- (A) 3 **(B)** 2 (C) 1 (D) 04. If $\triangle ABC \sim \triangle PQR$ and $\frac{AB}{PQ} = \frac{7}{5}$, then (A) \triangle ABC is bigger. (B) \triangle PQR is bigger. (C) Both triangles will be equal. (D) Can not be decided
- **Q.1. B)** Solve the following

1. Write section formula and midpoint formula.

- 2. In figure BC \perp AB, AD \perp AB,
- 3. Find sin $\theta \times \operatorname{cosec} \theta = ?$

4. Two circles having radii 3.5 cm and 4.8 cm touch each other internally.

Q.2. A) Complete 2 activities out of 3

1.

(B)(3, 4, 5)

1. Find perimeter of a square if its diagonal is $10\sqrt{2}$ cm.

2. Out of the following which is the Pythagorean triplet?

(A) 10 cm (B) $40\sqrt{2}$ cm

(A) (1, 5, 10)

(1 mark each) **Q.1. A)** Solve Multiple Choice questions **4 M**

(C) 20 cm

(C)(2, 2, 2)

4 M

4 M

(D) 40 cm

(D) (5, 5, 2)

2. Complete the following activity to draw a tangent to a circle at a point on the circle.

 For finding AB and BC with the help of information given in figure complete following activity.

Q.2. B) Solve Any 4 out of 5

R

8 M

Μ

- 1. Prove: $\sec^2\theta + \csc^2\theta = \sec^2\theta \times \csc^2\theta$
- 2. In \triangle PQR, PM = 15, PQ = 25

PR = 20, NR = 8. State whether line

NM is parallel to side RQ. Give

reason.

3. \Box MRPN is cyclic, $\angle R = (5x - 13)^\circ$, $\angle N = (4x + 4)^\circ$. Find measures of $\angle R$

5. Find the distance between points A(2, 3), B(4, 1).

Q.3. A) Complete 1 activity out of 2

3 M (3 marks each)

In adjoining figure PQ \perp BC,

 $AD \perp BC$ then find following ratios.

А

Ο

2. Complete the following activity.

Tangent segment theorem

Theorem : Tangent segments drawn from an external point to a circle are congruent.

Observe the adjoining figure. Write 'given' and 'to prove.'

Draw radius AP and radius AQ and complete the following proof of the theorem. Р

Proof : In Δ PAD and Δ QAD,

seg PA \cong _____ radii of the same circle. seg AD \cong seg AD _____ $\angle APD = \angle AQD = 90^{\circ} \dots$ tangent theorem

- $\therefore \Delta \text{ PAD} \cong \Delta \text{ QAD}$
- ∴ seg DP ≅ seg DQ _____

- 1. State and Explain Basic Proportionality Theorem.
- 2. Show that points (1, 7), (4, 2), (-1, -1) and (-4, 4) are vertices of a square.
- 3. Draw a circle of radius 3.4 cm and centre E. Take a point F on the circle.

Take another point A such that E-F-A and FA = 4.1 cm. Draw tangents to the circle from point A.

4. If
$$\tan \theta = \frac{3}{4}$$
, find the values of sec θ and $\cos \theta$

1. \square ABCD is a parallelogram point E is on side BC. Line DE intersects ray AB in point T. Prove that DE \times BE = CE \times TE.

2. Find the co-ordinates of the points of trisection of the line segment AB with A(2, 7) and B(-4, -8).

Chapter wise weightage *		
Chp No	Chapter Name	Total Marks
1	Similarity	13
2	Pythagoras Theorem	9
3	Circle	11
4	Geometric Construction	10
5	Co ordinate Geometry	9
6	Trigonometry	8
7	Mensuration	-
		60

* As per reduced syllabus 2020 – 2021 *Note: Ch 7 is completely omitted