Q.1. A) Solve Multiple Choice questions
 (1 mark each) 4 M

1. Find perimeter of a square if its diagonal is $10 \sqrt{2} \mathrm{~cm}$.
(A) 10 cm
(B) $40 \sqrt{2} \mathrm{~cm}$
(C) 20 cm
(D) 40 cm
2. Out of the following which is the Pythagorean triplet?
(A) $(1,5,10)$
(B) $(3,4,5)$
(C) $(2,2,2)$
(D) $(5,5,2)$
3. The number of tangents that can be drawn to a circle at a point on the circle is \qquad . .
(A) 3
(B) 2
(C) 1
(D) 0
4. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$ and $\frac{A B}{P Q}=\frac{7}{5}$, then \qquad
(A) $\triangle \mathrm{ABC}$ is bigger.
(B) $\triangle \mathrm{PQR}$ is bigger.
(C) Both triangles will be equal.
(D) Can not be decided

Q.1. B) Solve the following

(1 mark each)
4 M

1. Write section formula and midpoint formula.
2. In figure $\mathrm{BC} \perp \mathrm{AB}, \mathrm{AD} \perp \mathrm{AB}$,

$$
\begin{aligned}
& \mathrm{BC}=4, \mathrm{AD}=8 \text {, then find } \\
& \mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{ADB})
\end{aligned}
$$

3. Find $\sin \theta \times \operatorname{cosec} \theta=$?
4. Two circles having radii 3.5 cm and 4.8 cm touch each other internally.

Find the distance between their centres.

Q.2. A) Complete 2 activities out of 3
 (2 marks each) 4 M

1. Fill in the blanks with reference to figure

2. Complete the following activity to draw a tangent to a circle at a point on the circle.

3. For finding $A B$ and $B C$ with the help of information given in figure complete following activity.

$\therefore \angle \mathrm{BAC}=\square$
$\therefore \mathrm{AB}=\mathrm{BC}=\square \times \mathrm{AC}$

$=\square \times \sqrt{8}$
$=\square \times 2 \sqrt{2}$
$=\square$

Q.2. B) Solve Any 4 out of 5

(2 marks each)
8 M

1. Prove: $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \times \operatorname{cosec}^{2} \theta$
2. In $\Delta \mathrm{PQR}, \mathrm{PM}=15, \mathrm{PQ}=25$
$P R=20, N R=8$. State whether line
NM is parallel to side RQ. Give
 reason.
3. $\square \mathrm{MRPN}$ is cyclic, $\angle \mathrm{R}=(5 \mathrm{x}-13)^{\circ}, \angle \mathrm{N}=(4 \mathrm{x}+4)^{\circ}$. Find measures of $\angle \mathrm{R}$ and $\angle \mathrm{N}$.
4. In figure, $\angle \mathrm{MNP}=90^{\circ}$,

$$
\begin{aligned}
& \operatorname{seg} \mathrm{NQ} \perp \operatorname{seg} \mathrm{MP} \\
& \mathrm{MQ}=9 \\
& \mathrm{QP}=4, \text { find } \mathrm{NQ}
\end{aligned}
$$

5. Find the distance between points $\mathrm{A}(2,3), \mathrm{B}(4,1)$.

Q.3. A) Complete 1 activity out of 2 (3 marks each)

1.

In adjoining figure $\mathrm{PQ} \perp \mathrm{BC}$,
$\mathrm{AD} \perp \mathrm{BC}$ then find following ratios.
(i) $\frac{\mathrm{A}(\Delta \mathrm{PQB})}{\mathrm{A}(\Delta \mathrm{PBC})}=\frac{\square}{\square}$
(ii) $\frac{\mathrm{A}(\triangle \mathrm{PBC})}{\mathrm{A}(\Delta \mathrm{ABC})}=\square$
(iii) $\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{ADC})}=\frac{\square}{\square}$
(iv) $\frac{\mathrm{A}(\Delta \mathrm{ADC})}{\mathrm{A}(\Delta \mathrm{PQC})}=\square$
2. Complete the following activity.

Tangent segment theorem

Theorem : Tangent segments drawn from an external point to a circle are congruent.
Observe the adjoining figure. Write 'given' and 'to prove.'
Draw radius AP and radius AQ and complete the following proof of the theorem.

Proof: In $\triangle \mathrm{PAD}$ and $\triangle \mathrm{QAD}$,
$\operatorname{seg} \mathrm{PA} \cong$ \qquad radii of the same circle. $\operatorname{seg} A D \cong \operatorname{seg} A D$ $\angle \mathrm{APD}=\angle \mathrm{AQD}=90^{\circ}$ \qquad tangent theorem
$\therefore \triangle \mathrm{PAD} \cong \triangle \mathrm{QAD}$ \qquad

$\therefore \operatorname{seg} \mathrm{DP} \cong \operatorname{seg} \mathrm{DQ}$ \qquad
Q.3. B) Solve Any 2 out of 4
(3 marks each)
6 M

1. State and Explain Basic Proportionality Theorem.
2. Show that points $(1,7),(4,2),(-1,-1)$ and $(-4,4)$ are vertices of a square.
3. Draw a circle of radius 3.4 cm and centre E . Take a point F on the circle.

Take another point A such that $\mathrm{E}-\mathrm{F}-\mathrm{A}$ and $\mathrm{FA}=4.1 \mathrm{~cm}$. Draw tangents to the circle from point A .
4. If $\tan \theta=\frac{3}{4}$, find the values of $\sec \theta$ and $\cos \theta$.

1. In figure, $\angle \mathrm{DFE}=90^{\circ}$,
$\mathrm{FG} \perp \mathrm{ED}, \mathrm{If} \mathrm{GD}=8, \mathrm{FG}=12$, find
(i) EG
(ii) FD and (iii) EF

2. In figure, $\square \mathrm{PQRS}$ is cyclic.
side $\mathrm{PQ} \cong$ side $\mathrm{RQ} . \angle \mathrm{PSR}=110^{\circ}$, Find -
(i) measure of $\angle \mathrm{PQR}$
(ii) $m(\operatorname{arc} \mathrm{PQR})$
(iii) $m(\operatorname{arc} \mathrm{QR})$
(iv) measure of $\angle \mathrm{PRQ}$

3. $\Delta \mathrm{ABC} \sim \Delta \mathrm{LBN}$. In $\triangle \mathrm{ABC}, \mathrm{AB}=5.1 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}, \mathrm{BC}=4.8 \mathrm{~cm}$.

Construct $\triangle \mathrm{ABC}$ and $\triangle \mathrm{LBN}$ such that $\frac{A C}{L N}=\frac{4}{7}$.

Q.5) Solve Any 1 out of 2

(3 marks each)

1. $\square \mathrm{ABCD}$ is a parallelogram point E is on side BC . Line DE intersects ray AB in point T. Prove that $\mathrm{DE} \times \mathrm{BE}=\mathrm{CE} \times \mathrm{TE}$.

2. Find the co-ordinates of the points of trisection of the line segment $A B$ with $\mathrm{A}(2,7)$ and $\mathrm{B}(-4,-8)$.

Chapter wise weightage *		
Chp No	Chapter Name	Total Marks
1	Similarity	13
2	Pythagoras Theorem	9
3	Circle	11
4	Geometric Construction	10
5	Co ordinate Geometry	9
6	Trigonometry	8
7	Mensuration	-
		60

* As per reduced syllabus 2020-2021
*Note: Ch 7 is completely omitted

