and sample spaces corresponding to random
experiments. As an example, consider the experiment of tossing two fair coins. The sample space
corresponding to this experiment contains four elements, namely {HH, HT,TH,TT}. We have already
learnt to construct the sample space of any random experiment. However, the interest is not always
in a random experiment and its sample space. We are often not interested in the outcomes of a random
experiment, but only in some number obtained from the outcome. For example, in case of the experiment
of tossing two fair coins, our interest may be only in the number of heads when two coins are tossed.
In general, it is possible to associate a unique real number to every possible outcome of a random
experiment. The number obtained from an outcome of a random experiment can take different values
for different outcomes. This is why such a number is a variable. The value of this variable depends on

the outcome of the random experiment, therefore it is called a random variable.

A random variable is usually denoted by capital letters like X, Y, Z,

= &



Consider the following examples to understand the concept of random variables.

(i) When we throw two dice, there are 36 possible outcomes, but if we are interested in the sum of the

numbers on the two dice, then there are only 11 different possible values, from 2 tol2.

(i) Ifwe toss a coin 10 times, then there are 2'° = 1024 possible outcomes, but if we are interested in the
number of heads among the 10 tosses of the coin, then there are only 11 different possible values,
from 0 to 10.

(i11) In the experiment of randomly selecting four items from a lot of 20 items that contains 6 defective
items, the interest is in the number of defective items among the selected four items. In this case,

there are only 5 different possible outcomes, from 0 to 4.

In all the above examples, there is a rule to assign a unique value to every possible outcome of the
random experiment. Since this number can change from one outcome to another, it is a variable. Also,

since this number is obtained from outcomes of a random experiment, it is called a random variable.

A random variable is formally defined as follows.
Definition :

A random variable is a real-valued function defined on the sample space of a random experiment.
In other words, the domain of a random variable is the sample space of a random experiment, while its

co-domain is the set of real numbers.
Thus X : S — R is a random variable.

We often use the abbreviation r.v. to denote a random variable. Consider an experiment where three
seeds are sown in order to find how many of them germinate. Every seed will either germinate or will
not germinate. Let us use the letter ¥ when a seed germinates and the letter N when a seed does not

germinate. The sample space of this experiment can then be written as
S= {YYY, YYN, YNY, NYY, YNN, NYN, NNY, NNN}, and n (S)=2°=8.

None of these outcomes is a number. We shall try to represent every outcome by a number. Consider

the number of times the letter ¥ appears in a possible outcome and denote it by X. Then, we have
X (YYY)=3,X(YYN)=X(YNY) =X (NYY)=2, X (YNN) =X (NYN)=X (NNY)=1, X (NNN ) = 0.

The variable X has four possible values, namely 0, 1, 2, and 3. The set of possible values of X is
called the range of X. Thus, in this example, the range of X is the set {0, 1,2, 3} )

A random variable is usually denoted by a capital letter, like X or Y. A particular value taken by
the random variable is usually denoted by the small letter x. Note that x is always a real number and

the set of all possible outcomes corresponding to a particular value x of X is denoted by the event

[X=x].
. .




For example, in the experiment of three seeds, the random variable X takes four possible values,

namely 0, 1, 2, 3. The four events are then defined as follows.
[X=0]={NNN },
[X=1]={YNN, NYN, NNY },
[X=2]={YYN, YNY, NYY},
[x=3]={yyY}.
Note that the sample space in this experiment is finite and so is the random variable defined on it.

A sample space need not always be finite. For example, the experiment of tossing a coin until a head
is obtained. The sample space for this experiment is S = {H TH, TTH, TTTH, . .. }

Note that S contains an unending sequence of tosses required to get a head. Here, S is countably
infinite.The random variable X : S — R, denoting the number of tosses required to get a head, has the

range {1, 2,3,... } which is also countably infinite.

7.2 Types of Random Variables :
There are two types of random variables, namely discrete and continuous.

7.2.1 Discrete Random Variables :

Definition : A random variable is said to be a discrete random variable if the number of its possible

values is finite or countably infinite.
The values of a discrete random variable are usually denoted by non-negative integers, that is,
{0,1,2,... }.

Examples of discrete random variables include the number of children in a family, the number of

patients in a hospital ward, the number of cars sold by a dealer, number of stars in the sky and so on.

Note : The values of a discrete random variable are obtained by counting.

7.2.2 Continuous Random Variable :

Definition : A random variable is said to be a continuous random variable if the possible values of this

random variable form an interval of real numbers.

A continuous random variable has uncountably infinite possible values and these values form an

interval of real numbers.

Examples of continuous random variables include heights of trees in a forest, weights of students

in a class, daily temperature of a city, speed of a vehicle, and so on.
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The value of a continuous random variable is obtained by measurement. This value can be measured
to any degree of accuracy, depending on the unit of measurement. This measurement can be represented
by a point in an interval of real numbers.

The purpose of defining a random variable is to study its properties. The most important property
of a random variable is its probability distribution. Many other properties of a random variable are
obtained with help of its probability distribution. We shall now learn about the probability distribution
of a random variable. We shall first learn the probability of a discrete random variable, and then learn

the probability distribution of a continuous random variable.

7.3 Probability Distribution of Discrete Random Variables :

Let us consider the experiment of throwing two dice and noting the numbers on the upper-most

faces of the two dice. The sample space of this experiment is
S= {(1, 1), (1, 2),.....(6, 6)} and n (S) = 36.
Let X denote the sum of the two numbers in any single throw.
Then {2, 3, -, 12} is the set of possible values of X. Further,
[x=2]1={(1, D},
[x=31={(1,2), 2, D},

[X=12]={(6, 6)}.

Next, all of these 36 possible outcomes are equally likely if the two dice are fair, that is, if each of

the six faces have the same probability of being uppermost when the die is thrown.
1
As the result, each of these 36 possible outcomes has the same probability = 3%

This leads to the following results.

1
Plx=2]=P{(, 1)}=£,
Px=31=P{(1,2),(2, D} = 3,
36
3
PIX=41=P{(1,3),(2,2),3, D} = B

and so on.

. @0 .




The following table shows the probabilities of all possible values of X.

x 2 3 4 5 6 7 8 9 | 10 | 11 | 12
1 2 3 4 5 6 5 4 3 2 1

e — | | - = S === =
36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36

Table 7.1

Such a description giving the values of the random variable X along with the corresponding

probabilities is called the probability distribution of the random variable X.

In general, the probability distribution of a discrete random variable X is defined as follows.

Definition : The probability distribution of a discrete random variable X is defined by the following
system of numbers. Let the possible values of X be denoted by x, , x, , x, , . . ., and the corresponding

probabilities be denoted by p , p,, p,,...,wherep =P[X=x Jfori=1,2,3,... .

Note : A discrete random variable can have finite or infinite number of possible values, but they are

countable.

Sometimes, the probability distribution of a discrete random variable is presented in the form of
ordered pairs of the form (x , p,), (x,,p,), (x;,p,), ... Acommon practice is to present the probability

distribution of a discrete random variable in a tabular form as shown below.

X; X, X, Xy

P[X:Xi] p1 p2 p3

Table 7.2

Note : If x, is a possible value of X and p, = P [X' = x, ], then there is an event [ £ ] in the sample
space S such that p. = P [ E, ]. Since x, is a possible value of X, p. = P [ X =x, ] > 0. Also, all possible

values of X cover all sample points in the sample space S, and hence the sum of their probabilities is 1.
That is, p,> 0, for all i and Zp[ =1.
7.3.1 Probability Mass Function (p. m. f.) :

Sometimes the probability p, of X taking the value x, is a function of x, for every possible value of

X. Such a function is called the probability mass function (p. m. f.) of the discrete random variable X.

For example, consider the coin-tossing experiment where the random variable X is defined as the
number of tosses required to get a head. Let probability of getting head be ‘#” and that of not getting head

be 1 — ¢. The possible values of X are given by the set of natural numbers, 1, 2, 3, ... and

P[X=i]=(—-¢t) '¢,fori=1,2,3,...
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This result can be verified by noting that if head is obtained for the first time on the i ™ toss, then
the first i — 1 tosses have resulted in tail. In other words, X = i represents the event of having i — 1 tails
followed by the first head on the toss.

We now define the probability mass function (p. m. f.) of a discrete random variable.

Definition : Let the possible values of a discrete random variable X be denoted by x, , x, , x,, ...,
with the corresponding probabilities p, = P [X = x, ], i = 1, 2, . . . If there is a function f such that
p, = P[X=x 1= f(x,) for all possible values of X, then f'is called the probability mass function
(p. m. f.) of X.

For example, consider the experiment of tossing a coin 4 times and defining the random variable
X as the number of heads in 4 tosses. The possible values of X are 0, 1, 2, 3, 4, and the probability

distribution of X is given by the following table.

X 0 1 2 3 4
1 1 3 1 1
P X=x]| — — — — —
16 4 8 4 16
Table 7.3

4 1\

Note that : P[X=x]= (?j,x=0,1,2,3,4,...
X

4
where } is the number of ways of getting x heads in 4 tosses.
X

7.3.2 Cumulative Distribution Function (c. d. f.) :

The probability distribution of a discrete random variable can be specified with help of the p. m.
f. It is sometimes more convenient to use the cumulative distribution function (c.d.f.) of the random
variable. The cumulative distribution function (c. d. f.) of a discrete random variable is defined as

follows.

Definition : The cumulative distribution function (c. d. f.) of a discrete random variable X is denoted
by F and is defined as follows.
F(x)=P[X<x] =) P[X=x]
= Zpl
=2/ (x)

where f'is the probability mass function (p. m. f.) of the discrete random variable X.

. .




For example, consider the experiment of tossing 4 coins and counting the number of heads.

We can form the next table for the probability distribution of X.

. 0 1 2 3 4
e 1 1 3 1
JR=PIX=x1 701 5 8 4 16
1 5 11 | 15
Fo=Px=x| — | = | = | = | 1
6 | 16 | 1 16
Table 7.4

For example, consider the experiment of tossing a coin till a head is obtained. The following table
shows the p. m. f. and the c. d. f. of the random variable X, defined as the number of tosses required for
the first head.

X 1 2 3 4 5

1 1 1 1 1

O T2 | 5|16 | 2

1 3 7 15 31

FOL 5171 % | 16 | 32
Table 7.5

It is possible to define several random variables on the same sample space. If two or more random

variables are defined on the same sample space, their probability distributions need not be the same.

For example, consider the simple experiment of tossing a coin twice. The sample space of this
experiment is S = {HH, HT, TH, TT}.
Let X denote the number of heads obtained in two tosses. Then X is a discrete random variable and

its value for every outcome of the experiment is obtained as follows.
XHH)=2,X(HT)=X(TH)=1,X(TT)=0.

Let Y denote the number of heads minus the number of tails in two tosses. Then Y is also a discrete

random variable and its value for every outcome of the experiment is obtained as follows.

Y(HH)=2,Y(HT)=Y(TH)=0,Y (IT)=-2.
Number of heads
Number of tails + 1

Let Z=

Then Z is also a discrete random variable and its values for every outcome of the experiment is
1
obtained as follows. ZHH)=2,Z(HT)=Z(TH)= 5 Z(TT)=0.

These example show that it is possible to define many distinct random variables on the same sample

space. Possible values of a discrete random variables can be positive or negative, integer or fraction.
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@ SOLVED EXAMPLES |

Ex.1:

Two persons A and B play a game of tossing a coin thrice. If the result of a toss is head, A gets
X 2 from B. If the result of a toss is tail, B gets ¥ 1.5 from A. Let X denote the amount gained
or lost by A. Show that X is a discrete random variable and show how it can be defined as a

function on the sample space of the experiment.

Solution : X is a number whose value depends on the outcome of a random experiment.

Ex.2:

Therefore, X is a random variable. Since the sample space of the experiment has only 8

possible outcomes, X is a discrete random variable. Now, the sample space of the experiment is
S ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.
The values of X in rupees corresponding to these outcomes of the experiment are as
follows.
XHHH)=2x3=%6
X (HHT)=X (HTH) = X (THH) =2 x 2 — 1.50 x 1 =% 2.50
XHTT)=X(THT)=X(TTH) =2x1-1.50%x2=%-1.00
X(TTT)=-1.50 x3=% —4.50
Here, a negative amount shows a loss to player A. This example shows that X takes a

unique value for every element of the sample space and therefore X is a function on the sample
space. Further, possible values of X are 4.50, 1, 2.50, 6.

A bag contains 1 red and 2 green balls. One ball is drawn from the bag at random, its colour is
noted, and then ball is put back in the bag. One more ball is drawn from the bag at random and
its colour is also noted. Let X denote the number of red balls drawn from the bag as described

above. Derive the probability distribution of X.

Solution : Let the balls in the bag be denoted by 7, g, , g, . The sample space of the experiment is then

given by S={rrrg.,rg,.gnrernrgsg, 88 88 5%}

Since X is defined as the number of red balls, we have
X({rr})=2,
X({rg})=X(rg)=X(gn=X(gn=1,
X({g g})=X(g8)=X(g,8)=X(g,8)=0.

Thus, X is a discrete random variable that can take values 0, 1, and 2.

The probability distribution of X is then obtained as follows :
x 0 2

N-R N

1
9

. .

4
P[X=x] E




Ex.3: Two cards are randomly drawn, with replacement, from a well shuffled deck of 52 playing
cards. Find the probability distribution of the number of aces drawn.

Solution : Let X denote the number of aces among the two cards drawn with replacement.

Clearly, 0, 1, and 2 are the possible values of X. Since the draws are with replacement, the
outcomes of the two draws are independent of each other. Also, since there are 4 aces in the deck

of 52 cards,
4 1 12
P[ace ]| =——=——and P [non-ace] = — . Then
52 13 13
12 12 144
P [X=0] =P [non-ace and non-ace] = — x — = ——,
13 13 169
P[X=1] =P [ace and non-ace] + P [non-ace and ace]
I 12 12 1 24
=—X—+—X—=—",
13 13 13 13 169
1 1 1
and P[X=2]=PJaceandace]=—x—=—-.
13 13 169
The required probability distribution is then as follows.
x 0 1 2
144 24 1
P[X=x]
169 | 169 | 169

Ex. 4 : A fair die is thrown. Let X denote the number of factors of the number on the upper face. Find
the probability distribution of X.

Solution : The sample space of the experiment is S = {1, 2,3,4,5, 6} . The values of X for the possible
outcomes of the experiment are as follows.

X(1)=1,X(2) =2, X(3) =2, X(4) = 3, X(5) = 2, X(6) = 4. Therefore,
1
p=PX=11=P[{1}]="
3
p,=P[X=2]=P[{2,3, 5}]=Z

1
p,=PX=3]=P[{4}]=

1
p,=PX=4]=P[{6}]="

The probability distribution of X is then as follows.

3 1 2 3 4
. 1131 1] 1
[X=x]] 6 6 6

4
/i i\
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Ex. 5 : Find the probability distribution of the number of doublets in three throws of a pair of dice.
Solution : Let X denote the number of doublets. Possible doublets in a pair of dice are (1, 1), (2, 2),
(3,3),(4,4),(5,5,), (6, 6).

Since the dice are thrown thrice, 0, 1, 2, and 3 are possible values of X. Probability of getting a

1 1 5

doublet in a single throw of a pair of dice is p = r andg=1-— o = e
P [X=0]=P [ no doublet] S5, 1

=0] = P [ no doublet] = =—X—X—="—

! 144 6 6 6 216
75
P [X=1]= P [one doublet] = pqq + gpq + qqp = 3pg* = 216"
15
P [X=2]= P [two doublets] = ppg + pgp + qpp = 3p*q = 216"
1
P [X = 3] =P [three doublets] = ppp = 216"
Ex. 6 : The probability distribution of X is as follows :
X 0 1 2 3 4

P[X=x]| o1 k 2% | 2k k

Find (i) &, (i1) P [X' < 2], (iii)) P [X >3], (iv) P[1 £ X < 4], (v) F(2).
Solution : The table gives a probability distribution and therefore
P[X=0]+P[X=1]+P[X=2]+P[X=3]+P[X=4]=1.
Thatis, 0-1 +k+2k+2k+k=1.
That is, 6k = 0-9. Therefore k= 0-15.
(1) k=0-15.
(i1) P[X<2] =P[X=0]+P[X=1]=0'1+k=0-1+0.15=025
(i) P[X>3] =P[X=3]+P[X=4]=2k+k=3(0-15)=0-45
(iv) P[1<X<4] =P[X=1]+P[X=2]+P[X=3] =k+2k+2k=5k
=5(0-15)=0-75.
(v FQ)=P[X<2]=P[X=0]+P[X=1]+P[X=2] =0-1+k+2k =0-1+3k
=0-1+3(0-15) =0-1+0-45=0-55.

7.3.3 Expected value and Variance of a random variable :

In many problems, it is desirable to describe some feature of the random variable by means
of a single number that can be computed from its probability distribution. Few such numbers are
mean, median, mode and variance and standard deviation. In this section, we shall discuss mean and
variance only. Mean is a measure of location or central tendency in the sense that it roughly locates a

middle or average value of the random variable.
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Definition : Let X'be arandom variable whose possible values x , x,, x,, ..., x, occur with probabilities

D, sPys Dy P, respectively. The expected value or arithmetic mean of X, denoted by E (X') or p is
defined by ,
EX)=p= L}Z:xipl;xlp1 +x,p,tx,p,t... txp
In other words, the mean or expectation of a random variable X is the sum of the products of all

possible values of X by their respective probabilities.

Definition : Let X'be arandom variable whose possible valuesx , x,, x,, ..., x occur with probabilities

P, sP,y>Dys - -+ P, Tespectively. The variance of X, denoted by Var (X') or cs)zc is defined as
o, = Var (X) =2, (x,~n)p,
i=1
The non-negative number o= \Var (X) is called the standard deviation of the random
variable X.
We can also use the simplified form of
n n 2
Var (X ) = (Z xfp,»j - (Z xip,-j
i=1 i=1
Var (X)=E(X?)— [E(X)] where ), x2p = E(X?)
i=1
@ SOLVED EXAMPLES

Ex. 1: Three coins are tossed simultaneously, X is the number of heads. Find expected value and

n

variance of X.

Solution : § = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} and X={0,1,2,3}

X=x|P=p, X.P; xizpi
1
0 E 0 0
3 3 3
1 = = =
8 8 8
3 6 12
> % B B
1 3 £
> % 8 8
w2
Then E (X) ZlepIZ%Zl 5

= &



Ex. 2 : Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear

on the two dice. Find the mean or expectation of X and variance of X.

Solution : The sample space of the experiment consists of 36 elementary events in the form of ordered
pairs (x,, y,), where x, = 1,2,3,4,5,6andy,= 1, 2, 3,4, 5, 6.

The random variable X i.e. the sum of the numbers on the two dice takes the values 2, 3, 4, 5, 6,
7,8,9,10, 11 or 12.

X=x|P=p, X.P; xizpi

1 2 4

2 - - -
36 36 36

6 18

3 - - -
36 36 36

12 48

4 - - -
36 36 36

. | & 20 100
36 36 36

.| s 30 180
36 36 36

S| e 42 294
36 36 36

. | 5 40 320
36 36 36

s | £ 36 324
36 36 36

30 300
0 | = = -
36 36 36
) 22 242
36 36 36

12 144
| = = -
36 36 36

i: _ Bz, i}z _ DT g
NPT e T GNPT 36 T
Then E (X) =2,xp, =7

i=1 i=

n n 2
Var (X) = ( xizpij - ( xl.pl) =54-83 — (7
1
5
5




Ex. 3 : Find the mean and variance of the number randomly selected from 1 to 15.

Solution : The sample space of the experiment is S = { 1,2,3,...,15 }

Let X denote the number selected.

Then X is a random variable which can take values 1, 2, 3, ..., 15. Each number selected is
equiprobable therefore
1
P(1)=P(2)=P(3)=...=P(15)=E
E(X) Z 1 1+2 1+3 l+ +15 :
= = p. =1 X— X — X — X —
H &P 15 15 15 15
1 15x 16 1
=(1+2+3+...+15)x——= x — =28
15 2 15
Var (X) = ixzp - ixp 2 =12><i+22><i+32><i+...+152><i—(8)2
= = 15 15 15 15

1
=(IP+22+3 4.+ 152)><1—5—(8)2
15 %16 x 31 1
ol Bl v O
6 15
=82:67—64=18-67

Ex. 4 : Two cards are drawn simultaneously (or successively without replacement) from a well shuffied

pack of 52 cards. Find the mean, variance and standard deviation of the number of kings drawn.

Solution : Let X denote the number of kings in a draw of two cards. X is a random variable which can

assume the values 0, 1 or 2.

"G 48x47 188
Then P(X=0) =P (nocardis klng)zszc = xSl o1
X

2

'CxBC ax48x27 32
2C 52x51 221

2

Then P (X=1) =P (exactly one card is king) =

. 'C, 4x3 1
Then P (X=2) =P (both cards are king) = AT
X

2

b Z SURC S - S B
= = p =0x— X —— X — = —
H &P, 221 221 21 221

Var (X) Z 2 Z R POV T S )
ar xX’'p X:P, 221 221 221 221)
36 1156 6800

221 48841 48841
o =\Var (X)=~0-1392

=0-1392




EXERCISE 7.1

Let X represent the difference between number of heads and number of tails obtained when a coin

is tossed 6 times. What are possible values of X ?

An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black

balls drawn. What are possible values of X ?

State which of the following are not the probability mass function of a random variable. Give

reasons for your anSwer.

@) (i)
X 0 1 2 X 0 1 2 | 3| 4
P(X) 0-4 0-4 0-2 PX) | 01[05][02]|-01]|02
(iii) (iv)
X 0 1 2 Z 3 2 1 0 | -1
P (X) 0-1 0-6 0-3 P(Z) | 03|02 04 0-05
v) (vi)
Y -1 0 1 X 0 1] -2
P(Y) 0-6 0-1 0-2 P(X) 0-3 0-4 0-3

Find the probability distribution of (i) number of heads in two tosses of a coin. (ii) Number of tails

in the simultaneous tosses of three coins. (ii1) Number of heads in four tosses of a coin.

Find the probability distribution of the number of successes in two tosses of a die, where a success

is defined as number greater than 4 appears on at least one die.

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with

replacement. Find the probability distribution of the number of defective bulbs.

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find

the probability distribution of number of tails.

A random variable X has the following probability distribution :

X 0 1 2 3 4 5 6 7
P (X) 0 k 2k 2k 3k 'S 2k Tk*+ k
Determine : (i) k (i) P (X< 3) (i) P (X >4)
Find expected value and variance of X for the following p.m.f.
X -2 -1 0 1 2
P(X) 0-2 0-3 0-1 0-15 0-25
o OG0 S



10. Find expected value and variance of X ,where X is number obtained on uppermost face when a fair

die is thrown.
1. Find the mean number of heads in three tosses of a fair coin.
12. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.

3. Two numbers are selected at random (without replacement) from the first six positive integers. Let
X denote the larger of the two numbers obtained. Find E (X).

14. Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard

deviation of X.

15. Aclass has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20
years. One student is selected in such a manner that each has the same chance of being chosen and
the age X of the selected student is recorded. What is the probability distribution of the random

variable X ? Find mean, variance and standard deviation of X.

16. In ameeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected
at random and we take X = 0 if he opposed, and X =1 if he is in favour. Find E (X) and Var (X).

7.4 Probability Distribution of a Continuous Random Variable :

A continuous random variable differs from a discrete random variable in the sense that the possible
values of a continuous random variable form an interval of real numbers. In other words, a continuous

random variable has uncountably infinite possible values.

For example, the time an athlete takes to complete a thousand-meter race is a continuous random

variable.

We shall extend what we learnt about a discrete random variable to a continuous random variable.
More specifically, we shall study the probability distribution of a continuous random variable with
help of its probability density function (p. d. f.) and its cumulative distribution function (c. d. f.). If
the possible values of a continuous random variable X form the interval [a, b], where a and b are real
numbers and a < b, then the interval [a, b] is called the support of the continuous random variable X.

The support of a continuous random variable is often denoted by S.

In case of a discrete random variable X that takes finite or countably infinite distinct values,
the probability P [X = x] is determined for every possible value x of the random variable X. The
probability distribution of a continuous random variable is not defined in terms of probabilities of
possible values of the random variable since the number of possible values are unaccountably infinite.
Instead, the probability distribution of a continuous random variable is characterized by probabilities
of intervals of the form [ ¢, d ], where ¢ < d. That is, for a continuous random variable, the interest is
in probabilities of the form P [c < X < d], where a <c <d <b.

/
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This probability is obtained by integrating a function of X over the interval [c, d]. Let us first
define the probability density function (p.d.f.) of a continuous random variable.
7.4.1 Probability Density Function (p. d. f.) :

Let X be a continuous random variable defined on interval S = (a , b). A non-negative integrable
function f (x) is called the probability density function (p. d. f.) of X if it satisfies the following

conditions.

1. f(x) is positive or zero every where in S, that is, f(x) > 0, for all x € S.
2. The area under the curve y = f'(x) over Sis 1. That is, [ f(x) dx =1
s

3. The probability that X takes a value in 4, where 4 is some interval, is given by the integral of
f(x) over that interval. That is
P[X e A]l= [ f(x)dx
A

7.4.2 Cumulative Distribution Functions (c. d. f.) :

The cumulative distribution function for continuous random variables is just a straightforward

extension of that of the discrete case. All we need to do is replace the summation with an integral.

Definition : The cumulative distribution function (c. d. f.) of a continuous random variable X is
defined as : i
Fx)=[f@)dt fora <x <b.

You might recall, for discrete random variables, that F' (x) is, in general, a non-decreasing step

function. For continuous random variables, F (x) is a non-decreasing continuous function.
@) SOLVED EXAMPLES |

Ex.1: Let X be a continuous random variable whose probability density function is f (x) = 3x? ,
for 0 <x < 1. note that f(x) is not P [X = x].

For example, f(0.9) = 3(0.9)> = 2-43 > 1, which is clearly not a probability. In the continuous
case, f(x) is the height of the curve at X = x, so that the total area under the curve is 1. Here it is

areas under the curve that define the probabilities.
Solution : Now, let’s start by verifying that f'(x) is a valid probability density function.
For this, note the following results.
I. f(x)=3x>>0forallx € [0, 1].
2. (jf(x)=(,f3x2dx= 1

Therefore, the function f'(x) = 3x%, for 0 <x < 1 is a proper probability density function.

. .




Also, for real numbers ¢ and d such that 0 < ¢ <d < 1, note that

d d d
Ple<X<d]=[f() dx=f3x2dx:[x3] =d*-c3>0

c

1 1
° What is the probability that X falls between 5 and 1? That is, what is P {? <X< 1}?

1
Substitute ¢ = Y and d = 1 in the above integral to obtain

1 1) 1
Pl—<X<Il1 =13—(—j = ——=l.
2 2 8 8

1
° What isP(X= ?j‘7
See that the probability is 0 . This is so because
d 1
I 7(x) dx= fx3dx= 1-1=0.
c i

1 1 1
{The ordinate AB, with A (?, Oj and B (?, Ej is degenerate case of rectangle and has area 0

As a matter of fact, in general, if X is a continuous random variable, then the probability that X
takes any specific value x is 0. That is, when X is a continuous random variable, then
P [X=x] =0 for every x in the support.

3
Ex. 2 : Let X be a continuous random variable whose probability density function is f (x) = XT for an

interval 0 <x < ¢. What is the value of the constant ¢ that makes f'(x) a valid probability density
function?
Solution : Note that the integral of the p. d. f. over the support of the random variable must be

Thatis, | f(x) dx=1.
0

[ ¢ y3 x4 ¢ P
That is, f (—j dx=1. But, f (—) dx = {—} = — . Since this integral must be equal to 1,
o\ 4 o\ 4 16, 16

¢t . : .
we have T =1, or equivalently ¢* = 16, so that ¢ = 2 since ¢ must be positive.

Ex. 3 : Let's return to the example in which X has the following probability density function :
fx)=3x

for 0 <x < 1. What is the cumulative distribution function F (x) ?

X
X

Solution : F (x) = J. f(x)dx= f3x2 dx = [xﬂ =x3

-0 0 0

/
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Ex. 4 : Let's return to the example in which X has the following probability density function :
3
fx)= XZ for 0 <x <4. What is the cumulative distribution function X ?

I X L[] 1 X
Solution : F (x) = X)dx=|—dx=—|—| =—=[x*-0]=—
) J(;f() '([4 4{4}0 16 [ ] 16
Ex. 5 : Suppose the p.d.f. of a continuous random variable X is defined as:
fx)=x+1, for-1<x<0, and f(x)=1-x, for0<x<]I.
Find the c.d.f. F(x).

Solution : If we look the p.d.f. it is defined in two steps
Now for the other two intervals :

f(® For—-1<x<0and0<x<1.

| .
F@)= [@+1)dx

-1

<« X x? I x*+2x+2
-1 l 1t =_+x+—=
2 2
Fig. 7.1 C(x+1y
2
1
F(0)=—
(0) 5
ForO0<x<1
0 X
F@=PO<x<l)=P(-1<x<0)+P0<x<1) = [(x+1D)dv+[(1-x)dx
-1 0
—1+T(1 x)dx
2 0
1 x2
=—+x+—
2 2

F(x)=0,forx<-1
1
F(x)ZE(er 1), for-1<x<0

1 x?
:_+x__

, forO0<x<1
2

. .



b
If probability function 1 (x) is defined on (a , b) with £'(x) > 0 and [ f (x) dx = 1, then we can
extend this function to the whole of 1R as follows.

For x < a and x > b, define f'(x) = 0.

Then note that jE f(x)=0,fort<aandforx>b
[ reyde= | redet [ f@ydes [ £ de=0+1+0
o i p b

Thus F(t)=0,fort<aand F(t)=1,fort>b

Ex. 6 : Verify if the following functions are p.d.f. of a continuous r.v. X.

(i) f(x)=e™ for 0 <x<ooand= 0, otherwise.

(i) f(x)= % for —2 < x < 2 and = 0, otherwise.

Solution : (i) e ™ is > 0 for any value of x since e > 0,
e™>0,for0<x<ow
0 0 0 1
[f(x)dx=] e*"dx:[—eﬂ Z{—w—eo}Z—(O— 1)=1
0 0 0o Le
Both the conditions of p.d.f. are satisfied f'(x) is p.d.f. of r.v.

(i) f(x) <O0i.e. negative for —2 <x < 0 therefore f(x) is not p.d.f.

Ex. 7 : Find £ if the following function is the p.d.f. of r.v. X.
f(x) =kx*(1 —x), for 0 <x <1 and = 0, otherwise.
Solution : Since f(x) is the p.d.f. of r.v. X

1
[ (1 —x)yax=1
0




Ex. 8 : For each of the following p.d.f. of r.v. X, find (a) P (X< 1)and (b) P (| X|<1)

2

1 f (x)=f—8, for -3 <x <3 and = 0, otherwise.
. x+2 :
(1) f(x)= 8 for -2 <x <4 and = 0, otherwise.
Solution :
1 1
) 3
. X — () 1 1 28 14
i a) P(X<I = | —dx=|18 =—|1-(3)] =— 1+27)=— =—
i) @ P(X<) !18 : G- =avn= -
-3
1 1
1 2 3
®) P(|X|<1) =P(-l<x<l)= [ dx= TR
5 18 T3
2 1
4[ ] 4( ) 54 27
cx+2 1 [ :
1 a) P(X<1 = dx=— | —+2x
i) @ P(X<I) £ - 18{2 L

:i{(l+2j_((_2)2+2(_2)j}:i{i+2}:ix2:l
18 (\2 2 18 (2 18 2 4

fx 2 1 [x? :
b) P(|X|<1) =P(1<x<1)= dx=— | —+2x
() P(|X|<1) =P( - 18{2 }

18 (\2 2 18(2 2) 18 9
Ex. 9 : Find the c.d.f. F(x) associated with p.d.f. /' (x) of r.v. X where

f(x)=3(1-2x*) for0<x<1and=0, otherwise.
Solution : Since f(x) is p.d.f. of r.v. therefore c.d.f. is

F(x)Z]£ 3(1—2x%dx :[3()(_7%3)])5 =[3x-2x] =3x-2x3
0

( )

| EXERCISE 7.2 |

N Y,
1. Verify which of the following is p.d.f. of r.v. X :

(1) f(x)=sinux, forOSxS% (11) f(x)=x,for0<x<land=2-xforl <x<2

(1) f(x)=2, for0<x<1

. .




10.

The following is the p.d.f. of r.v. X : f(x) = %, for 0 <x <4 and = 0 otherwise
Find(@Q)P(x<15)(b)P(1<x<2)(c)P(x>2)

It is known that error in measurement of reaction temperature (in 0° ¢) in a certain experiment is
continuous r.v. given by

fx)= x?z’ for -1 <x <2 and = 0 otherwise

(1)  Verify whether f(x) is p.d.f. of r.v. X. (i) Find P(0<x<1)

(ii1)) Find probability that X is negative.

Find £ if the following function represent p.d.f. of r.v. X.

(1) f(x)=kx, for 0 <x <2 and = 0 otherwise, Also find P (% <x< %J
(1) f(x)=kx (1 —-x),for 0 <x <1 and = 0 otherwise, Also find P (% <x< %) , P (x < %j
Let X be amount of time for which a book is taken out of library by randomly selected student and
suppose X has p.d.f.
f(x)=0-5x, for 0 <x <2 and = 0 otherwise.
Calculate: (i) P(X<1) (1) P(0-5<x<1)5) (i) P(x=1-5)
Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by
f(x)= %, for 0 <x <5 and = 0 otherwise.
Find the probability that (i) waiting time is between 1 and 3
(i) waiting time is more than 4 minutes.
Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
f(x)=k (4 —x?), for -2 <x <2 and = 0 otherwise.
Compute : (i) P(x > 0) (i) P(-1 <x<1) (ii1) P(-0-5 <xorx > 0-5)
The following is the p.d.f. of continuous r.v.
fx)= %, for 0 <x <4 and = 0 otherwise.
(1) Find expression for c.d.f. of X (i1) Find F(x) atx=0-5, 1.7 and 5.
Given the p.d.f. of a continuous r.v. X, f(x) = x?z’ for -1 <x <2 and = 0 otherwise
Determine c.d.f. of X hence find P(x < 1), P(x<-2),P(X>0),P(1 <x<2)
Ifarv. Xhasp.d.f,
)= % for 1 <x<3,¢> 0, Find ¢, E(X) and Var (X).

= &




/-IW Let us Remember N

% A random variable (r.v.) is a real-valued function defined on the sample space of a random

experiment.

The domain of a random variable is the sample space of a random experiment, while its co-

domain is the real line.
Thus X : § — R is a random variable.
There are two types of random variables, namely discrete and continuous.

&% Discrete random variable : Let the possible values of discrete random variable X be denoted
byx, ,x,,x,,...,and the corresponding probabilities be denoted by p, , p,, p,, ..., where
p,=P[X=x]fori=1,2,3,... . Ifthere is a function f'such that p. = P [X = x | = f (x,) for
all possible values of X, then f is called the probability mass function (p. m. f.) of X.

Note : If x, is a possible value of X and p, = P [X = x, ], then there is an event £, in the sample
space § such that p. = P [E ]. Since x, is a possible value of X, p. = P [X=x,]> 0. Also, all
possible values of X cover all sample points in the sample space S, and hence the sum of their

probabilities is 1. That is, p, > 0 for all i and 2 p,= 1.

&% c.d.f (F(x)) : The cumulative distribution function (c. d. f.) of a discrete random variable X is

denoted by F and is defined as follows.

F(x)=P[X<x] =), P[X=x]
:;Pi

=2.f(x)

&% Expected Value or Mean of Discrete r. v. : Let X be a random variable whose possible values

X, ,X,,X,,...,x occur with probabilitiesp ,p,,p,, ..., p, respectively. The expected value

or arithmetic mean of X, denoted by E (X') or u is defined by

E@X)=u :Z;xipi:xlpl TP, TPy T TXp,

In other words, the mean or expectation of a random variable X is the sum of the products of

all possible values of X by their respective probabilities.

. .
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&% Variance of Discrete r. v. : Let X be a random variable whose possible values x, , x, , x

127227302 ¢
., x_occur with probabilities p, , p, , p, , . . ., p, respectively. The variance of X, denoted by

Var (X') or ox? is defined as

o, = Var (X)= 2, (x~up,

The non-negative number c_= \/ Var (X)
1s called the standard deviation of the random variable X.

Another formula to find the variance of a random variable. We can also use the simplified form of

Var (X) = (Z x'p ij - (Z xipi)z

Var (X) =E(X?) - [ECO)]” where Z x2p =E(X?)

% Probability Density Function (p. d. f.) : Let X be a continuous random variable defined on
interval S = (a , b). A non-negative integrable function f'(x) is called the probability density

function (p. d. f.) of X if it satisfies the following conditions.

1. f(x) is positive every where in S, that is, f(x) > 0, for all x € S.

2. The area under the curve f'(x) over S is 1. That is, [ f(x) dx =1

3. The probability that X takes a value in 4, where 4 iz some interval, is given by the integral

of f(x) over that interval. That is
P[XeA]= [ f(x)dx
4

&% The cumulative distribution function (c. d. f.) of a continuous random variable X is defined
as:

F)=] £ dt fora <x <b.

. L
’L\MISCELLANEOUS EXERCISE 7A:

(I) Choose the correct option from the given alternatives :
(1) Pd.f ofacrvXis f(x)=6x (1 —x), for0<x<1and =0, otherwise (elsewhere)
IfP(X<a)=P(X>a),thena=

1 1 1
() 1 B) © 5 ®)

= &




)

3)

4

)

(6)

(7

®)

9

If the p.d.fof a.c.r.v. X'is f(x) =3 (1 —2x?), for 0 <x <1 and = 0, otherwise (elsewhere)
then the c.d.f of X'is F(x) =

(A) 2x—3x° (B) 3x—4x° (C) 3x—2x° (D) 2x*—3x

If the p.d.fof a.crv. Xis f(x)= %, for -3 <x <3 and =0, otherwise

then P (| X|<1)=

(A) % (B) o ©) % (D) %

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X=x) =k (x + 1)-57, where k is

a constant, then P (X=0) =

A = B) O 0) = D) 5.

(A) 5 (B) — ©) 75 D) 73
5

Ifp.m.f. ofad.rv. Xis P (X=x) = ( 25x) ,forx=0,1,2,3,4,5and = 0, otherwise

Ifa=P(X<2)andb=P (X>3),then E(X)=

(A) a<b B) a>b (C) a=b (D) a+b
X
Ifpm.f.ofadrv. XisP(X=x)=———,forx=1,2,3, ..., nand =0, otherwise
n(n+1)

then £ (X )=

A n 1 n 1 c n 1 - n 1
—+— —+— —+— —+—

()12 (B)36 ()25 ()13

c
Ifp.m.f. ofad.r.v. X'is P (x) = e for x =1, 2, 3 and = 0, otherwise (elsewhere)

then £ (X)=
343 294 297 294
(A) 597 B) 551 ©) Sox (D) 597
If the a d.r.v. X has the following probability distribution :
X -2 -1 0 1 2
P (X =x) 0-1 k 0-2 2k 0-3 k
then P (X=-1)=
1 2 3 4
(A 7o B) 7o © 7 D) 75
If the a d.r.v. X has the following probability distribution :
X 1 2 3 4 5 6 7
P (X =x) k 2k 2k 3k k2 2k T+ k
then k=
1 1 1 1
(A) — B) < © 5 O 7o

. .



(10) Find expected value of and variance of X for the following p.m.f.

X i) 1 0 1 2
P(X) 0-3 0-4 0-2 0-15 0-25
(A) 0-85 (B) —0-85 (C) 0-15 (D) —0-15

(II) Solve the following :

(1)

(2)

3)

4)

)

(6)

Identify the random variable as either discrete or continuous in each of the following. Write

down the range of it.

(1) Aneconomist is interested the number of unemployed graduate in the town of population
1 lakh.

(i1)) Amount of syrup prescribed by physician.

(ii1) The person on the high protein diet is interested gain of weight in a week.

(iv) 20 white rats are available for an experiment. Twelve rats are male. Scientist randomly
selects 5 rats number of female rats selected on a specific day.

(v) A highway safety group is interested in studying the speed (km/hrs) of a car at a check

point.

The probability distribution of discrete r.v. X is as follows

X=x 1 2 3 4 5 6
P(X=x) k 2k 3k 4k Sk 6k
(i) Determine the value of . (i) FindP(X<4),P2<X<4),P(X=3).
The following probability distribution of r.v. X
X=x -3 -2 -1 0 1 2 3
PX=x)| 005 0-1 0-15 0-20 0-25 0-15 0.1
Find the probability that
(1) Xis positive. (i1) X is non negative. (iii) X is odd. (iv) Xis even.
CC)
The p.m.f. of ar.v. X is given by P (X =x) = 2; ,forx=0,1,2, 3,4, 5 and =0, otherwise.
Then show that P (X <2)=P (X >3).
In the p.m.f. of r.v. X
X 1 2 3 4 5
P (X) L i a 2a —
20 20 20

Find a and obtain c.d.f. of X.
A fair coin is tossed 4 times. Let X denotes the number of heads obtained write down the
probability distribution of X. Also find the formula for p.m.f. of X.

= &



(7)  Find the probability distribution of the number of successes in two tosses of a die, where a

success is defined as (i) number greater than 4 (ii) six appears on at least one die.

(8) Arandom variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P (X) 0 k 2k 2k 3k K 2k T+ k
Determine (i) & (il) P (X > 6) (i) P (0 <X <3)
(9)  The following is the c.d.f. of r.v. X
X -3 -2 -1 0 1 2 3 4
F(X) 0-1 0-3 0-5 0-65 0-75 0-85 0-9 1
Find p.m.f. of X. (1) P(-1<X<2) (i) P(X<3/X>0)
(10) Find the expected value, variance and standard deviation of r.v. X whose p.m.f. are given
below.
O [ x=x 1 2 3 (i) [T x=x 1 0 1
[y 1 2 2 . 1 2 2
E=0| 5 5 E=01 5 5
) Mxy=x T1[2]3 n| W[ x=x To[1[2]3]4]5
1 1 1 1 1 (5 ]10]10]| 5
PX=x)| — | — | — — PX=x)|—=|—=|=—=|=|=—=|=—=
n| n|n n 32 132132 (32|32 32

(11) Aplayer tosses two coins he wins X 10 if 2 heads appears , ¥ 5 if 1 head appears and X 2 if no

head appears. Find the expected winning amount and variance of winning amount.

10

(12) Letthe p.m.f. of r.v. Xbe P (x) = ,forx=-1,0, 1, 2 and = 0, otherwise

Calculate £(X) and Var (X).

(13) Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.
f(x)=k(4—x?, for-2 <x <2 and = 0 otherwise.
Compute (i) P(X>0) (ii)) P(-1<x<1) (i) P(X<0.50r X>0.5)

1
(14) The p.d.f. of r.v. X'is given by f(x) = 20 for 0 <x <2a and = 0, otherwise.

2
(15) The p.d.f. of r.v. of X'is given by f(x) = N for 0 <x <4 and = 0, otherwise.

a 3a
Show that P (X< —) =P (X> 7}

Determine & . Determine c.d.f. of X'and hence P (X<2)and P (X< 1).




8. BINOMIAL DISTRIBUTION aa

Let us Study )

e Bernoulli Trial
e Binomial distribution

e Mean and variance of Binomial Distribution.

)

|

e Many experiments are dichotomous in nature. For example, a tossed coin shows a ‘head’ or ‘tail’,

Let us Recall J

A result of student ‘pass’ or ‘fail’, a manufactured item can be ‘defective’ or ‘non-defective’, the
response to a question might be ‘yes’ or ‘no’, an egg has ‘hatched’ or ‘not hatched’, the decision is
‘yes’ or ‘no’ etc. In such cases, it is customary to call one of the outcomes a ‘success’ and the other
‘not success’ or ‘failure’. For example, in tossing a coin, if the occurrence of the head is considered

a success, then occurrence of tail is a failure.

E@; Let us Learn ]

8.1.1 Bernoulli Trial :

Each time we toss a coin or roll a die or perform any other experiment, we call it a trial. If a coin
is tossed, say, 4 times, the number of trials is 4, each having exactly two outcomes, namely, success or
failure. The outcome of any trial is independent of the outcome of any other trial. In each of such trials,
the probability of success or failure remains constant. Such independent trials which have only two

outcomes usually referred to as ‘success’ or ‘failure’ are called Bernoulli trials.

Definition:

Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions :
(1) Each trial has exactly two outcomes : success or failure.

(i) The probability of success remains the same in each trial.

Throwing a die 50 times is a case of 50 Bernoulli trials, in which each trial results in success (say
an even number) or failure (an odd number) and the probability of success ( p) is same for all 50

throws. Obviously, the successive throws of the die are independent trials. If the die is fair and has

six numbers 1 to 6 written on six faces, then

1
pZEanquI—p Sog=—
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For example :

Consider a die to be thrown 20 times. if the result is an even number, consider it a success, else it is
. 1 . )
a failure. Then p = B} as there are 3 even numbers in the possible outcomes.

If in the same experiment, we consider the result a success if it is a multiple of 3, then p = — as there

are 2 multiples of 3 among the six possible outcomes. Both above trials are Bernoulli trials.

@) SOLVED EXAMPLE |

Ex.1: Six balls are drawn successively from an urn containing 7 red and 9 black balls. Tell whether

or not the trials of drawing balls are Bernoulli trials when after each draw the ball drawn is
(1) replaced (i1) not replaced in the urn.
Solution :

(1) The number of trials is finite. When the drawing is done with replacement, the probability of

. 7 S o :
success (say, red ball) is p = T which is same for all six trials (draws). Hence, the drawing of

balls with replacements are Bernoulli trials.

(11) When the drawing is done without replacement, the probability of success (i.e. red ball) in first

trial is 17_6 in second trial is % if first ball drawn is red and is % if first ball drawn is black

and so on. Clearly probability of success is not same for all trials, hence the trials are not

Bernoulli trials.

8.2 Binomial distribution:

Consider the experiment of tossing a coin in which each trial results in success (say, heads) or
failure (tails). Let S and F denote respectively success and failure in each trial. Suppose we are interested
in finding the ways in which we have one success in six trials. Clearly, six different cases are there as

listed below:

SFFFFF, FSFFFF, FFSFFF, FFFSFF, FFFFSF, FFFFFS.

Similarly, two successes and four failures can have = 15 combinations.

41x2!
But as n grows large, the calculation can be lengthy. To avoid this the number for certain probabilities
can be obtained with Bernoullis formula.For this purpose, let us take the experiment made up of three
Bernoulli trials with probabilities p and ¢ = 1 — p for success and failure respectively in each trial. The

sample space of the experiment is the set

S = {SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF}

. .




The number of successes is a random variable X and can take values 0, 1, 2, or 3.The probability

distribution of the number of successes is as below :
P(X=0) =P (no success)
=P ({FFF}) = P(F)-P(F )-P(F) , since trials are independent.
g g qg=q
P(X=1) =P (one success)
= P ({SFF, FSF, FFS})
= P ({SFF}) + P ({FSF}) + P ({FFS})
=P (S) P(F)P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)
=pq4qtqpqtqqp=3pg
P(X=2) =P (two success)
= P ({SSF, SFS, FSs})
=P ({SSF}) + P ({SFS}) + P ({FSs})
= P(S)-P(S)-P(F) + P(S) P(F) P(S) + P(F) -P(S)-P(S)

=ppqtpqptqpp=3pq

and P(X=3) =P (three successes)
=P ({sss})
= P(S)-P(S)-P(S)
=p}
Thus, the probability distribution of X is
X 0 1 2 3
P(X) 7 3¢°p | 3qp* | P’

Also, the binominal expansion of
(qg+pyisq’ +3¢p+3qp*+p°
Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1%, 2", 3" and 4™ term in the
expansion of (¢ + p)’.
Also, since g + p = 1, it follows that the sum of these probabilities, as expected, is 1.Thus, we may

conclude that in an experiment of n-Bernoulli trials, the probabilities of 0, 1, 2...., n successes can be

= &




obtained as 1, 2™, 3 . (n+ 1)" terms in the expansion of (¢ + p)" . To prove this assertion (result),

let us find the probability of x successes in an experiment of n-Bernoulli trials.

Clearly, in case of x successes (5), there will be (7 — x) failures (/). Now x successes (S ) and (7 — x)

!
failures (F) can be obtained in o ways.
x!(n—x)!

In each of these ways the probability of x successes and (n — x) failures
= P (x successes)- P ((n — x) failures)
= (P (S)-P(S)...P(S)xtimes)-(P (F)-P(F))- ... (P(F)-(n-x) times)
= (p-p~p. ..pX times) (q-q~q. ..q(n—x) times)
= prg
Thus probability of getting x successes in n-Bernoulli trial is

. n!
P (x successes out of 7 trials) = —————— x p* x ¢" *= "C_p*x ¢"*
x!(n—x)!

Clearly, P (x successes), i.e. "C_p* ¢" *is the (x + 1) term in the binomial expansion of (¢ + p)" .

Thus, the probability distribution of number of successes in an experiment consisting of n-Bernoulli
trials may be obtained by the binomial expansion of (¢ + p)* . Hence, this distribution of number of

successes X can be written as

X 0 1 2 X n

P(X) "'C,p’xq | "Cp'xqgt|"CopPx gt o |"Coprxgtt| .. | "Copixq°

The above probability distribution is known as binomial distribution with parameters n and p,
because for given values of n and p, we can find the complete probability distribution. It is represented

X~B (n, p) as read as X follows binomial distribution with parameters n, p
The probability of x successes P (X = x) is also denoted by P (x) and is given by
Px)="C q" *xpx=0,1,...,n, (g=1-p)

This P (x) is called the probability function of the binomial distribution.

A binomial distribution with n-Bernoulli trials and probability of success in each trial as p, is
denoted by B (n, p) or X~B (n, p).

Lets Note : (i) The number of trials should be fixed.

(i) The trials should be independent.

. .




@ SOLVED EXAMPLES ]

Ex. 1: Ifa fair coin is tossed 10 times, find the probability of getting

(1) exactly six heads (i1) at least six heads

(ii1) at most six heads

Solution : The repeated tosses of a coin are Bernoulli trials. Let X denote the number of heads in an

experiment of 10 trials.

1 1
Clearly, X ~ B (n, p) withn=10 and p = E’QZI_pZI_E

2
P(X=X) =ncxpx><qn7x
elz)+ 5]
2 2
(1) Exactly six successes means x = 6
1Y6 [1y!0¢ ! 1Y (1) 1
P(X=6) =10c6(_j x(—j :Lx(—j x(—) :Mx(_
2 2 6!(10-6)! (2 2 4x3x2x1 2
_ 105
512
(11) At least six successes means x > 6
P(X>6) =[P(X=6)+P(X=7)+P(X=8)+P(X=9)+P (X=10)]
1 6 1 4 1 7 1 3 1 8 1 2 1 9 1 1 1 10
el (e () s e
2 2 2 2 2 2 2 2 2
10x9x8x7 (1)10 10 x9 x 8 (1)‘0 10x9 (lj”’ (1)10 (1)‘0
=_ = @ @ @  oox|—| +—— " x|—| + x| —1| +10| —| +| —
4x3x2x1 2 3x2x1 2 2x1 2 2 2
=(210+120+45+10+1) x
1024
386 193
1024 512
(1i1) At most six successes means x < 6

P(X<6) =1-(P(X>6)
=1-[P(X=7)+P(X=8)+P(X=9)+P(X=10)]

o ()G el el E) e GG

10x 9 x 8 (1}10 10x9 (1)10 [1j1°(1)10
=] | ——x|—| + x| —| +10| =] x| —
| 3x2x1 2 2x1 2 2 2
[ 1 176 88 512—88 424 53
=1-[(120+45+10+ 1) x =1- =l-———= = =__
I 1024 1024 512 512 512 64
/)
o OG0 S
N

1

2

!
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Ex.2: Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs.
Find the probability that there is at least one defective egg.

Solution : Let X denote the number of defective eggs in the 10 eggs drawn.

Since the drawing is done with replacement, the trials are Bernoulli trials.

1
Probability of success = —

1 PR B
10 1 P 0 9770
n=10
1
X~B (10,-)
10
1 X 9 10—x
P(X=x) =bC (_j x(—j
(10) “ 70

Here X>1

1 0 9 10
PX>1) =1-""C | —| x|—
oz =16 () <[5
9 10
=1—1><1><(—j
10
9 10
()
10

8.3 Mean and Variance of Binomial Distribution ( Formulae without proof) :

Let X~ B (n, p) then mean or expected value of r.v. X'is denoted by p or £ (X') and given by

p=EX)=np.

The variance is denoted by Var (X') and given by Var (X') = npgq.

Standard deviation of X is denoted by SD (X') or ¢ and given by SD (X') =c_=~Var (X)
For example : If X~B (10, 0-4) then find £ (X) and Var (X).
Solution : Here n =10, p=0-4, g=1-p

q=1-04=06

EX) =np
=10x0-4=4

Var (X)) = npq
=10x04x06
=24

. .




@ SOLVED EXAMPLES )

Ex.1: Letthe p.m.f. of r.v. X be

5 x 4 4-x
P (X=x) =4Cx(§) x[gj ,forx=0,1,2,3,4.

then find £ (X) and Var (X).

5 4
Solution : P (X = x) is binomial distribution withn =4, p = o and g = o
EX) =np
[ 5 j 20
—4x|_|="2_
9 9
Var (X)) = npq

Ex.2: IfE(X)=6and Var (X)=4-2, find n and p.
Solution : E(X') = 6 therefore np = 6 and Var (X' ) = 4-2 therefore npg =42

4-2
@:— q:0'7
np 6
op=l—qg=1-0"7 S p=03
np==6
6
Sonx03=6 Soon=——=20
0-3
( \
LEXERCISE 8.1 ]

(1) Adie is thrown 6 times. If ‘getting an odd number’ is a success, find the probability of

(1) 5 successes (i1) at least 5 successes (ii1) at most 5 successes.

(2) A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of

two successes.

(3) There are 5% defective items in a large bulk of items. What is the probability that a sample of 10

items will include not more than one defective item?

(4) Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. find the

probability that

(1) all the five cards are spades  (ii) only 3 cards are spades (ii1) none is a spade.

(5) The probability that a bulb produced by a factory will fuse after 150 days of use is 0-05. Find the

probability that out of 5 such bulbs
(i) none (i1) not more than one (ii1) more than one

will fuse after 150 days of use.

(iv) at least one

/,
. OGanC)
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(6)

(7

(8)

)

(10)
(11)

(12)

A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn
successively with replacement from the bag, what is the probability that none is marked with the
digit 0?7

On a multiple choice examination with three possible answers for each of the five questions, what

is the probability that a candidate would get four or more correct answers just by guessing?

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100.
find the probability that he will win a prize

(1) at least once (i1) exactly once (ii1) at least twice

In a box of floppy discs it is known that 95% will work. A sample of three of the discs is selected at
random. Find the probability that
(1) none (1)1 (ii1) 2 (iv) all 3 of the sample will work.

Find the probability of throwing at most 2 sixes in 6 throws of a single die.

It is known that 10% of certain articles manufactured are defective. What is the probability that in

a random sample of 12 such articles, 9 are defective?

Given that X~ B (n, p)

(1)) [fn=10and p=0-4, find E (X) and Var (X) (ii) If p =0-6 and E(X) = 6, find n and Var (X).
(iii) If n =25, E(X') = 10 find p and SD(X). (iv) If n =10, E(X) =8, find Var (X).

/-IW Let us Remember N

%

Trials of a random experiment are called Bernoulli trials, if they satisfy the following

conditions :
(1) Each trial has exactly two outcomes : success or failure.
(i) The probability of success remains the same in each trial.

Thus probability of getting x successes in n-Bernoulli trial is
!

P (x successes out of 7 trials) = o xp'xq"="C p*xq"*

x!(n—x)!
Clearly, P (x successes), i.e. "C_p* g" * is the (x + 1)" term in the binomial expansion of
(g+p).
Let X~ B (n, p) then mean of expected value of r.v. X is denoted by p.
E (X)and given by p=E (X) = np.

The variance is denoted by Var (X)) and given by Var (X)) = npq.

Standard deviation of X is denoted by SD (X) or ¢ and given by SD (X') = o _=Var (X)

. CEO ‘
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:MISCELLANEOUS EXERCISE SA

(I) Choose the correct option from the given alternatives :

(1

(2)

3)

4

(5

(6)

(7)

A die is thrown 100 times. If getting an even number is considered a sucess, then the standard

deviation of the number of successes is
(A) V50 (B) 5 (C) 25 (D) 10

The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the

probablity of 2 successes is

128 219 37 28
(A) 56 B) —5¢ ©) S5¢ D) 556
For a binomial distribution, n =5. If P(X=4)=P (X=3) thenp=...
)~ ®) > © 1 ©) =
3 4 3
In a binomial distribution, n =4. If2 P(X=3)=3 P (X=2)thenp=...
(A — B) © — D) >
13 13 13 13
IfX~B4,p)and P (X = O)=£, then P (X=4) =...
A — B) — © — D) ~
16 81 27 8

3
The probability of a shooter hitting a target is T

How many minimum number of times must he fire so that the probability of hitting the target

at least once is more than 0-99 ?
(A) 2 B) 3 (C) 4 (D) 5
If the mean and variance of a binomial distribution are 18 and 12 respectively, then n = ...

(A) 36 (B) 54 () 18 (D) 27

(II) Solve the following :

(D)
(2)

3)

Let X~ B (10, 0-2), Find (i) P (X=1) ) PX=1) (1i1) P (X <8).
Let X~ B (n, p) (1) Ifn=10,FE (X)=>5, find p and Var (X).

(1) IfE(X)=5and Var (X)=2-5, find n and p.
If fair coin is tossed 10 times find the probability that it shows heads

(1) 5 times. (i1) in the first four tosses and tail in last six tosses.

/
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4

6))

(6)

(7)

8)

©)

(10)

(11

(12)

(13)

Probability that bomb will hit target is 0-8. Find the probability that out of 10 bombs dropped

exactly 2 will miss the target.

The probability that a mountain-bike rider travelling along a certain track will have a tyre

burst is 0-05. Find the probability that among 17 riders : (i) exactly one has a burst tyre
(i1) at most three have a burst tyre (ii1) two or more have burst tyres.

Probability that a lamp in a classroom will burnt out will be 0-3. Six lamps are fitted in the
classroom. If it is known that the classroom is unusable if the number of lamps burning in it

is less than four, find the probability that classroom can not used at random occasion.

Lot of 100 items contains 10 defective items. Five items are selected at random from the
lot and sent to the retail store. What is the probability that the store will receive at most one

defective item?

A large chain retailer purchases certain kind of electric device from manufacturer. The
manufacturer indicates that the defective rate of the device is 3% . The inspector of the retailer
picks 20 items from a shipment. What is the probability that the store will receive at most one

defective item?

The probability that the certain kind of component will survive a check test is 0-6. Find the

probability that exactly 2 of the next 4 components tested survive.

An examination consists of 10 multiple-choice questions, in each of which a candidate has
to deduce which one of five suggested answers is correct. A completely unprepared student
guesses each answer completely randomly. What is the probability that this student gets 8 or

more questions correct? Draw the appropriate moral !

The probability that a machine will produce all bolts in a production run within specification

1s 0-998. A sample of 8 machines is taken at random. Calculate the probability that
(1) all 8 machines (i) 7 or 8 machines
(ii1) at least 6 machines will produce all bolts within specification

The probability that a machine develops a fault within the first 3 years of use is 0-003. If 40
machines are selected at random, calculate the probability that 38 or more will not develop

any faults within the first 3 years of use.

A computer installation has 10 terminals. Independently, the probability that any one terminal

will require attention during a week is 0-1. Find the probabilities that
(1) 0 (ii) 1 (iii) 2

(iv) 3 or more, terminals will require attention during the next week.

= =



(14)

(15)

(16)

(17)

In a large school, 80% of the pupils like mathematics. A visitor to the school asks each of

4 pupils, chosen at random, whether they like mathematics.
(1) Calculate the probabilities of obtaining an answer yes from 0, 1, 2, 3, 4 of the pupils
(i1) Find the probability that the visitor obtains the answer yes from at least 2 pupils:
(a) when the number of pupils questioned remains at 4
(b) when the number of pupils questioned is increased to 8.
It is observed that, it rains on 12 days out of 30 days. Find the probability that
(1) it rains exactly 3 days of week. (i1) it will rain on at least 2 days of given week.

If probability of success in a single trial is 0-01. How many trials are required in order to have

probability greater than 0-5 of getting at least one success?

In binomial distribution with five Bernoulli's trials, probability of one and two success are
0-4096 and 0-2048 respectively. Find probability of success.

7 7 7
0’0 0’0 0’0




ANSWERS

1. DIFFERENTIATION

(1)

(2)

[ EXERCISE 1.1 }

(i) 5062-2)(F-2x-1)

5 34 2
Z(3Vx-4Yx) (2x2 = 3x3 - 5)°
2

(i1)
x+2
(i) ————
Nx?+4x—17
(i) x(2Nx2+1+1)
iv
2N+ 1 - N2 +Vxr+ 1
4x —7
(V) - g
(22— Tx—5)3
 153x—4) ( T
(vi) ————— [ V3x—5—
2(3x—5)% V3x =5
3e0x+2)
D o sin (2 + @) (i
(i) x sin (x% + @?) (ii) —2 s
i) ) sec> Vx.
iii) cosec x v) ————
4x Vtan Vx
@) — 9 cosec?[log (x*)] - cot?[log (x*)]
\

X

(vi) 3sin?x-cosx -5 3. ]og 5

__ sinxcosec Vcos x - cot(\ cos x)
(vii) T
(viii) — 3x2 tan (x*— 5)
(ix) 5 sin 2x - g3sin’x~2eos’x

—2x - sin[ 2 log (x*+ 7)]
(X) x2+ 7

(xi) —sec? [cos (sin x)]sin (sin x)-cos x
(xii) 4x*sec? (x*+4)-sec[tan (x*+4)] -

tan [tan (x*+ 4)]

‘

3)

2logx 2

Cx
cos Vsin Vx - cos Vx
4Vx - VsinVx

(xv) 2x-e*’ [tan (exz)]

(xiii)

(xiv)

(xvi) 2x logx

(xvi) 2 [ log [log(log x)]]
x log x - log(log x)

(xviii) 4x sin (2x?)

() 6(x+2)(2+4x+1)+4(3x-5)
(x* = 5x—2)

i) 8(1-2x)(1+4x)°(3+x—x)
+20 (1 + 4x)4 (3 +x—xz)8
6x* (x> +15) (x* — 5)4
(o +3)°

14 — 3x
(ili) —— (iv)
2(7-3x)7

(v) sin 2x (1 +sin?x) (1 +cos?x)* (1 — 5 sin’x)

i) sin x sin Vx
vi) — -
2Vcos x 4\x Vcos Vx
T cos x°
(vil) 3 sec 3x (viii)

90 (1 — sin x°)?

log x
2
cosec (—2

L ‘ 5
(ix) o + tan x - cosec* x
8 e4x . e\/?

X Xl) ——F— — 5
() (e*+ 1) () Vx (e - 1)’

6 N 14x
(xi1) 6 cosec 2x+4 cotx + 27

: S 5x
(xiii) 3 cosec 3x (xiv) — —cosec B}

L




4)
)
(8)

(1)

2)

3)

4)
)

(xv) —secx

3 10w 4 3x Ox?
+ —
(xvi) 2log 4+ s~ -4

6 2
_l’_
5—4x 7T7-—6x
6x 1

S siny 1 B B
(xviii) — sin x log a 73

(xvil) 2x —

x log x

x(x? +2)* (7x* + 38)

(xix) 0 (xx) 3
(x*+5)2
(1) —-16 (i) 35 (i) 20  (iv) 28

12 2n

-5 6) — (7) x=0o0r—-or2n
5 3

e+ 6e + 14, e, 2x, e, f ' [g(0)] g (),

2¢ +6¢%, 8, &' [ f ()] f' (x), 2xe* "5, — 2¢°.

[ EXERCISE12 |

: 1 N 1
Vooaw Yanhew
1 . 2
(111) e forx>2  (iv) 1
v)y 2 (vi) e
(vii) 2e*3 (viii) v log2
: 1 3
@ x-e(x+2) (i1) COS X — x Sin x
cee . x
() g7+ ™ 2047
) 1 +logx
: 1 I
(1) 12 (i1) 7 (iii) o (iv) 3
1

(1) and (i1) derivative proved.

/,
. OGO
AN

- 1 3 e
(6) (1) T+ (og )] (i1) N
. 2 . _ 4x 10g 4
(iii) o (iv) 1+42x
1 . X
© SGae W e
L2 L. 3x
(vii) Noyp (viii) —
(ix) 9x* x) 2x
(7) (1) 2xe” (i) —5log5 (iii) %
(iv) —x () —% (vi) =6
1 L3 T
(vil) — 3 (viii) — > (ix) — 5
1 L] L2
x) - 5 (xi) — 5 (Xll)?
i - o 1
®) @ 1 (i) 1 (iii) .
(iv) 3 v) e (vi) 2*log 2
- 2 L2
9) (@) T (11) o
2 ) 2
(i) — g (iv) —
O (vi) -2
1 —x? 1 +e*
... 2:3*log3
(vi1 ] + 32
(viii) 24logd (470 logh
+ 42x 1 + 42x
. B 10 3 N
(ix) [T 252 (x) o
X S B
(xi) T (xit) PR
) 3
(100 1+ 9x? +1+25x2




(1)

)

7 5 3a

. 3 . N ..
(1) 1+49x* 1+25x2 V) a?+9x* @’ +4x? (vi 1
iy (31 (viii) _
(iii) 2\ 1T+9x 1+x 1+@2x+1)7 1+QGx—4)
(iv)2*log 2 5 + : (ix) 2t 1 2
g 1+9(2%) 1+2% I1+2x+3) 1+(x—-1)
) 2log2|— 2 !
VSR Ty 1
([ EXERCISE 13 |
0 (x+1) 2 3 4
; _ _
x+3)P@+3)* | x+1 x+2 x+3
. 1 4x — 1 4 2 4
(i) — - +
332 +3)G-2xP \dx—1 2x+3 5-2x
3 3x
(iii) (x*+ 3)2-sin’ 2x-2"2[ T + 6 cot 2x + 2x log 2}
x
(x2+2x+2)% 3(x+1) 3
(iv) — 5 - + x tan x — log (cos x)
(\x+3) (cosxy | X T2x+ 2 24x (\/x+3)
xtan® 4x | 5 o | tanx o logx
(V) sint3r | x + 24 cosec 8x — 6 cot 3x (vi) x . + e
(vii) sin*x  [x cotx + log (sin x)] (viii) cos (x¥) - x*(1 + log x)

(1) ex¢'+es+x*(1+logx)  (ii) x"“x"-logx{l +logx + } + e - x*(1 + log x)

xlog x

(i11) (logx)* [

+ log (log x)}+ (cos x)°*[1 + cosec? x log (cos x)]
log x

: . 1 | sinx
(iv) x¢-e* [— + log x} + (log x)sin~ [ + cos x log (log x)}
X xlog x

tan x
(v) sec’x- e + (log x)‘a“{ 1 + sec? x log (log x)}
X

(vi) (sinx)®~[1 + sec? x log (sin x)] + (cos x)**[1 + cosec? x log (cos x)]

1
(vii) 10~ x*log 10 (1 + log x) + x*"x?(1 + 10 log x) + x'°*-10* [; +log x-log 10)
(viii) 2

. .




3)

(1)

)

4)

0 - F (i) - /Z
X y

N AR Ty
) e’ +ye*
© =< vi) = e+ xe’

osin(x—y)te ™ 1 +y sin (xy)

sin (x —y) —e*"” (viih) = 1 + x sin (xy)
oy (I —xer)
(%) x(1—ye*?)

sin(x —y)—cos(x+y)—1

()

sin(x —y)+cos(x+y)—1

[ EXERCISE 1.4 ]

1 .. b L 2
(1) " (11) " cos B (i) \/ﬁ
. 3 b 0
(iv) sec’0 (v) " tan (Ej
iy 2 DIoga - Ly L
axt 2 3
L33 LT
(1) T (i) —+3 (1i1) 3
(iv) 1-42 (v) 3+nx
_ xcosxtsinx .
Q) ——m (i) 1
sec’ x
(i) — % iv) 2 (v) —x(logx)*3*
(vi) - x\Nx*—1
2

. (1 + lOgX)' xx+lfsinx
11

sinx + x cos x'log x

1—x2

4(1+ x?)

(viii)

W@ 3 2

)

(2)

(4)

[ EXERCISE 15 |

12
(i) 40x’ —24x——
X
(i) 2e* (1 +tanx)-(2 + tan x + tan® x)
(i) —e* (9 cos 5x + 40 sin 5x )
) | 1 +logx
+ N —
(iv) x(S+6logx) (v) (x log )’
(iv) x*'+x*(1 +logx)?
. 1 4(9) ) 1
(1) 10 cosec 5 (i1) AP
2V2b
(i) 6 (iv) ——
a
d" 1 a" + m—n
() SXomla@tdn e 0.mn,
dx” (m—n)!
=0ifm>0,m<n
dx”"
dn
y:n!a”ifm>0,m=n
dx"
-1)"n!
iy D " (iif) a”e "
x"t
(iv) p"a™*i(log a)"
— 1 n—1 — 1 | n nm
w EDT o Dla oo (— +x)
(ax +b)" 2

nm
(vil) a”sin (T +ax + bj

(viii) (—2)"cos (? +3- 2xj

-1 (n—1)12"

. (2x + 3)"

(X) (3X — 5)n +1

(xi) e®(a*+h*)2-cos {bx +c+ntan’ (ﬁﬂ
a

3
(xii) e®:(10)" cos {6x + 7+ ntan™! (ZH

4




§ MISCELLANEOUS EXERCISE 1 j

@
1 2 3 4 5 6 7 8 9 10 11 12
D C B A D C C A B
an (1 2 (i1) Does not exist  (iii) —2 (iv) — [Hint : x = cos 20]
4 241 = 2
(2) (A) 3,(B) 5,(C)4,(D) L. 3 5
v) +
1+9x* 1+25x7
G 0 v ) (i)
9 3 96 (vi) [Hint : x = tan 0]
4 2 (1 +x2)
(iv) ==
9 T
. ; © 0 Firs
4 1) — Hint : x = 2
4) (@) N [Hint : x = cos 20] N
. (i) — — (iii) 1
(i)~ [Hint = cos 26] NI+ sin (log x)
(iii) 3 [Hint : \x =tan 0]
2k (l+x)
[ 2. APPLICATIONS OF DERIVATIVES ]
2 14
| EXERCISE 2.1 | 3) 2,-2) [— = 7} 4)y=0and y=4
(1) () 2x—y+4=0,x+2y—8=0 (5) x+3y—8=0,x+3y+8=0
(i) 4x—5y+12=0,5x+4y—26=0, 31
6) a=2,b=—17 (7)(4,11)and (—4,——)
(i) y=2,x=V3 3
(8) 0.8mem?sec. (9) 6 cm’/ sec.
(iv) mx+2y—2n=0, 36
Ax -2y +m—4=0 (10) cm?/ sec. (11) 8 cm?¥ sec
v) 2x—y=0,4x+8y—-51=0 (12)7.2 cm?®/ sec (13) 3 km/hr
) 4vx+2y-3=0,2x—4dy+1=
(Vi) et 2y=3=0 20— dy 0 (14) (1) (EJ meter/sec. (i) J meter/sec.
(vii) 17x =4y —20=0, 8x + 34y — 135=0 8 8
4
(2) &1 (15) 0.9 meter/sec.  (16) (Tn) cm’/ sec

. .



| EXERCISE 2.2 | [ EXERCISE 2.4 |
(1) (i) 2.9168 (i) 3.03704  (iii) 1.9997

(1) (1) Increasing V x € R

(iv) 248.32 (v) 64.48 (i1) DecreasingV x € R
(2) (1) 0.953  (ii) 0.42423 (iii) 0.4924 (ii1) Increasing V x € R
(iv) 1.02334 (2) (i) x<-landx>2 (i) R — {1}

iii)x <—2and x > 6
(3) (i) 0.7845 (i) 0.7859 (iii) 0.7859 (iif) x and x

(4) () 270471 (i) 81279 (iii) 000887 ) ) ITES2 (ii) (-5, 5) — {0}

(5) (i) 46152 (i) 2.1983  (iii) 3.006049 (iii) x € (2, 4)
4 —o0, —4] U [12, o0

6) () 691 (i) 9.72 (4) (@) (zo0, ~4] W [12, 0)

(b)—4<x<12ie.[4,12]

| EXERCISE 2.3 | (5) (@)x<-3andx>8 (b)-3<x<8

(1) () Valid (i)  Valid (6) (a) -1<x<1 (b) (~o0, 1) U (1, 00)

(iii) Invalid (iv) Valid ©) @ Max= 36 16

. . . 25’ 27

(v) Invalid (vi) Invalid (i) Max =—3, Min = 128
(2) 6=1 (iii) Max =20, Min=16 (iv) Min =8

L 3 S 1 1
(3) (@ i (i) c=m (i) c= > (v) Min = — — (vi) Max = -
(4) p==6,g=11 (6) c=-2 (10)15,15  (11)10,10 (12)9  (13)12.8

. ; 2 o]
(7) (1) e—1 (i1) Zi\/—? (111)7 (14)]2\/§andb=%

1
(iv) 5 (v) 3+~2 (15) Radius = Height = (16) 3,3

(17) Side of square base = 8 cm, Height =4 cm
(18)x=175, P=4000 (19)6,9

’,.3

343

(22) cm?

( MISCELLANEOUS EXERCISE 2 j

)




an 2) 4

(11) Increasingin[e, ), Decreasingin (1, e]
(3)14x—13y+12=0,13x+ 14y —41=0

15) I 60 , 30 30
2 16 16 = , b= , =
(4) — ft/sec (5)(—,3),(——,—3] nt4 L A
O 3 3 I
(6)e=0 (7) ¢=2  (8)2.025 (17) Side=n+4,Radius=2(n+4)=%
(9) 1.03565
5
o (18) 24, 45 (21) Max=—, Min= 1
(10) Decreasing in O,; and 4
1
Increasing in {;, oo)
[ 3. INDEFINITE INTEGRATION ]
3
. 2((x+5)2
([ EXERCISE3.1 | (lv)(xf)—lwxﬁw
x4 x3 2 x3 1 3 13
Lo XX X 3
(1) @ 1 + 373 +x4+c (i) 3 2x*+4x+c ™) E(4x_1)2 _Terc
2
(iii)3tanx—4logx—\/—;—7x+c (vi) — cos 2x + ¢
. 2_ 5x? _ 1 2 Sx Sx
(iv) 1 +3logx R (Vll)g(Sln7—COS7J+C
6 10
A+ 1
V) gVl mre (viid) 5 (25 + 5in 20) + ¢
(2) (1) tanx—x+c (i) —2cosx+c \ X
(iii) secx + ¢ (iv) —cotx—2x+c (1x) —;{xT + (x + 3)7}+c

3)

(v) —cotx—tanx+x+c

2 3 3
i - -2)2 + —5)2 |+
(vi) secx —tanx +x + ¢ (x) 1 {(7)6 ) (7x —5) } c

(vil)secx —tanx +x + ¢ x* 3 7
L . @) fO)=7F 5+
(viii) sinx —cosx+c¢  (ix) —V2cosx+c 2 ¥ 2
1 1
()~ cos Tx— - cosx+ ¢ (EXERCISE 3.2 (A))
() x=2log(x+2)+ec L 1 —(logx)”” +c 2. E(sin’lx)%‘i'c
n+1 5

3 1
(i) 2x +E log @x+1)+c 3. log (cosec (x+logx)— cot (x+10gx)) +c

5 26 —1 1
(iii)—x——log(3x—4)+c 4, —t 5. _ 3x+1 +
3 9 Vtan (x?) ¢ 3 (e Jte

. .




13.

15.
16.

18.

19.

1
. —tanx'"+¢
10

1
log a

. ax+tan"x +c

1 2
5 [log (sin e")] +c

log(e*—e™)+c
1 1

—sin’x ——sin’x + ¢
5 7

1
g log (4x2+5)+c

1
12. 7 log (x*+ 1) +¢

2+tanx + ¢

log (3 cos’x + 4 sin’x) + ¢

14. tan'x + +c

x>+ 1

2 tan'x + ¢

V1 +4x"
2n

17.log (10" +x'°) + ¢

+c

4 3 3
g(x+2)2 —2(x+2)2+¢

7 2 5 4 3

1 L 2 2
20.7(a2+x2) 2 —?(a2+x2) 2 +T(a2+x2) 2+¢

21.

22.

23.

24.

I1.

2 El
—2\/2—3x—5(2—3x)2 +c

> (2 +3)% 11(2 +3)% » .
—(2x ——(2x -———+tc
12 2 42x+3
1 (x? 1 =1
—sin’!'| — |+¢ 25.—log +c
3 3 3 X3

log (log (log x)) + ¢

1.

2.
3.

2-log [sec i) +c
2
cosa-log (sin(x —a)) — (sina) x + ¢
cos (a + b)-log (sec(x + b)) —
(sin(a+b))x+c
log (tanx +2) + ¢

11 2
—x+—log(3sinx+4cosx)+c
75 25

‘

10.

11.

12.

13.

1

~

2 2 og (2 cosx+3 sinx) +
TRINE og (2 cos x sinx) + ¢
5x—3log|2e*—5|+c
—5x—log|3e*—4|+c

7
—x+§log|4ez"—5|+c

cos®x cos®x cos*x cos’x
+ + +
8 6 4 2
1
> log (cos>x— 1)+ ¢
tan*x  tan’x
2 3 + log (sec x) + ¢

3 1
sinx—sin3x+?sin5x—7sin7x+c

1 { (sec 3x)? }
— log +c
6 (sec 2x)* (sec x)°

1

1
. —cos''x——cos’x+—cosPx+c
6 9 13

. 30052x + c

- log 3

20

1 {sin54x}
o ——log|—/——|+¢

sin? 10x

1
5 log [(1 + cos*) — cos’x] + ¢

EXERCISE 3.2 (B)

. ——tan’!

V14

1 | 8
: ﬁlog (er x2+§]+c

: 4\1/§ log(zx_@j+c

5+ 3x
. —log +c
30

1 (\/Exj
+c

2x +/3

5—3x

N7




I1.

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

1.

lsinl(zijrc 110 3tan(5)—1 .
2 V1T 3 08 3tan (5 )+ 1
/ tan 5 — 1
(4_ x__j+c 3. \/ftanl( \/27 j-l-c
X x
9 sin™! 3) VO—xX+¢ 4. an1[2tan(3j+1]+c
1
x R
2 sin’! 3)—\/?)62 +c S \/?tanl(\/gtanx)Jrc
X 1 . 1 ; 3tanx — 2 .
2 sin™! Ej—z(\/IOO—xz)Jrc STz en NG ¢
1 x+2 . 1 V1l —2+tanx .
?log 16 +c '2\/_ VII+2—tanx ) ©
_ 1 T T
Llog M +e 8. ——=log sec(x+—j+tan(x+—j +c
5 8\ V51 -2x V2 4 4
1 T T
1 o 2x=5-232 9.?log[sec(x+zJ+tan(x+z}]+c
gv2 Bl 2x—5+2v2
L e 3x+2+419 (EXERCISE 3.2 (C))
2419 3x+2—-+19
L1 log(+6x+5) Sl(x“j
1 s .5 7 - Lo~ log (x* + 6x +5) — —~log tc
— t—+ R+ —x+— |+ 2 4 x+35
\Blog(x G Xrgx 3j c
, 1 x—1
log (x+4+V—8x—20)+c 2-log (- dx=3) = —rlog | g e
: 1 ( > + X2 > +4j+ ! 3
—=log | x—— XT— =X c — 2 - :
2 g 4 3 3.210g(2x + 3x 1)+2\/1_7
1 4x+3-+17
log(x——+\/x2—x—6j+c — - |4
2 log x+3+417 ) €
1 (Ztanxj 3 5
——tan! tc iy W) G
N7 NED 4. 5 2x+2x-|rl-|r2\/7
1
— tan- 1 1
\/Etanl(ﬁtanx)ﬂ log(X+?+,/x2+x+?J+c
1 V3 + tan x
—\/_log \/?T—i_ x—1
2V3 an x 5. =73+ 2x—x* +10-sin’! +c
2 . 1(2tan%+2j+
—tan'| —=— |+¢
V5 7s
o S



6. Vx2—16x+63 +

~

>

Ox — x>+ —sin”!

log {(x— 8) + Vx*~ Tex + 63} +

S Vox—x 2 (2x_9j+c

9

Ne)

11.

12.

13.

14.

4\/jlog
Ner—1-log(er+Vex—1)+c

4

22 sinx++2-2
_l’_
N2sinx+v2+2) €

[ EXERCISE 3.3 ]

x3
—(3-logx—1)+c
9( gx—1)

x2 2 2
——cos3x+—xsmn3x+—cos3x+c
3 9 27

x? 1
—tan’lx——(x—tan’lx)Jrc
2 2
- (1+x2)+
—tan'x——+—1o

3 X PR g X c

1
" (tan”' x) (x*— 1) - 1x_2 (¥—3x)+c

x[(logx)*—2 (logx)+2]+c¢
1
by log (sec x+ tan x) +? secx-tanx+c

— | x*—x'sin 2x —— cos 2x |+ ¢
4 2

x* x*
—logx——+c¢
4 16

er

E[Zcos3x+3sin3x]+c

x? 1 1
—sin'x+—xV]l—x*——sin'x+c¢
2 4 4

X3 1 1 3

—cos lx——V1-x+—(1-x?)2 +¢
3 3 9

(log x) [log (logx) — 1] +¢

—(sin't)V1 -~ +t+ec

15. 2 [\/;-sin\/;wLCOS\/;]Jrc
16. (cos0)-[1— log(cosB)]+c

1| x 1
17. —|—sin3x+— cos 3x+ 3xsinx
413 9

+3cosx|tc
18. —?cos (logx)*+ ¢

1
19. ) (log x)* + ¢

X 1 1 )
20. —sin3x+—cosx——xsin7x
6 18 14

— —cosTxtc
98

2
21, (3x3 —6)sinfx+6 Jxcosx +¢

2x

13

e—x

[2sin3x—3cos3x]|+c

[ —cosx+2sin2x]+c

x
3. By [ sin (log x) — cos (log x) | + ¢

X 3
4. 50— [¥*+— +
v_{qu 5
3 3
— log| x+ [x¥*+— ||+¢c
10 5

3 @ 3
5. —ANa—x*+—sin'|— | +¢
6 2 a

x—5
2

V(x—3)(7—x)+2sin™! (?jvtc

2x
[? V4 +4+2log (2+ V4 + 4)} +e

“log 2
1 3
820 r3)T

3 3 3
\/5{% /x2+?+Zlog(x+ /x2+7ﬂ+c

:



I11.

10.

11.

12.

10.

12.

14.

16.

3

1 3 x+2
—?(5—4x—x2)2—(x+2)\/5—4x—x2—9sin‘( j+c

(1 + 2 tanx)
4

x+1
( 5 )\/x2+2x+5+ 2log{x+l+\/x2+2x+5}+c

4x +3 3 23 3 3
VE{(X j/ﬁ+——x+2+ bng+—J+—MLP—x+2}}+C
8 2 16 V2 1 2
X

29 1
\/tan2x+tanx—7—?log {?+tanx+\/tan2x+tanx—7}+c

1 1
e"(2+cotx)+c 2. tan—+c 3. et —+c 4. e +c
2 X x+1
e*-(logx)*+ ¢ 6.e%- logx+c 7. e 'rx+c
(1+x)? 1
> log (1 +x)—? +c 9. x-cosec (logx)+ ¢

[ EXERCISE 3.4 ]

1 11
Zlog(x—1)—2log(x+2)+Z(x+3)+c

. 1 | (x—\/j) \/?t _l[x)-i-
—tan'x 0 ——tan'!'|—=|+¢
6 15v2 2\ x+42 ) 10 V3
511 2+9+311 3x—=7)+ 4 81 +4 21 1)+
41 08 @x 9+ rlog Bx=7) +¢ - T logx ) mlog(x— D te
5
x—log(x+3)+log(x—2)+c 6. x2+3x+?10g(3x+1)+log(x—1)+c
L oel 2 s tog e 3y e 8 S tog[—— ) e 9 Mant 2 ) L[ X )
5 og S og(x+3)+c 8. 5 og e R .\/gtan > 2tan > c
. x+1 5 | x+2 O 2+x?
+— — |+ , +
Blx—1 242 8 x—V2 ¢ Bl3+x)"¢
1 | 27—4 . 5 1 111 x+1
+ C— +— +

slog2 Sl2v1) € 2\ x+1) 4 Blae3)7C
61 1 1 15 1l X G 3)

: - +1)— + L — — |+

ng Og(x ) x+1 c 8 Og (3x3+1)3 ¢

L log (6~ 1)~ log (62 + x + 1) lt‘1(2x+1]+
J logx o log (F+x 73 c

. .




M

4
17. 3-log (sinx—2)—sinx—_2+c

1 1 2
18. ?log (cosx + 1)+Z10g(cosx— 1)—?10g(2 cosx+1)+c

. 1 | cosx—1 1 20 1 | (1+2sinx)*
. = + + L= : : +
8 8 cosx + 1 4 (cosx+1) ¢ 6 8 (1 —sinx) (1 + sin x)? ¢

1 1 2
21, —log(l —cosx)—?log(l +cosx)+?log(3+2cosx)+c

10
L el Ty l(ej N {(310gx+2)2] no
22. —lo l{+—tan' | — |+ ¢ —log| —V/———— |+ —tan"'(logx) t ¢
2 £ (e>+9)2 3 26 8 V(logx)*+1] 26 (log )
ﬁ MISCELLANEOUS EXERCISE 3 ﬁ
1 2 3 4 5 6 7 8 9 10
B A B A D B A A C B
11 12 13 14 15 16 17 18 19 20
A A D C A D A D C A
2 7 8 5 8 3
an (1) 7x2 —?x2—?x2+c
X x x¥ ¥ X ¥
) ———+————+t———+x—1 +1)+
Q) Tt Tty Ty et Dt
3 ! 6 5% 4 c 2+ 31 1 :
— (6x+35)2 + — —2t+3 +)+——+
() T (6r5)7 e (4) -2+ 3log(t+ )+ e
(5) 3tanx—2secx+c (6) tan©®—cot®0—-30+c

1
(7) &(ZSin6x+3sin4x+6sin2x+12x)+c (8) ?sin2x—?sin3x+c

9 " 12+
9) 4x 4x c

(I (1) %(l+logx)4+c

1 1
(2) (tan'x)x-— By log (1 +x*)— (1 —x)tan'(1 —x) + By log (*—2x+2)+c¢

3
(3) —cot(logx)+c 4) - see x2 +c

= &




1
(5) xlog(1+cosx)+c (6) —sin!t(x*)+c

3
1 1
(7) Zlog (3—2cotx)+c (8) x(log (logx)—@jJrc
9) \/21_3‘[e1n1 (2tari/(li_j_3j+c (10) %(2 sec‘x+2\/)§;—_lj+c
(11) —ierLsin‘(zx_ljJrc (12) x-log(2+1)—2[x—tan'x ]+¢
2 42 N7

1
(13) Zez"' [ sin 2x —cos 2x | + ¢

1 1 4
(14) Elog(3x—1)+?log(x—1)—;10g(3x—2)+c

b (cosx —1)(cosx + 1)
(15) 6log{ G cosxt 1) }Jrc
» tan x — 1 7T Ty .l(tanx—lj_’_
(16) > j 7 tan x — tan® x sin 2 c
17 ll Co DI | 18 l1 ( : j+
( ) 4 og W c ( ) 5 0g )CSTI C
1 2
(19) 2+tanx+c (20) 3c0t3x+cotx_COtX+c
4. DEFINITE INTEGRATION
 EXERCISE4.1
64
(1y 4 (2) T (3)e*—1 (4) 6 (5) 20
[ EXERCISE 4.2 ]
n & o) 1 (25j I 4 2
(1) 3 (2) log 7 3) ( ZJ 4)

1 3n 4 3n
(5) 1—8[13x/ﬁ+7ﬁ—3\/§—27] ©1-7= O —5 &1 O

10 1[ *14-1— 12) 11 12 i 13)1 1471:—1
()gtangtan? (I = ()g (13) ()ZE

. .




L (1) ;—%log2 2) %log2 3) ;
4) 0 ) %tan‘ Gj 6) %log
4 1 L (ae) L@
(7) log (?} (8) E{tan (7) tan (bej}
T 4 T
9) 7 (10) 3 (11)5_1
8 T
(125 (13) -1
(14) &% HH}—EH} (15) sin(log 3)
1. (1) ; 2) 0 (3) 0 “4) 0
TEZ
(6) 0 (7 0 ) PEY 9 0
(11) 410g(1+\/§) (12) 0 13) -2 (14) —
105 3

(MISCELLANEOUS EXERCISE 4j

(

2x/§+1j

)

(10)

T
(IS)Elog(

2V2-1

16, I
—(3)2
-7 (3)

0

3)

D
1 2 3 4 5 6 7 8 9 10
A A C D C A D B A
1 1 1
an (1) =G -log3) (2) 2-V2 (3) 6—4log?2 4 < ) o7
1 T T
6) m—2 (7) 5 log2 ® = 9) 0 (10) =
am) = 2 - tan /z G) — log(7+3\/gj @) —
16 V35 5 V54 2 20
s 1 (= s i
(5) - ~log2 (6) 3(Z—log\ﬁj (7) —log2 (8) "
9) 10g(5+3\/§j (10) U
| 1+3 )
1 1
avy() Ewhena=0;;whena=4 (2) kZE




|:: 5. APPLICATION OF DEFINITE INTEGRAL :]

 EXERCISES.1 1816
(2) TN (i1) 3
(1) () 25 (i) 16 (iii) 20
. A 1 32
Gv) 1 V) 2logd (v T ST i 3 (i)
128 , @ 1
(vil) —= sq. units (iv) 8= V) <
: MISCELLANEOUS EXERCISE 5 ﬁ
()]
1 2 3 4 5 6 7 8 9 10
A A C B A D B D A B
11 12 13 14 15 16 17 18 19 20
A D B B C C A D A C
(II)
LG 10 5 9 I T 1 n 1
. () (i1) (1i1) > 5. 3 6 5 7.2—?
2. O9n 3. 20m 56 3 7
16 g N 8. 5 9. 36— 10. —
4. (1) 3 (11) 3 (111) 3
[ 6. DIFFERENTIAL EQUATIONS ]
EXERCISE 6.1
[ CISE 61 | iy 2 P m0 s [2) “azv=0
() (@ 2,1 (i) 2,3 (iii) 1,2 (i) xS Fx g Ty =0 W) (dxj -
(iv) 3,1 v) 2,1 (vi) 3,2 7y Py (dyy
(vii) 2, not definded (viii) 2, 2 ©) dx? »=0 (1) dx’ ’ (dx j 0
(ix) 3,3 x) 2,1 . dy L Ay _dy
(vii) (x2+xy)a+y=0 (VIII)E—7E+ 10y=0

[ EXERCISE 6.2 ]

&y Ay dy
‘ dy (ix) xy —— +x I —2yd—=0
(1) () 2x3+3xy2£—y3=0 dx X x
gy, (dy & o b
) xyﬁ”[aj ! 0 ge T Y0

. .



2 —

b xray P g
—|— _— =
“4) x Y

ST+

(6)

2)

3)

4

&y
dx?

o

&’y

7) y—=+
()ydx2

(1)

(i)
(iv)
(vi)

dv 3
=0 (3)2a@+(—yJ ~ 0

dx? dx

53dy 2=0
—+2=
) dx

dy\?
(&) -0

[ EXERCISE 6.3 ]

tan!'y=tan'x+ ¢
2e¥ +3e¥=¢ (i) x=cy
tanx -tany=c¢ (v)siny-cosx=c

y=—hkx+c

(vil) 2(x*+y?) +2 (x sin 2x + y sin 2y) +

cos2y+cos2x+c=0

(viil) 2y* tan' x + 1 =¢)?

(ix)
(x)
(1)
(1)
(iii)
(v)
(vi)

1)
(i)
(iii)
(iv)
(v)

4e"+3e¥=c

3er+3e7+x =c

(1+e*)tany=0

(1+2) (137 =5

(iv) (sinx) (e +1)="2

y=exlogx

2Q2+e’)=3x+1)
y—2
cos( jza
by
xty
tan( > ) =x+tc

xX—y—a
C+2y=a10g(x_y—+aj

sin (x> +)%) +2x=c¢
x=tan (x —2y) +c¢

2x=y)—log(x—y+2)+1=0

(| EXERCISE 6.4 |

(1) cos (%j dy=1log(x)+c

@) (3) x+2pe7 = ¢
)

(6)

xX*—yr=cx
X =c(x+2y) (5) ¥*+y*=cx

y=cx+y)y+x

|- (3)

(8) x+ye¥ ¢ 9) log () + = =c
(1) x*+y*=x*

(7)

(10) x>y =4

(12) tan! (%j =log (x) + ¢

(13)Bx+yy (x+yy=c

X
(14)c=10g(x)+m (15)x*—y*=cx

[ EXERCISE 6.5 ]

X 3
1. () ?—T—X)/:C

tan x

(i) ye" =" (tanx—1)+c

(i) x=y(c+)?)

(iv) y(secx+tanx)=secx +tanx —x+c
, x*logx  x*
= -—

V) ¥y=— 16 ©

(vi)
(vii) 2y=(x+a)’ +2c(x+a)’

sin* 0

(viii) rsin® 0 + =c

3
(ix) y?zxy-irc

x) y=N1-x*+c(1—-x%

tan~ ! x + —tan~! x

1
(xi) y=se

/
. O@O .
AN



o

3(x+3y)=2(1 —e¥)

(98]

4x2 + 92 =36

4. y=4—-x—-2¢"

5. 1+y=2e?

[ EXERCISE 6.6 ]

. 8 times of original. 2.95-4 years 3. 36-36° 4. 5656
t
log 3 27 4 \30
5. i 6. 5 7. (3000)( 9 j
P2
8. 1 hour 10.r=3—¢ 11. 27,182 12'(10_EJ %
ﬁ MISCELLANEOUS EXERCISE 6 j
)
1 2 3 4 5 6 7 8 9 10| 11 |12 | 13| 14 | 15
D A C B C B C D B A B B B
a (a @ 2,1 (i1) 3, 10 (iii) 2,3 (iv)1.4  (v) 4, not defined
. &y dy\? dy .. dy dy
e | -2y —= = . +
3) @ xy 1 +x (dx] 2y o 0 (11) 1o y=0 (i)(y— a) (dxj 0

&y dy\?
+ +y=
(iv) 2x%y —=— e 2x? (dxj y=0

. dy
(4) (1) 2xyd—+x -y*=0

2e ¥+ 3e¥+6¢c=0

(5) @

(iv) y=1l+xlogx+ecx
(vil) 4xe¥ +5e?=c

(6) 1) exlogx—y=0

(V) log V¥ 757+ tan™ (Zj _
X

T
4

(8) xX*+y*=4x+5

d*y dy
(11)2bd——1—0 (111)x+4yd

(ii)log(y)=%+x+c

v) y = x>+ c-cosec x
y

(il) x = 2y?

(9) r=(63t+27)3

d’y
v) ——9y=0
) T2
o dy
(1V)ZE—3—O

3

e x
(iii) y = 5 log (x?) +2 +cx

(vi)xlogy=(logy)*+c

(iii) y cosec? x + 2 =4 sin 2x

(V) x +2yey =2

! 20
(10) ) years

0 :




7. PROBABILITY DISTRIBUTIONS

[E—

[ EXERCISE 7.1 j

{-6,-4,-2,0,2,4,6}

4 (@)
2.{0,1,2} X 0 1 2
3. (@ .m.f. i1)  Not p.m.f 1 1 1
i p (i1) p PX) S = =
(i) p.m.f (iv) Notp.m.f
(v) Notpmf  (iv) pm.f (i)
X 0 1 2 3
113131
L C O 8 8 8
5. (iif)
57 5 1 3 x o 1] 2137 4
2 2 1 11137 1]L
P(X) 5 ) Bl PX)| 16| 4 | 8 | 4| 16
6.
X 0 1 2 3 4
ol 3| B |E6E ] 6 | B
5 5)5 5) s 55 5
7. | 3 |
8 (i) — (i) — (iil) —
e 5 i 5 10 10 5
24
3 1 9. —0-05,2-2475 10. % 55—4 .15
P | 16 8 16 .
12. 13. 4-67 14.2-41
15. 17-53,4-9,2-21 16. 0-7,0-21
| EXERCISE7.2 |
. (1) pdf (i1) Not a p.d.f 2:25 3 3
2. (a) 7, (b) 1_6 5 (c) Z
(iii)) Notap.d.f ] i
30 G) pdf (i) — iii) —
1 p (i1) 9 (ii1) 9

/,
SO .
AN




1 35 11 1 x2 1
4. (1Q) —,— i) 6, —,— 8. (1) — i) —, 0-18, 1
() 2 64 (@) 32 2 ()16 ()64
1 1 7 2 8 7
5. () — 1) — i) — 9. —0,—, —
2 4 @) 2 (i) 16 9 9 9
2 1 1 4 4 (log3-—-1
6. () — (i)~ 10. , [ Adog3—1)
5 5 log3 log3 (log 3)?
1 11
7. (1) — i) — ii1) 0-6328
(1) 5 ( )16 (iii)
K MISCELLANEOUS EXERCISE 7 ﬁ
@
1 2 3 4 5 6 7 8 9 10
B C A B B A D B
(II) Solve the following :
(1) (i) Discrete {1,2,3,..., 100000} (i)  Continuous. (iii)  Continuous.
(iv) Discrete {0, 1,2,3,4,5 } (v)  Continuous
1 10 1 6
2 ) — i) —, —, — 3 1)0-5 i) 0-7 1i1) 0-55 iv) 0-45
(2) (1) o ()2177 3 O (i1) (iii) (iv)
5 .
(%) A
X 1 2 3 4 5
. 1 ; T T
@) 20 20 4 2 20
1 1 9 19
F(x) — - — — 1
20 5 20 20
(0)
X 0 1 2 3 4
. 1 T 3 T
@ 16 4 8 4 16
‘c
24
(7@ (i1)
X 0 1 2 X 0 1 2
4 4 1 25 10 1
P(X) — — — P (X) v - v
9 9 9 36 36 36
o S




1 3
® G % (i) L (i)

100
%)
X 3 2 3 0 1 2 3 4
FX) | o1 03 05 | 065 | 075 | 085 | 09 1
P(x) | o1 02 02 | 015 | 010 | 0-10 | 005 | 010
() 0-55 (i) 0-25
11 14 V14 1 14414  n+l =1 [w*=1 . 55 5
W05 Wews Wy Wy
1 11 .81
(11) ¥ 5-5,8-25 (12) 0,1 (13) (1)5 (11)E (IH)FS
11 1 x 11
(15) k=5,; (16)k=z,F(}C)—7, ﬁ, 2
N 8. BINOMIAL DISTRIBUTION ]
| EXERCISE 8.1 |
3 T .. 63 99 . 994
L) % (i1) % (i) “ 8. (i) 1—(10()) (ii) 50(10050]
25 199 994
i 2 .
ST . 9(2010J (i) 1 149(100”)
| 45
4 () — (i) —>— 1 [ ) (192j (19)
1024 1024 9. (1) e (i) 3 (iii) 3 e (iv)
5. () (0-95) (ii) (1-2) (0-95)* . (5)5 ; (93)
(i) 1—(1-2) (0:95)*  (iv) 1 — (0:95)° 306 101
6. (iT 5 AL 12, ()4,2:4 (i) 10,24 (i) = V6 (iv)
10 243 5 5
li MISCELLANEOUS EXERCISE 8 j
D
1 2 3 4 5 6 7
B D D C B C B




(I) Solve the following :

(1

)

3)

4

)

(6)
®)
©)

(i) 2x(0-8)° (i) 1 —(0-8)"

(iii) 1 — (8-2) (0-2)°

(1) pZ%, Var (X)=2-5

1
i)n=10,p=—
(i1) P=7

(i1) 105

.. 63
1 —
® 512

256

(1)

(12)
(13)

(i) (0-998)*
(iii) 1 — 1-014 x (0-998)’

775-44 x (0-003)%*
(i) 0-910 (ii) 0-9°

(iii) 0-45 x (0-9)
(iv) 1 —2:16 x (0-9)°

14) () —, —, =, =22
226 ( ) () 54 54 54 54 54
. (_j 608 33
210 3 33
(i) (a) 5 (b) 1 S
1 . . 16 1 12
() 0-65 x (0-95) 15 @) 35><8><8—7 (i) 1 - 3793
(ii) (2:0325) x (0-95)™ 5 5
.. log0-5
(16) (@)
(iii) 1 = (1-6) x (0-95)'6 log 0-99
1
0-2114 (7) 1-4 x (0-9)* (17) 5
697 x (0-97)"
-44
0-3456 (10) 22
58
L X X
.

(ii) 1-014 x (0-998Y’
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