

General Instructions :

The question paper is divided into four sections :

- Section A: Q. No. 1 contains Ten multiple choice type of (1)questions carrying **One mark** each. Q. No. 2 contains Eight very short answer type of questions carrying **One mark** each. (2)Section B : Q. No. 3 to Q. No. 14 contain Twelve short answer type of questions carrying Two marks each. (Attempt any Eight). Section C: Q. No. 15 to Q. No. 26 contain Twelve short (3) answer type of questions carrying Three marks each. (Attempt any Eight). (4) Section D: Q. No. 27 to Q. No. 31 contain Five long answer type of questions carrying Four marks each. (Attempt any Three). (5) Use of the log table is allowed. Use of calculator is **not** allowed. Figures to the right indicate full marks. (6)
- (7) For multiple choice type questions, only the first attempt will be considered for evaluation.

0 8 3 7

- (8) Physical Constants :
 - (i) Mass of electron $m = 9.1 \times 10^{-31} \text{ kg}$
 - (ii) $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{ Nm}^2$
 - (iii) $\pi = 3.142$
 - (iv) Charge on electron $e = 1.6 \times 10^{-19} C$
 - (v) $\mu_0 = 4\pi \times 10^{-7} \, \text{Wb} / \text{Am}$
 - (vi) Planck's constant $h = 6.63 \times 10^{-34}$ J.s.
 - (vii) Speed of light $c = 3 \times 10^8$ m/s
 - (viii) $g = 9.8 \text{ m/s}^2$
 - (ix) Rydberg's constant $R_{\rm H} = 1.097 \times 10^7 \,{\rm m}^{-1}$
 - (x) Stefan's constant $\sigma = 5.67 \times 10^{-8} \text{ J m}^{-2} \text{ s}^{-1} \text{ K}^{-4}$

SECTION – A

Q. 1. Select and write the correct answer for the following [10] multiple choice type of questions :

(i) The moment of inertia (MI) of a disc of radius R and mass M about its central axis is _____.

(a)
$$\frac{MR^2}{4}$$
 (b) $\frac{MR^2}{2}$
(c) MR^2 (d) $\frac{3MR^2}{2}$

(ii) The dimensional formula of surface tension is _____.

(a)
$$[L^{-1}M^{1}T^{-2}]$$
 (b) $[L^{2}M^{1}T^{-2}]$

(c) $[L^{1}M^{1}T^{-1}]$ (d) $[L^{0}M^{1}T^{-2}]$

0 8 3 7

(iii) Phase difference between a node and an adjacent antinode in a stationary wave is _____.

(a)
$$\frac{\pi}{4}$$
 rad
(b) $\frac{\pi}{2}$ rad
(c) $\frac{3\pi}{4}$ rad
(d) π rad

- (iv) The work done in bringing a unit positive charge from infinity to a given point against the direction of electric field is known as _____.
 - (a) electric flux (b) magnetic potential
 - (c) electric potential (d) gravitational potential
- (v) To convert a moving coil galvanometer into an ammeter we need to connect a _____.
 - (a) small resistance in parallel with it
 - (b) large resistance in series with it
 - (c) small resistance in series with it
 - (d) large resistance in parallel with it
- (vi) If the frequency of incident light falling on a photosensitive material is doubled, then kinetic energy of the emitted photoelectron will be _____.
 - (a) the same as its initial value
 - (b) two times its initial value
 - (c) more than two times its initial value
 - (d) less than two times its initial value
- (vii) In a cyclic process, if $\Delta U =$ internal energy, W = work done, Q = Heat supplied then
 - (a) $\Delta U = Q$ (b) Q = O
 - (c) W = O (d) W = Q

8 3 0

- (viii) The current in a coil changes from 50A to 10A in 0.1 second. The self inductance of the coil is 20H. The induced e.m.f. in the coil is _____.
 - (a) 800V (b) 6000V
 - (c) 7000V (d) 8000V
- (ix) The velocity of bob of a second's pendulum when it is6 cm from its mean position and amplitude of 10 cm, is
 - (a) $8\pi cm/s$ (b) $6\pi cm/s$
 - (c) $4\pi \text{ cm/s}$ (d) $2\pi \text{ cm/s}$
- (x) In biprism experiment, the distance of 20th bright band from the central bright band is 1.2 cm. Without changing the experimental set-up, the distance of 30th bright band from the central bright band will be _____.

(a)	0.6 cm	(b)	0.8 cm
(c)	1.2 cm	(d)	1.8 cm

Q. 2. Answer the following questions :

- (i) Define centripetal force.
- (ii) Why a detergent powder is mixed with water to wash clothes?

[8]

- (iii) What is the resistance of an ideal voltmeter?
- (iv) Write the formula for torque acting on rotating current carrying coil in terms of magnetic dipole moment, in vector form.

- (v) What is binding energy of a hydrogen atom?
- (vi) What is surroundings in thermodynamics?
- (vii) In a photoelectric experiment, the stopping potential is 1.5V. What is the maximum kinetic energy of a photoelectron?
- (viii)Two capacitors of capacities 5μ F and 10μ F respectively are connected in series. Calculate the resultant capacity of the combination.

SECTION – B

Attempt any EIGHT questions of the following :

[16]

- **Q. 3.** Explain the change in internal energy of a thermodynamic system (the gas) by heating it.
- **Q. 4.** Explain the construction of a spherical wavefront by using Huygens' principle.
- Q. 5. Define magnetization. State its SI unit and dimensions.
- Q. 6. Obtain the differential equation of linear simple harmonic motion.
- **Q. 7.** A galvanometer has a resistance of 30Ω and its full scale deflection current is 20 microampere (μ A). What resistance should be added to it to have a range 0-10 volt?
- Q. 8. Explain Biot-Savart law.
- **Q. 9.** What is a Light Emitting Diode? Draw its circuit symbol.

- **Q. 10.** An aircraft of wing span of 60 m flies horizontally in earth's magnetic field of 6×10^{-5} T at a speed of 500 m/s. Calculate the e.m.f. induced between the tips of wings of aircraft.
- Q. 11. Derive an expression for maximum speed of a vehicle moving along a horizontal circular track.
- **Q. 12.** A horizontal force of 0.5N is required to move a metal plate of area 10^{-2} m² with a velocity of 3×10^{-2} m/s, when it rests on 0.5×10^{-3} m thick layer of glycerin. Find the coefficient of viscosity of glycerin.
- Q. 13. Two tuning forks having frequencies 320 Hz and 340 Hz are sounded together to produce sound waves. The velocity of sound in air is 340 m/s. Find the difference in wavelength of these waves.
- **Q. 14.** Calculate the change in angular momentum of electron when it jumps from third orbit to first orbit in hydrogen atom.

SECTION – C

[24]

Attempt any EIGHT questions of the following :

- **Q. 15.** A circular coil of wire is made up of 200 turns, each of radius 10 cm. If a current of 0.5A passes through it, what will be the magnetic field at the centre of the coil?
- **Q. 16.** Define photoelectric effect and explain the experimental set-up of photoelectric effect.
- **Q. 17.** Define the current gain α_{DC} and β_{DC} for a transistor. Obtain the relation between them.

0 8 3 7

- **Q. 18.** Define surface energy of the liquid. Obtain the relation between the surface energy and surface tension.
- **Q. 19.** What is an isothermal process? Obtain an expression for work done by a gas in an isothermal process.
- Q. 20. Derive an expression for equation of stationary wave on a stretched string. Show that the distance between two successive nodes or antinodes is $\lambda/2$.
- **Q. 21.** Derive an expression for the impedance of an LCR circuit connected to an AC power supply. Draw phasor diagram.
- **Q. 22.** Calculate the wavelength of the first two lines in Balmer series of hydrogen atom.
- **Q. 23.** A current carrying toroid winding is internally filled with lithium having susceptibility $\chi = 2.1 \times 10^{-5}$. What is the percentage increase in the magnetic field in the presence of lithium over that without it?
- Q. 24. The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.
- **Q.** 25. Prove the Mayer's relation : $C_p C_v = \frac{R}{J}$
- **Q.** 26. An alternating voltage is given by $e = 8\sin 628.4t$. Find
 - (i) peak value of e.m.f.
 - (ii) frequency of e.m.f.
 - (iii) instantaneous value of e.m.f. at time t = 10 ms.

SECTION – D

Attempt any THREE questions of the following :

- **Q. 27.** What is a transformer? Explain construction and working of a transformer. Derive the equation for a transformer.
- **Q. 28.** Using the geometry of the double slit experiment, derive the expression for fringe width of interference bands.
- **Q. 29.** Distinguish between an ammeter and a voltmeter. (Two points each).

The displacement of a particle performing simple harmonic motion is $\frac{1}{3}$ rd of its amplitude. What fraction of total energy will be its kinetic energy?

- Q. 30. Draw a neat labelled diagram of Ferry's perfectly black body. Compare the rms speed of hydrogen molecules at 227°C with rms speed of oxygen molecule at 127°C. Given that molecular masses of hydrogen and oxygen are 2 and 32 respectively.
- Q. 31. Derive an expression for energy stored in a charged capacitor.
 A spherical metal ball of radius 15 cm carries a charge of 2µC.
 Calculate the electric field at a distance of 20 cm from the center of the sphere.

